Sorting

CS10003 PROGRAMMING AND DATA STRUCTURES
The Basic Problem

Given an array: $x[0], x[1], \ldots, x[size-1]$ reorder the elements so that

$x[0] \leq x[1] \leq \ldots \leq x[size-1]$

- That is, reorder entries so that the list is in increasing (non-decreasing) order.

We can also sort a list of elements in decreasing (non-increasing) order.

We prefer not to use additional arrays for the element rearrangement.
Example

Original list:

10, 30, 20, 80, 70, 10, 60, 40, 70

Sorted in non-decreasing order:

10, 10, 20, 30, 40, 60, 70, 70, 80

Sorted in non-increasing order:

80, 70, 70, 60, 40, 30, 20, 10, 10
Selection Sort
SELECTION SORT: The idea

General situation:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>k</th>
<th></th>
<th>size-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>x:</td>
<td>smallest elements, sorted</td>
<td>remainder, unsorted</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Steps:

- Initialize $k = 0$.
- Find smallest element, $mval$, in the array segment $x[k...size-1]$.
- Swap smallest element with $x[k]$, then increase k.
Subproblem

/* Find index of smallest element in x[k...size-1] */

int min_loc (int x[], int k, int size)
{
 int j, pos;
 pos = k;
 for (j=k+1; j<size; j++)
 if (x[j] < x[pos])
 pos = j;
 return pos;
}
Selection Sort Function

```c
/* Sort x[0..size-1] in non-decreasing order */

int sel_sort (int x[], int size) {
  int k, m, temp;

  for (k = 0; k < size-1; k++) {
    m = min_loc (x, k, size);
    /* Swap x[k], x[m]*/
    temp = x[k];
    x[k] = x[m];
    x[m] = temp;
  }
}
```
Example

\[x: \begin{array}{cccccccc}
3 & 12 & -5 & 6 & 142 & 21 & -17 & 45 \\
\hline
-17 & 12 & -5 & 6 & 142 & 21 & 3 & 45 \\
-17 & -5 & 12 & 6 & 142 & 21 & 3 & 45 \\
-17 & -5 & 3 & 6 & 142 & 21 & 12 & 45 \\
-17 & -5 & 3 & 6 & 142 & 21 & 12 & 45 \\
\end{array} \]
Bubble Sort
BUBBLE SORT: The idea

General situation:

In every pass, we go on comparing neighboring pairs, and swap them if out of order.

for j = 0 to k-1
 if (x[j] > x[j+1])
 interchange them.

At the end of this iteration, the ‘next largest’ element (among the unsorted part) will settle at x[k].

Lighter elements bubble up.
Heavier elements settle down.
void bubble_sort (int x[], int size) {
 int t;
 for (i = 0; i < size; i++)
 for (j = 0; j < size-i-1; j++)
 if (x[j] > x[j+1]) {
 // swap a[j] and a[j+1]
 t = a[j];
 a[j] = a[j+1];
 a[j+1] = t;
 }
}

How do the passes proceed?
In pass 1, we consider index 0 to size-1
In pass 2, we consider index 0 to size-2
In pass 3, we consider index 0 to size-3
......
In pass size-1, we consider index 0 to 1.
A more efficient sorting method: Mergesort
A popular sorting algorithm based on the divide-and-conquer approach.

Basic idea (divide-and-conquer method)

```plaintext
sort (list)
{
    if the list has length greater than 1
    {
        Partition the list into lowlist and highlist;
        sort (lowlist);
        sort (highlist);
        combine (lowlist, highlist);
    }
}
```
Merge Sort

Input Array

Part-I

Split

Part-II

Merge

Sorted Arrays
void merge_sort (int *A, int n)
{
 int i, j, k, m;
 int *B, *C;

 if (n > 1) {
 k = n/2; m = n - k;
 B = (int *) malloc (k * sizeof(int));
 C = (int *) malloc (m * sizeof(int));
 for (i=0; i<k; i++) B[i] = A[i];
 for (j=k; j<n; j++) C[j-k] = A[j];
 // B contains first half of A
 // C contains second half of A
 merge_sort (B, k);
 merge_sort (C, m);
 merge (B, C, A, k, m); // destination array is A
 free(B); free(C);
 }
}
Merging two sorted arrays

Copy element from a (indexed by i) if its value is smaller than the element in b pointed by j; otherwise, copy the element from b (indexed by j).

