Recursion
Part I (Lecture 15)
Recursion

- A process by which a function calls itself repeatedly
 - Either directly.
 - X calls X
 - Or cyclically in a chain.
 - X calls Y, and Y calls X

- Used for repetitive computations in which each action is stated in terms of a previous result
 \[\text{fact}(n) = n \times \text{fact}(n-1) \]
For a problem to be written in recursive form, two conditions are to be satisfied:

- It should be possible to express the problem in recursive form
 - Solution of the problem in terms of solution of the same problem on smaller sized data

- The problem statement must include a stopping/terminating condition
 - The direct solution of the problem for a small enough size

\[
\text{fact}(n) = \begin{cases}
1, & \text{if } n = 0 \\
 n \times \text{fact}(n-1), & \text{if } n > 0
\end{cases}
\]
Examples:

- Factorial:
 \[\text{fact}(0) = 1 \]
 \[\text{fact}(n) = n \times \text{fact}(n-1), \text{ if } n > 0 \]

- GCD:
 \[\text{gcd} (m, m) = m \]
 \[\text{gcd} (m, n) = \text{gcd} (n, m \% n) \]

- Fibonacci series \(1, 1, 2, 3, 5, 8, 13, 21, \ldots\)
 \[\text{fib} (0) = 1 \]
 \[\text{fib} (1) = 1 \]
 \[\text{fib} (n) = \text{fib} (n-1) + \text{fib} (n-2), \text{ if } n > 1 \]
Factorial

long int fact (int n)
{
 if (n == 1)
 return (1);
 else
 return (n * fact(n-1));
}
Factorial Execution

```c
long int fact(int n)
{
    if (n == 1) return (1);
    else return (n * fact(n-1));
}
```
Factorial Execution

\[
\text{fact}(4)
\]

```c
long int fact (int n)
{
    if (n == 1) return (1);
    else return (n * fact(n-1));
}
```
Factorial Execution

\[
\text{Fact}(4) \\
\quad \text{if } (4 == 1) \text{ return } (1); \\
\quad \text{else return } (4 \times \text{Fact}(3));
\]

```c
long int fact(int n) 
{
    if (n == 1) return (1); 
    else return (n * fact(n-1)); 
}
```
Factorial Execution

```
long int fact (int n)
{
    if (n == 1) return (1);
    else return (n * fact(n-1));
}
```
Factorial Execution

```
long int fact(int n)
{
    if (n == 1) return (1);
    else return (n * fact(n-1));
}
```
Factoring Execution

```c
long int fact(int n) {
    if (n == 1) return (1);
    else return (n * fact(n-1));
}
```

```
fact(4)
  if (4 == 1) return (1);
  else return (4 * fact(3));
    ↓
  if (3 == 1) return (1);
  else return (3 * fact(2));
    ↓
  if (2 == 1) return (1);
  else return (2 * fact(1));
    ↓
  if (1 == 1) return (1);
```
Factorial Execution

```c
long int fact(int n)
{
    if (n == 1) return (1);
    else return (n * fact(n-1));
}
```

```c
if (4 == 1) return (1);
else return (4 * fact(3));
```

```c
if (3 == 1) return (1);
else return (3 * fact(2));
```

```c
if (2 == 1) return (1);
else return (2 * fact(1));
```

```c
if (1 == 1) return (1);
```
Factorial Execution

```c
long int fact(int n)
{
    if (n == 1) return (1);
    else return (n * fact(n-1));
}
```
Factorial Execution

```
long int fact(int n)
{
    if (n == 1) return (1);
    else return (n * fact(n-1));
}
```
Factorial Execution

long int fact (int n)
{
 if (n == 1) return (1);
 else return (n * fact(n-1));
}
Example: Finding max in an array

```c
int findMax(int A[ ], int n) {
    int temp;
    if (n==1) {
        return A[0];
    }
    temp = findMax(A, n-1);
    if (A[n-1] > temp)
        return A[n-1];
    else return temp;
}
```

Terminating condition.
Small size problem that you know how to solve directly without calling any functions.

Recursive call. Find the max in the first n-1 elements (exact same problem, just solved on a smaller array).
Important things to remember

- Think how the whole problem (finding max of n elements in A) can be solved if you can solve the exact same problem on a smaller problem (finding max of first n-1 elements of the array). But then, do NOT think how the smaller problem will be solved, just call the function recursively and assume it will be solved.

