
Dynamic Memory Allocation

Spring 2012 Programming and Data Structure 1

Basic Idea

• In some situations, data is dynamic in nature.

– Amount of data cannot be predicted beforehand.

– Number of data item keeps changing during program
execution.

• Dynamic Memory Allocation: Ability of a program to use more
memory space at execution time

– Memory space required can be specified at the time of
execution.

– C supports allocating and freeing memory dynamically
using library routines.

Spring 2012 Programming and Data Structure 2

Dynamic Memory Allocation

• Ability of a program to use more memory space at
execution time

– Hold new nodes

• Use function malloc to allocate memory

– Release space no longer needed

• Use function free to deallocate memory

– Use #include <stdlib.h> header file when using
malloc & free functions

Memory Usage + Heap

Variable memory is allocated in three areas:

• Global data section

• Run-time stack

• Dynamically allocated - heap

Global variables are allocated in the global
data section and are accessible from all
parts of the program.

Local variables are allocated during
execution on the run-time stack.

Dynamically allocated variables are items
created during run-time and are
allocated on the heap.

Trap Vector Table

Program Code

Global Data Section
(Global and Static vars)

Run-Time Stack
(Local and Auto vars)

Trap Routines

0x0000

0xFFFF

Operating System

Heap
(Dynamically allocated vars)

I/O Space

Interrupt Vector Table

0x3000

Memory Allocation Functions

• malloc
– Allocates requested number of bytes and returns a

pointer to the first byte of the allocated space.

• calloc
– Allocates space for an array of elements, initializes

them to zero and then returns a pointer to the
memory.

• free
Frees previously allocated space.

• realloc
– Modifies the size of previously allocated space.

Spring 2012 Programming and Data Structure 5

Functions malloc & free

• ptr = malloc(sizeof(struct node));
– sizeof(struct node) returns the size in bytes of the structure

– malloc() allocates the specified number of bytes in memory

– Returns a pointer to the place in memory

– Returns NULL, if no more memory is available

• free(ptr);
– Deallocates the memory referred to by the pointer so it can

be reused

Contd.

• Examples

p = (int *) malloc (100 * sizeof (int)) ;

• A memory space equivalent to “100 times the size of an
int” bytes is reserved.

• The address of the first byte of the allocated memory is
assigned to the pointer p of type int.

Spring 2012 Programming and Data Structure 7

p

400 bytes of space

malloc

int *ip;

ip = (int *) malloc(10 * sizeof(int));

If (ip == NULL)

{

/* Handle Error! */

}

• Options for handling error

– Abort

– Ask again

– Save user data

– Ask for less

– Free up something

malloc -- What happens?

int foo(int n) {

int *ip;

ip = malloc(n * sizeof(int));

if(ip == NULL) {

/* Handle Error! */

}

...

Stack

Heap

Data

Code

40 bytes

if((ip = malloc(10*sizeof(int))) == NULL)

{

/* Handle Error Here */

}

Using the space

int sample(int n)

{

int i;

int *ip;

if((ip = malloc(n*sizeof(int))) == NULL)

{

/* Handle Error Here */

}

for(i = 0; i < n; i++)

ip[i] = 0;

...

Flexibility

#define MAX 10

int *ip;

ip = malloc(MAX * sizeof(int));

After some calls to malloc

Stack

Heap

Non-constant data

Constant data

Code

What does runtime track?

Address

1400

2400

3000

4000

Size

200

300

100

500

Notice that no record is made of the name of any pointer

What happens?

int *ip;

ip = malloc(...);

.

.