If one of the arrays a or b get exhausted, simply copy the rest of the other array.
void merge (int *a, int *b, int *c, int m, int n)
 // c is the destination array
{
 int i=0, j=0, k=0, p;
 // loop as long as neither array a nor array b is completed
 while ((i<m) && (j<n)) {
 if (a[i] < b[j])
 { c[k] = a[i]; i++; }
 else
 { c[k] = b[j]; j++; }
 k++;
 }
 if (i == m) { // array a completed; copy rest of array b to array c
 for (p=j; p<n; p++)
 { c[k] = b[p]; k++; }
 } else {
 // array b completed; copy rest of array a to array c
 for (p=i; p<m; p++)
 { c[k] = a[p]; k++; }
 }
}
Example: showing the merge phase only

Initial array A contains 16 elements:

• 66, 33, 40, 22, 55, 88, 60, 11, 80, 20, 50, 44, 77, 30, 47, 23

Pass 1 :: Merge each pair of elements

• (33, 66) (22, 40) (55, 88) (11, 60) (20, 80) (44, 50) (30, 70) (23, 47)

Pass 2 :: Merge each pair of pairs

• (22, 33) (40, 66) (11, 55) (60, 88) (20, 44) (50, 80) (23, 30) (47, 77)

Pass 3 :: Merge each pair of sorted quadruplets

• (11, 22, 33, 40, 55, 60, 66, 88) (20, 23, 30, 44, 47, 50, 77, 80)

Pass 4 :: Merge the two sorted subarrays to get the final list

• (11, 20, 22, 23, 30, 33, 40, 44, 47, 50, 55, 60, 66, 77, 80, 88)
void merge_sort (int *A, int n)
{
 int i, j, k, m;
 int *B, *C;
 if (n > 1) {
 k = n/2; m = n - k;
 B = (int *) malloc (k * sizeof(int));
 C = (int *) malloc (m * sizeof(int));
 for (i=0; i<k; i++)
 B[i] = A[i];
 for (j=k; j<n; j++)
 C[j-k] = A[j];
 // B contains first half of A
 // C contains second half of A
 merge_sort (B, k);
 merge_sort (C, m);
 merge (B, C, A, k, m); // dest A
 free(B); free(C);
 }
}
Time complexity of merge sort

If \(n \) denotes the number of elements to be sorted, then the number of comparisons required in merge sort is approximately proportional to \(n \log n \).

We need extra storage space as we have to temporarily create space for the arrays B and C.
Practically best sorting method: Quicksort
Introduction to Quick Sort