- When you write a recursive function
 - First write the terminating/base condition
 - Then write the rest of the function
 - Always double-check that you have both
Back to Factorial: Look at the variable addresses (a slightly different program)!

```c
int main()
{
    int x,y;
    scanf("%d",&x);
    y = fact(x);
    printf ("M: x= %d, y = %d\n", x,y);
    return 0;
}
int fact(int data)
{
    int val = 1;
    printf("F: data = %d, &data = %u \n
    &val = %u\n", data, &data, &val);
    if (data>1) val = data*fact(data-1);
    return val;
}
```

Output

```
4
F: data = 4, &data = 3221224528
&val = 3221224516
F: data = 3, &data = 3221224480
&val = 3221224468
F: data = 2, &data = 3221224432
&val = 3221224420
F: data = 1, &data = 3221224384
&val = 3221224372
M: x= 4, y = 24
```
- The memory addresses for the variable data are different in different calls!
- They are not the same variable.
- Each function call will have its own set of variables, even if the name of the variable is the same as it is the same function being called.
- Change made to one will not be seen by the calling function on return.
int main()
{
 int x,y;
 scanf("%d",&x);
 y = fact(x);
 printf ("M: x= %d, y = %d\n", x,y);
 return 0;
}

int fact(int data)
{
 int val = 1, count = 0;
 if (data>1) val = data*fact(data-1);
 count++;
 printf("count = %d, data = %d\n", count, data);
 return val;
}

Output

4
count = 1, data = 1
count = 1, data = 2
count = 1, data = 3
count = 1, data = 4
M: x= 4, y = 24

• Count did not change even though ++ done!
• Each call does it on its own copy, lost on return
Recursion
Part II (Lecture 16)
Fibonacci Numbers

Fibonacci recurrence:
\[\text{fib}(n) = 1 \text{ if } n = 0 \text{ or } 1; \]
\[= \text{fib}(n - 2) + \text{fib}(n - 1) \]
\[\text{otherwise}; \]

```c
int fib (int n) {
    if (n == 0 or n == 1)
        return 1;  // Base
    return fib(n-2) + fib(n-1);  // Recursive
}
```
```c
int fib (int n) {
    if (n == 0 || n == 1)
        return 1;
    return fib(n-2) + fib(n-1);
}
```

Fibonacci recurrence:
\[\text{fib}(n) = 1 \text{ if } n = 0 \text{ or } 1; \]
\[= \text{fib}(n - 2) + \text{fib}(n - 1) \text{ otherwise}; \]
int fib (int n) {
 if (n == 0 || n == 1)
 return 1;
 return fib(n-2) + fib(n-1);
}

Fibonacci recurrence:
fib(n) = 1 if n = 0 or 1;
 = fib(n – 2) + fib(n – 1)
otherwise;
Fibonacci recurrence:
\[fib(n) = \begin{cases} 1 & \text{if } n = 0 \text{ or } 1; \\ fib(n - 2) + fib(n - 1) & \text{otherwise}; \end{cases} \]

```c
int fib (int n) {
    if (n==0 || n==1)
        return 1;
    return fib(n-2) + fib(n-1) ;
}
```
Example: Sum of Squares

```c
int sumSquares (int m, int n)
{
    int middle ;
    if (m == n) return(m*m);
    else
    {
        middle = (m+n)/2;
        return (sumSquares(m,middle)
                   + sumSquares(middle+1,n));
    }
}
```
Annotated Call Tree

sumSquares(5,10)

sumSquares(5,7)
- sumSquares(5,6)
 - sumSquares(5,5)
 - sumSquares(6,6)
- sumSquares(7,7)
- sumSquares(8,9)

sumSquares(8,10)
- sumSquares(8,8)
- sumSquares(9,9)
- sumSquares(10,10)
Example: Printing the digits of an Integer in Reverse

- Print the last digit, then print the remaining number in reverse
 - Ex: If integer is 743, then reversed is print 3 first, then print the reverse of 74

```c
void printReversed(int i)
{
    if (i < 10)   {
        printf("%d\n", i); return;
    }
    else {
        printf("%d", i%10);
        printReversed(i/10);
    }
}
```
Counting Zeros in a Positive Integer

- Check last digit from right
 - If it is 0, number of zeros = 1 + number of zeroes in remaining part of the number
 - If it is non-0, number of zeros = number of zeroes in remaining part of the number

```c
int zeros(int number)
{
    if(number<10) return 0;
    if (number%10 == 0)
        return(1+zeros(number/10));
    else
        return(zeros(number/10));
}
```
Example: Binary Search

- Searching for an element \(k \) in a sorted array \(A \) with \(n \) elements

- Idea:
 - Choose the middle element \(A[n/2] \)
 - If \(k == A[n/2] \), we are done
 - If \(k < A[n/2] \), search for \(k \) between \(A[0] \) and \(A[n/2 - 1] \)
 - If \(k > A[n/2] \), search for \(k \) between \(A[n/2 + 1] \) and \(A[n-1] \)
 - Repeat until either \(k \) is found, or no more elements to search