.

free(ip);

Prototypes

void *malloc(size_t n);

void free(void *p);

void *realloc(void *p, size_t n);

• What is this mysterious void pointer?

void pointer

• Not originally in c

• Relatively recent addition

• Basically a “generic” pointer

• Intended for use in applications like free
where the block of memory located at some
address will be freed without any necessity of
defining the type

Using calloc() (1)

• calloc()is a variant of malloc()

• calloc() takes two arguments: the number of "things"
to be allocated and the size of each "thing" (in bytes)

• calloc() returns the address of the chunk of memory
that was allocated

• calloc() also sets all the values in the allocated memory
to zeros (malloc() doesn't)

Using calloc() (2)

• calloc()is also used to dynamically allocate arrays

• For instance, to dynamically allocate an array of 10
ints:

int *arr;

arr = (int *) calloc(10, sizeof(int));

/* now arr has the address

of an array of 10 ints, all 0s */

malloc/calloc return value (1)

• malloc and calloc both return the address of the newly-
allocated block of memory

• However, they are not guaranteed to succeed!
– maybe there is no more memory available

• If they fail, they return NULL

• You must always check for NULL when using malloc or
calloc

malloc/calloc return value (2)

• bad:
int *arr = (int *) malloc(10 * sizeof(int));

/* code that uses arr... */

• good:
int *arr = (int *) malloc(10 * sizeof(int));

if (arr == NULL) {

fprintf(stderr, "out of memory!\n");

exit(1);

}

• Always do this!

malloc() vs. calloc()

• malloc/calloc both allocate memory

• calloc() zeros out allocated memory,
malloc() doesn't.

Functions malloc & free: Examples

• Once allocated, the memory belongs to your program until it terminates or is
free()’d.

#include <stdio.h>

#include <stdlib.h>

int main() {

int* dynArray;

/* Allocate space for 16 ints */

dynArray = (int *)malloc(16 * sizeof(int));

dynArray[6] = 65;

dynArray[12] = 2;

doSomething(dynArray);

free(dynArray);

}

Using free() (2)

int *arr;

arr = (int *) calloc(10, sizeof(int));

/* now arr has the address of an array of 10 ints, all 0s */

/* Code that uses the array... */

/* Now we no longer need the array, so "free" it: */

free(arr);

/* Now we can't use arr anymore. */

Using free() (3)

• NOTE: When we free() some memory, the memory is not
erased or destroyed

• Instead, the operating system is informed that we don't need
the memory any more, so it may use it for e.g. another program

• Trying to use memory after freeing it can cause a segmentation
violation (program crash)

Dynamic memory allocation (3)

#include <stdlib.h>

int *foo(int n) {

int i[10]; /* memory allocated here */

int i2[n]; /* ERROR: NOT VALID! */

int *j;

j = (int *)malloc(n * sizeof(int));

/* Alternatively: */

/* j = (int *)calloc(n, sizeof(int)); */

return j;

} /* i’s memory deallocated here; j’s not */

Dynamic memory allocation (4)

void bar(void) {

int *arr = foo(10);

arr[0] = 10;

arr[1] = 20;

/* ... do something with arr ... */

free(arr); /* deallocate memory */

}

• Not calling free() leads to memory leaks !

Structures and malloc
struct person {

char initials[4];

long int ssn;

int height;

struct person *father;

struct person *mother;

} *tom, *bill, *susan;

int main() {

tom = (struct person *)malloc(sizeof(struct person));

bill = (struct person *)malloc(sizeof(struct person));

susan = (struct person *)malloc(sizeof(struct person));

strncpy(tom->initials, "tj“, 2);

tom->ssn = 555235512;

tom->father = bill;

tom->mother = susan;

susan->height = 68;

/* Since tom is now a pointer, tom->mother->height is correct. */

printf(“\nTom's mother's height is: %d", tom->mother->height);

}

Structures and malloc
struct person {

char initials[4];

long int ssn;

int height;

struct person *father;

struct person *mother;

} *tom, *bill, *susan;

Structures and malloc
int main() {

tom = (struct person *)malloc(sizeof(struct person));

bill = (struct person *)malloc(sizeof(struct person));

susan = (struct person *)malloc(sizeof(struct person));

strncpy(tom->initials, "tj“, 2);

tom->ssn = 555235512;

tom->father = bill;

tom->mother = susan;

susan->height = 68;

printf(“\nTom's mother's height: %d", tom->mother->height);

}

Dynamic Allocation – Example 1

int *p; Call stack Heap

p

?

p = (int*)malloc(sizeof(int));

p

*p = 24;

24p

*p

*p

?

free(p);

24p
unstable

memory

Dynamic Allocation – Example 2

Pointer to an array:

double * arr;

arr = (double*)(malloc(5*sizeof(double)));

Call stack Heap

arr ?

arr ?????

arr[2] = 8.0;

arr ??8.0??