- Merge sort is a theoretically best (optimal) sorting algorithm.
- Quick sort is the practically best general-purpose sorting algorithm.
- Problems of merge sort:
 - Extra space requirement
 - Merging step is difficult to carry out without extra arrays.
- Quick sort is another recursive sorting algorithm.
- Quick sort takes a divide-and-conquer approach.
- In merge sort, the main work (merging) is done after the recursive calls return.
- In quick sort, the main work (partitioning) is done before the recursive calls are made.
- Basic idea of quick sort
 - Choose an element p of the array A as the pivot.
 - Decompose the array in three parts: L consisting the elements of A less than (or equal to) p, R consisting of the elements of A larger than p, and the single element p.
 - Recursively sort L and R.
 - Output $\text{sorted}(L)$ followed by p followed by $\text{sorted}(R)$.
 - If partitioning is done in A itself, then there is no task left after the recursive calls.
void quicksort (int A[], int n)
{
 int pivotidx;
 if (n <= 1) return;
 pivotidx = partition (A, n);
 quicksort (A, pivotidx);
 quicksort (A+pivotidx+1, n-pivotidx-1);
}
Partitioning using extra arrays

```c
int partition ( int A[], int n )
{
    int *L, *R, p, i, j, l, r;

    if (n <= 1) return n-1;

    L = (int *)malloc(n * sizeof(int));
    R = (int *)malloc(n * sizeof(int));
    p = A[n-1]; // Choose the last element of A as pivot
    l = r = 0; // Initialize the sizes of L and R
    for (i=0; i<=n-2; ++i)
    for (i=0; i<l; ++i) A[i] = L[i]; // Copy L to A
    A[i++] = p; // Append p to A
    for (j=0; j<r; ++j) A[i++] = R[j]; // Append R to A
    free(L); free(R); // No further needs for L and R
    return l;
}
```
In-place partitioning

- Possibility of partitioning A without any extra arrays make quick sort attractive and efficient.
- There are many variants of the in-place partitioning algorithm.
- We follow the CLRS variant:

- We take \(p = A[n-1] \) as the pivot.
- The array A is always maintained as the concatenation LRUp, where
 - L consists of elements \(\leq p \)
 - R consists of elements \(> p \)
 - U is the unprocessed part (elements in U are not yet classified to go to L or R)
- Each iteration processes one element from U, and sends that element to L or R as appropriate.
- After \(n - 1 \) iterations, there are no unprocessed elements, so the array is of the form LRp.
- It is then converted to the form LpR.
- Blocks (L and R) are never fully shifted. Only element swaps are used.
- This may destroy the order of the (equal) keys in the partitioned array.
In-place partitioning

Case 1: $A[i] > p$

Case 2: $A[i] \leq p$

After end of loop
In-place partitioning: The code

```c
int partition ( int A[], int n )
{
    int lend = -1, i;
    int p, t;

    p = A[n-1]; // Last element of A is the pivot
    for (i=0; i<=n-2; ++i) {
        if (A[i] <= p) { // Region L grows
            ++lend;
        }
        // else Region R grows, ++i will do it
    }
    // i is the first index of Region R
    i = lend + 1;
    return i;
}
```
In-place partitioning: An example

lend i

```
| 10 | 21 | 8 | 3 | 15 | 27 | 9 | 16 | 5 | 15 |
-1  0  1  2  3  4  5  6  7  8  9
```

lend i

```
| 10 | 8 | 21 | 3 | 15 | 27 | 9 | 16 | 5 | 15 |
  0  1  2  3  4  5  6  7  8  9
```

lend i

```
| 10 | 8 | 3 | 21 | 15 | 27 | 9 | 16 | 5 | 15 |
  0  1  2  3  4  5  6  7  8  9
```

lend i

```
| 10 | 8 | 3 | 15 | 21 | 27 | 9 | 16 | 5 | 15 |
  0  1  2  3  4  5  6  7  8  9
```
Performance of quick sort

- Running times are specified as “*roughly proportional to a function of the input size.*”
- No (comparison-based) sorting algorithm can run faster than \(n \log n \) is the worst case.
- For merge sort:
 - All cases are the same. No specific best / worst / average case.
 - Each case has running time \(n \log n \) for merge sort.
- For quick sort:
 - Best case: Partitioning divides the array roughly into two equal halves
 - Worst case: Partitioning always gives one subarray of size one less than the array.
 - Average case: The pivot is any one element (smallest to largest) with equal probability.
- Example of worst case: The array is already sorted in ascending or descending order.
- Running time of quick sort:
 - Best and average case: \(n \log n \)
 - Worst case: \(n^2 \)
- Quick sort is not theoretically optimal.
- In practice, quick sort is considered the fastest sorting algorithm for “general” arrays.