- Requires less number of comparisons than linear search in the worst case (\(\log_2 n \) instead of \(n \)
int binsearch(int A[], int low, int high, int k) {
 int mid;
 printf("low = %d, high = %d\n", low, high);
 if (low > high)
 return 0;
 mid = (low + high)/2;
 printf("mid = %d, A[%d] = %d\n\n", mid, mid, A[mid]);
 if (A[mid] == k)
 return 1;
 else {
 if (A[mid] > k)
 return (binsearch(A, low, mid-1, k));
 else
 return(binsearch(A, mid+1, high, k));
 }
}
int main()
{
 int A[25], n, k, i, found;

 scanf("%d", &n);
 for (i=0; i<n; i++) scanf("%d", &A[i]);
 scanf("%d", &k);
 found = binsearch(A, 0, n-1, k);
 if (found == 1)
 printf("%d is present in the array\n", k);
 else
 printf("%d is not present in the array\n", k);
}
Output

8
9 11 14 17 19 20 23 27
21
low = 0, high = 7

low = 4, high = 7

low = 6, high = 7

low = 6, high = 5
21 is not present in the array

14
low = 0, high = 7

low = 0, high = 2
mid = 1, A[1] = 11

low = 2, high = 2
14 is present in the array
int Fib (int n, int i)
{
 static int m1, m2;
 int res, temp;
 if (i==2) {m1 =1; m2=1;}
 if (n == i) res = m1+ m2;
 else
 {
 temp = m1;
 m1 = m1+m2;
 m2 = temp;
 res = Fib(n, i+1);
 }
 return res;
}

Static Variables

int Fib (int, int);

int main()
{
 int n;
 scanf("%d", &n);
 if (n == 0 || n ==1)
 printf("F(%d) = %d \n", n, 1);
 else
 printf("F(%d) = %d \n", n, Fib(n,2));
 return 0;
}
int Fib(int n, int i)
{
 static int m1, m2;
 int res, temp;
 if (i==2) {m1 =1; m2=1;}
 printf("F: m1=%d, m2=%d, n=%d, i=%d\n", m1,m2,n,i);
 printf("F: &m1=%u, &m2=%u\n", &m1,&m2);
 printf("F: &res=%u, &temp=%u\n", &res,&temp);
 if (n == i) res = m1+ m2;
 else { temp = m1; m1 = m1+m2;
 m2 = temp;
 res = Fib(n, i+1); }
 return res;
}
Common Errors in Writing Recursive Functions

- Non-terminating Recursive Function (Infinite recursion)
 - No base case
    ```
    int badFactorial(int x) {
        return x * badFactorial(x-1);
    }
    
    int anotherBadFactorial(int x) {
        if(x == 0)
            return 1;
        else
            return x*(x-1)*anotherBadFactorial(x-2); // When x is odd, base case never reached!!
    }
    ```
 - The base case is never reached
    ```
    int badSum2(int x) {
        if(x==1) return 1;
        return(badSum2(x--));
    }
    ```
Common Errors in Writing Recursive Functions

- Mixing up loops and recursion

```c
int anotherBadFactorial(int x) {
    int i, fact = 0;
    if (x == 0)
        return 1;
    else {
        for (i=x; i>0; i=i-1) {
            fact = fact + x*anotherBadFactorial(x-1);
        }
        return fact;
    }
}
```

- In general, if you have recursive function calls within a loop, think carefully if you need it. Most recursive functions you will see in this course will not need this
Recursion vs. Iteration

- Repetition
 - Iteration: explicit loop
 - Recursion: repeated function calls

- Termination
 - Iteration: loop condition fails
 - Recursion: base case recognized

- Both can have infinite loops

- Balance
 - Choice between performance (iteration) and good software engineering (recursion).
Every recursive program can also be written without recursion.

Recursion is used for programming convenience, not for performance enhancement.

Sometimes, if the function being computed has a nice recursive form, then a recursive code may be more readable.
Recursion

Part III (Lecture 17)
How are function calls implemented?

- The following applies in general, with minor variations that are implementation dependent
 - The system maintains a stack in memory
 - Stack is a last-in first-out structure
 - Two operations on stack, push and pop
 - Whenever there is a function call, the activation record gets pushed into the stack
 - Activation record consists of the return address in the calling program, the return value from the function, and the local variables inside the function
int main()
{

 x = gcd(a, b);

}

int gcd(int x, int y)
{

 return (result);
}
int main()
{

 x = ncr (a, b);

}

int ncr (int n, int r)
{
 return (fact(n)/fact(r)/fact(n-r));
}

int fact (int n)
{

 return (result);
}

Before call Call ncr Call fact fact returns ncr returns
What happens for recursive calls?