Realloc

ptr = realloc(ptr, num_bytes);

• What it does (conceptually)

– Find space for new allocation

– Copy original data into new space

– Free old space

– Return pointer to new space

Realloc

ptr

ptr

in-use

in-use

Before

After

Realloc: What might happen

ptr

ptr

unused Before

After

void read_array (int *a, int n) ;

int sum_array (int *a, int n) ;

void wrt_array (int *a, int n) ;

int main () {

int *a, n;

printf (“Input n: “) ;

scanf (“%d”, &n) ;

a = calloc (n, sizeof (int)) ;

read_array (a, n) ;

wrt_array (a, n) ;

printf (“Sum = %d\n”, sum_array(a, n);

}

void read_array (int *a, int n) {

int i;

for (i=0; i<n; i++)

scanf (“%d”, &a[i]) ;

}

void sum_array (int *a, int n) {

int i, sum=0;

for (i=0; i<n; i++)

sum += a[i] ;

return sum;

}

void wrt_array (int *a, int n) {

int i;

........

}

Arrays of Pointers

• Array elements can be of any type

– array of structures

– array of pointers

int main (void) {

char word[MAXWORD];

char * w[N]; /* an array of pointers */

int i, n; /* n: no of words to sort */

for (i=0; scanf(“%s”, word) == 1); ++i) {

w[i] = calloc (strlen(word)+1, sizeof(char));

if (w[i] == NULL) exit(0);

strcpy (w[i], word) ;

}

n = i;

sortwords (w, n) ;

wrt_words (w, n);

return 0;

}

w

0

1

2

3

17

Input : A is for apple or alphabet pie which

all get a slice of come taste it and try

A \0

i s \0

f o r \0

a p p l e \0

t r y \0

void sort_words (char *w[], int n) {

int i, j;

for (i=0; i<n; ++i)

for (j=i+1; j<n; ++j)

if (strcmp(w[i], w[j]) > 0)

swap (&w[i], &w[j]) ;

}

void swap (char **p, char **q) {

char *tmp ;

tmp = *p;

*p = *q;

*q = tmp;

}

w

w[i]

f o r \0

a p p l e \0

Before swapping

w[j]

w

w[i]

f o r \0

a p p l e \0

After swapping

w[j]

Example

Spring 2012 Programming and Data Structure 44

printf("Input heights for %d

students \n",N);

for(i=0;i<N;i++)

scanf("%f",&height[i]);

for(i=0;i<N;i++)

sum+=height[i];

avg=sum/(float) N;

printf("Average height= %f \n",

avg);

}

#include <stdio.h>

int main() {

int i,N;

float *height;

float sum=0,avg;

printf("Input the number of students. \n");

scanf("%d",&N);

height=(float *) malloc(N * sizeof(float));

Input the number of students.

5

Input heights for 5 students

23 24 25 26 27

Average height= 25.000000

2d arrays and pointers

• Recall that when we declare a two-dimensional array, we can
think of it as an array of arrays. For example, if we have the
following array declaration,

int data[3][4];

• we can think of this as an array with three members, each of
which is an array of four ints. We can visualize it like this:

Spring 2012 Programming and Data Structure 45

• The address of the beginning of the entire array is the same as the
address of the first row of the array, which is the address of the first
element of the first row.

• However, to get to the first row we must dereference the array
name and to get the value of the first element of the first row we
must dereference twice

int sales[2][3] = { {1, 2, 3},

{9, 10, 11} };

printf("address of data is %p\n", sales);

printf("address of row 0 of data is %p\n", *sales);

printf("the value of sales[0][0] is %d\n", **sales);

produces

address of data is 0x7fffffed8140

address of row 0 of data is 0x7fffffed8140

the value of sales[0][0] is 1

Spring 2012 Programming and Data Structure 46

2d arrays

• The general form for getting the address of any
element of any row is

*(array_name + row) + column

• For example, when we write *(data + 1) + 2,
we are saying “add the size of one row to the
address of data, get the address of this, then
add the size of two elements of a row to this”.