- What we have seen ….
 - Space for activation record is allocated on the stack when a function call is made
 - Space allocated for activation record is deallocated on the stack when the function returns

- In recursion, a function calls itself
 - Several function calls going on, with none of the function calls returning back
 - Space for activation records allocated on the stack continuously
 - Large stack space required
Space for activation records are de-allocated, when the termination condition of recursion is reached.

We shall illustrate the process by an example of computing factorial.

- Activation record looks like:

```
| Local Variables | Return Value | Return Addr |
```
Example:: main() calls fact(3)

```c
int fact (int n)
{
    if (n == 0)
        return (1);
    else
        return (n * fact(n-1));
}

int main()
{
    int n;
    n = 3;
    printf ("%d \n", fact(n) );
    return 0;
}
```
TRACE OF THE STACK DURING EXECUTION

main calls fact

fact returns to main
Do Yourself

- Trace the activation records for the following version of Fibonacci sequence

```c
int f (int n)
{
    int a, b;
    if (n < 2) return (n);
    else {
        a = f(n-1);
        b = f(n-2);
        return (a+b);
    }
}

void main() {
    printf("Fib(4) is: %d \n", f(4));
}
```

- Local Variables (n, a, b)
- Return Value
- Return Addr (either main, or X, or Y)
Additional Example
Towers of Hanoi Problem
Initially all the disks are stacked on the LEFT pole

Required to transfer all the disks to the RIGHT pole
- Only one disk can be moved at a time.
- A larger disk cannot be placed on a smaller disk

CENTER pole is used for temporary storage of disks
Recursive statement of the general problem of n disks

- Step 1:
 - Move the top (n-1) disks from LEFT to CENTER

- Step 2:
 - Move the largest disk from LEFT to RIGHT

- Step 3:
 - Move the (n-1) disks from CENTER to RIGHT
Tower of Hanoi
Tower of Hanoi
Tower of Hanoi
Tower of Hanoi
Towers of Hanoi function

```c
void towers (int n, char from, char to, char aux) 
{    
    /* Base Condition */    
    if (n==1) {    
        printf ("Disk 1 : %c -> &c \n", from, to) ;    
        return ;    
    }    
    /* Recursive Condition */    
    towers (n-1, from, aux, to) ;    
    .................    
    .................    
} 
```
Towers of Hanoi function

void towers (int n, char from, char to, char aux)
{
 /* Base Condition */
 if (n==1) {
 printf ("Disk 1 : %c -> &c \n", from, to) ;
 return ;
 }
 /* Recursive Condition */
 towers (n-1, from, aux, to) ;
 printf ("Disk %d : %c -> %c\n", n, from, to) ;

}

void towers (int n, char from, char to, char aux)
{
 /* Base Condition */
 if (n==1) {
 printf ("Disk 1 : %c -> %c \n", from, to) ;
 return ;
 }
}
/* Recursive Condition */
towers (n-1, from, aux, to) ;
printf ("Disk %d : %c -> %c\n", n, from, to) ;
towers (n-1, aux, to, from) ;
void towers(int n, char from, char to, char aux)
{
 if (n==1)
 {
 printf ("Disk 1 : %c -> %c \n", from, to);
 return ;
 }
 towers (n-1, from, aux, to);
 printf ("Disk %d : %c -> %c\n", n, from, to);
 towers (n-1, aux, to, from);
}

int main()
{
 int n;
 scanf("%d", &n);
 towers(n,'A','C','B');
 return 0;
}
void towers(int n, char from, char to, char aux) {
 if (n==1) {
 printf("Disk 1 : %c -> %c \n", from, to);
 return;
 }
 towers(n-1, from, aux, to);
 printf("Disk %d : %c -> %c\n", n, from, to);
 towers(n-1, aux, to, from);
}

int main() {
 int n;
 scanf("%d", &n);
 towers(n,'A','C','B');
 return 0;
}
Practice Problems

1. Write a recursive function to search for an element in an array
2. Write a recursive function to count the digits of a positive integer (do also for sum of digits)
3. Write a recursive function to reverse a null-terminated string
4. Write a recursive function to convert a decimal number to binary
5. Write a recursive function to check if a string is a palindrome or not
6. Write a recursive function to copy one array to another

Note:
- For each of the above, write the main functions to call the recursive function also
- Practice problems are just for practicing recursion, recursion is not necessarily the most efficient way of doing them