Spring 2012 Programming and Data Structure 47

Pointer Indirection (Pointers to Pointers)

a=58;

p=&a;

q=&p;

a = 58

*p = 58

**q = 58

Pointer to Pointer

• Example:

int **p;

p=(int **) malloc(3 * sizeof(int *));

Spring 2012 Programming and Data Structure 49

p

p[2]

p[1]

p[0]

int *

int **

int *

int *

2d array

int AA[MAX][15]

• A two dimensional array is considered to be a one
dimensional array of rows, which are, themselves, one
dimensional arrays.

• The rows are stored in sequence, starting with row 0.

AA[0] is stored first, then AA[1], then AA[2], and so on to
AA[MAX-1].

• Each of these ``elements'' is an array.

• The same is true for higher dimensional arrays.

• A n-dimensional array is considered to be a one dimensional
array whose elements are, themselves, arrays of dimension.

Spring 2012 Programming and Data Structure 50

Spring 2012 Programming and Data Structure 51

2d array

• Recall that an array name (without an index)
represents a pointer to the first object of the array.

• So the name, AA, is a pointer to the element AA[0].

• But, AA[0] is a one dimensional array; so, AA[0]
points to the first object in row 0, i.e. AA[0] points to
AA[0][0].

• AA[k] is the address of AA[k][0].

• AA[k] + j points to AA[k][j], and *(AA[k] + j)
accesses the value of AA[k][j] .

Spring 2012 Programming and Data Structure 52

2d array

• The name, AA points to the first object in this array of arrays,
i.e. AA points to the array AA[0].

• The addresses represented by AA and AA[0] are the same;
however, they point to objects of different types.

• AA[0] points to AA[0][0], so it is an integer pointer.

• AA points to AA[0], so it is a pointer to an integer pointer.

• If we add 1 to AA, the resulting pointer, AA + 1, points to the
array AA[1], and AA + k points to the array AA[k].

• Adding 1 to AA[0] results in a pointer that points to AA[0][1]

Spring 2012 Programming and Data Structure 53

Pointer equivalence to 2d arrays

Spring 2012 Programming and Data Structure 54

Dynamically Allocating 2D Arrays

Can not simply dynamically
allocate 2D (or higher)
array

Idea - allocate an array of
pointers (first dimension),
make each pointer point
to a 1D array of the
appropriate size

Can treat result as 2D array

0

4

3

2

1

0 321

A

Dynamically Allocating 2D Array

float **A; /* A is an array (pointer) of float

pointers */

int I;

A = (float **) calloc(5,sizeof(float *));

/* A is a 1D array (size 5) of float pointers */

for (I = 0; I < 5; I++)

A[I] = (float *) calloc(4,sizeof(float));

/* Each element of array points to an array of 4

float variables */

/* A[I][J] is the Jth entry in the array that the

Ith member of A points to */

Non-Square 2D Arrays

No need to allocate square 2D
arrays:

float **A;

int I;

A = (float **) calloc(5,

sizeof(float *));

for (I = 0; I < 5; I++)

A[I] = (float **)

calloc(I+1,

sizeof(float));

0

4

3

2

1

0 321

A

4

Dynamically Allocating
Multidimensional Arrays

Spring 2012 Programming and Data Structure 58

2-D Array Allocation

Spring 2012 Programming and Data Structure 59

#include <stdio.h>

#include <stdlib.h>

int **allocate(int h, int w)

{

int **p;

int i,j;

p=(int **) calloc(h, sizeof (int *));

for(i=0;i<h;i++)

p[i]=(int *) calloc(w,sizeof (int));

return(p);

}

void read_data(int **p,int h,int w)

{

int i,j;

for(i=0;i<h;i++)

for(j=0;j<w;j++)

scanf ("%d",&p[i][j]);

}

Allocate array

of pointers

Allocate array of

integers for each

row

Elements accessed

like 2-D array elements.

2-D Array: Contd.

Spring 2012 Programming and Data Structure 60

void print_data(int **p,int h,int w)

{

int i,j;

for(i=0;i<h;i++)

{

for(j=0;j<w;j++)

printf("%5d ",p[i][j]);

printf("\n");

}

}

int main()

{

int **p;

int M,N;

printf("Give M and N \n");

scanf("%d%d",&M,&N);

p=allocate(M,N);

read_data(p,M,N);

printf("\n The array read as \n");

print_data(p,M,N);

}

Give M and N

3 3

1 2 3

4 5 6

7 8 9

The array read as

1 2 3

4 5 6

7 8 9

2d arrays and pointers

• Recall that when we declare a two-dimensional array, we can
think of it as an array of arrays. For example, if we have the
following array declaration,

int data[3][4];

• we can think of this as an array with three members, each of
which is an array of four ints. We can visualize it like this:

Spring 2012 Programming and Data Structure 61

2d arrays

• The general form for getting the address of any
element of any row is

*(array_name + row) + column

• For example, when we write *(data + 1) + 2,
we are saying “add the size of one row to the
address of data, get the address of this, then
add the size of two elements of a row to this”.

Spring 2012 Programming and Data Structure 62

Pointer to Pointer

• Example:

int **p;

p=(int **) malloc(3 * sizeof(int *));

Spring 2012 Programming and Data Structure 63

p

p[2]

p[1]

p[0]

int *

int **

int *

int *

2d array

int AA[MAX][15]

• A two dimensional array is considered to be a one
dimensional array of rows, which are, themselves, one
dimensional arrays.

• The rows are stored in sequence, starting with row 0.

AA[0] is stored first, then AA[1], then AA[2], and so on to
AA[MAX-1].

• Each of these ``elements'' is an array.

• The same is true for higher dimensional arrays.

• A n-dimensional array is considered to be a one dimensional
array whose elements are, themselves, arrays of dimension.

Spring 2012 Programming and Data Structure 64

Spring 2012 Programming and Data Structure 65

2d array

• Recall that an array name (without an index)
represents a pointer to the first object of the array.

• So the name, AA, is a pointer to the element AA[0].

• But, AA[0] is a one dimensional array; so, AA[0]
points to the first object in row 0, i.e. AA[0] points to
AA[0][0].

• AA[k] is the address of AA[k][0].

• AA[k] + j points to AA[k][j], and *(AA[k] + j)
accesses the value of AA[k][j] .

Spring 2012 Programming and Data Structure 66

2d array

• The name, AA points to the first object in this array of arrays,
i.e. AA points to the array AA[0].

• The addresses represented by AA and AA[0] are the same;
however, they point to objects of different types.

• AA[0] points to AA[0][0], so it is an integer pointer.

• AA points to AA[0], so it is a pointer to an integer pointer.

• If we add 1 to AA, the resulting pointer, AA + 1, points to the
array AA[1], and AA + k points to the array AA[k].

• Adding 1 to AA[0] results in a pointer that points to AA[0][1]

Spring 2012 Programming and Data Structure 67

Pointer equivalence to 2d arrays

Spring 2012 Programming and Data Structure 68

Dynamically Allocating 2D Arrays

Can not simply dynamically
allocate 2D (or higher)
array

Idea - allocate an array of
pointers (first dimension),
make each pointer point
to a 1D array of the
appropriate size

Can treat result as 2D array

0

4

3

2

1

0 321

A

Dynamically Allocating 2D Array

float **A; /* A is an array (pointer) of float

pointers */

int I;

A = (float **) calloc(5,sizeof(float *));

/* A is a 1D array (size 5) of float pointers */

for (I = 0; I < 5; I++)

A[I] = (float *) calloc(4,sizeof(float));

/* Each element of array points to an array of 4

float variables */

/* A[I][J] is the Jth entry in the array that the

Ith member of A points to */

Non-Square 2D Arrays

No need to allocate square 2D
arrays:

float **A;

int I;

A = (float **) calloc(5,

sizeof(float *));

for (I = 0; I < 5; I++)

A[I] = (float **)

calloc(I+1,

sizeof(float));

0

4

3

2

1

0 321

A

4

2-D Array Allocation

Spring 2012 Programming and Data Structure 73

#include <stdio.h>

#include <stdlib.h>

int **allocate(int h, int w)

{

int **p;

int i,j;

p=(int **) calloc(h, sizeof (int *));

for(i=0;i<h;i++)

p[i]=(int *) calloc(w,sizeof (int));

return(p);

}

void read_data(int **p,int h,int w)

{

int i,j;

for(i=0;i<h;i++)

for(j=0;j<w;j++)

scanf ("%d",&p[i][j]);

}

Allocate array

of pointers

Allocate array of

integers for each

row

Elements accessed

like 2-D array elements.

2-D Array: Contd.

Spring 2012 Programming and Data Structure 74

void print_data(int **p,int h,int w)

{

int i,j;

for(i=0;i<h;i++)

{

for(j=0;j<w;j++)

printf("%5d ",p[i][j]);

printf("\n");

}

}

int main()

{

int **p;

int M,N;

printf("Give M and N \n");

scanf("%d%d",&M,&N);

p=allocate(M,N);

read_data(p,M,N);

printf("\n The array read as \n");

print_data(p,M,N);

}

Give M and N

3 3

1 2 3

4 5 6

7 8 9

The array read as

1 2 3

4 5 6

7 8 9

Array Pointers

• To declare a pointer to an array type, you must
use parentheses

int (* arrPtr)[10] ; // A pointer to an array of

// ten elements with type int

Spring 2012 Programming and Data Structure 75

int *a[10];

• Declares and allocates an array of pointers to
int. Each element must be dereferenced
individually.

int (*a)[10];

• Declares (without allocating) a pointer to an
array of int(s). The pointer to the array must
be dereferenced to access the value of each
element.

• int a[10]; Declares and allocates an array of
int(s).

Spring 2012 Programming and Data Structure 76

Array Pointers

int (* arrPtr)[10] ; // A pointer to an array of 10 elements

// with type int

if we assign it the address of an appropriate array,

• *arrPtr yields the array, and

• (*arrPtr)[i] yields the array element with the index i.

Spring 2012 Programming and Data Structure 77

int matrix[3][10]; // Array of 3 rows, each with 10 columns.

// The array name is a pointer to the first row.

arrPtr = matrix; // Let arrPtr point to the first row of the matrix.

(*arrPtr)[0] = 5; // Assign the value 5 to the first element of the first row.

arrPtr[2][9] = 6; // Assign 6 to the last element of the last row.

++arrPtr; // Advance the pointer to the next row.

(*arrPtr)[0] = 7; // Assign 7 to the first element of the second row.

++arrPtr; // Advance the pointer to the next row.

(*arrPtr)[0] = 7; // Assign value 7 to the first element of the second row.

Spring 2012 Programming and Data Structure 78

int main () {

int i;

int * a[10] ;

printf (“sizeof a = %d\n” , sizeof(a));

int x=1, y=2, z=3;

a[0] = &x; a[1] = &y; a[2] = &z;

for (i=0; i<10; i++)

printf ("*a[%d] = %d\n", i, *(a[i])) ;

}

Spring 2012 Programming and Data Structure 80

sizeof a = 80

*a[0] = 1

*a[1] = 2

*a[2] = 3

int main () {

int i;

int (*b)[10] ;

printf (“sizeof b = %d\n”, sizeof(b));

b = malloc (10*sizeof(int)) ;

printf ("b = %p\n", b) ;

printf ("b+1 = %p\n", b+1) ;

for (i=0; i<10; i++) {

(*b)[i] = i;

printf (“(*b)*%d+ = %d\n",i, (*b)[i]) ;

}

}
Spring 2012 Programming and Data Structure 81

sizeof b = 8

b = 0x601010

b+1 = 0x601038

(*b)[0] = 0

(*b)[1] = 1

(*b)[2] = 2

(*b)[3] = 3

(*b)[4] = 4

