
1

1-d Arrays

2

Array

◼ Many applications require multiple data items that

have common characteristics

 In mathematics, we often express such groups of data

items in indexed form:

◼ x1, x2, x3, …, xn

◼ Array is a data structure which can represent a

collection of data items which have the same data

type (float/int/char/…)

3

int a, b, c;

scanf(“%d”, &a);

scanf(“%d”, &b);

scanf(“%d”, &c);

printf(“%d ”, c);

printf(“%d ”, b);

printf(“%d \n”, a);

int a, b, c, d;

scanf(“%d”, &a);

scanf(“%d”, &b);

scanf(“%d”, &c);

scanf(“%d”, &d);

printf(“%d ”, d);

printf(“%d ”, c);

printf(“%d ”, b);

printf(“%d \n”, a);

3 numbers

4 numbers

Example: Printing Numbers in

Reverse

4

The Problem

◼ Suppose we have 10 numbers to handle

◼ Or 20

◼ Or 100

◼ Where do we store the numbers ? Use 100 variables

??

◼ How to tackle this problem?

◼ Solution:

 Use arrays

Printing in Reverse Using Arrays

int main()

{

 int n, A[100], i;

 printf(“How many numbers to read? “);

 scanf(“%d”, &n);

 for (i = 0; i < n; ++i)

 scanf(“%d”, &A[i]);

 for (i = n -1; i >= 0; --i)

 printf(“%d ”, A[i]);

 printf(“\n”);

 return 0;

}

6

Using Arrays

◼ All the data items constituting the group share the

same name

int x[10];

◼ Individual elements are accessed by specifying

the index

x[0] x[1] x[2] x[9]

X is a 10-element one

dimensional array

7

A first example

int main()

{

 int i;

 int data[10];

 for (i=0; i<10; i++) data[i]= i;

 i=0;

 while (i<10)

 {

 printf("Data[%d] = %d\n", i, data[i]);

 i++;

 }

 return 0;

}

“data refers to a block of 10

 integer variables, data[0], data[1],

 …, data[9]

8

The result

int main()

{

 int i;

 int data[10];

 for (i=0; i<10; i++) data[i]= i;

 i=0;

 while (i<10)

 {

 printf("Data[%d] = %d\n", i, data[i]);

 i++;

 }

 return 0;

}

Data[0] = 0

Data[1] = 1

Data[2] = 2

Data[3] = 3

Data[4] = 4

Data[5] = 5

Data[6] = 6

Data[7] = 7

Data[8] = 8

Data[9] = 9

Array size should be a constant

Output

9

Declaring Arrays

◼ Like variables, the arrays used in a program must be

declared before they are used

◼ General syntax:

 type array-name [size];

 type specifies the type of element that will be

contained in the array (int, float, char, etc.)

 size is an integer constant which indicates the

maximum number of elements that can be stored

inside the array

marks is an array that can store a maximum of 5

integers

int marks[5];

10

◼ Examples:

 int x[10];

 char line[80];

 float points[150];

 char name[35];

◼ If we are not sure of the exact size of the array,

we can define an array of a large size

 int marks[50];

 though in a particular run we may only be using,

say, 10 elements

11

Accessing Array Elements

◼ A particular element of the array can be accessed by

specifying two things:

 Name of the array

 Index (relative position) of the element in the array

◼ Important to remember: In C, the index of an array

starts from 0, not 1

◼ Example:

 An array is defined as int x[10];

 The first element of the array x can be accessed as

x[0], fourth element as x[3], tenth element as x[9], etc.

12

Contd.

◼ The array index can be any expression that evaluates

to an integer between 0 and n-1 where n is the

maximum number of elements possible in the array

 a[x+2] = 25;

 b[3*x-y] = a[10-x] + 5;

◼ Remember that each array element is a variable in

itself, and can be used anywhere a variable can be

used (in expressions, assignments, conditions,…)

13

How is an array stored in memory?

◼ Starting from a given memory location, the

successive array elements are allocated space in

consecutive memory locations

◼ x: starting address of the array in memory

◼ k: number of bytes allocated per array element

 A[i] ➔ is allocated memory location at address x + i*k

Array A

14

A Special Operator: AddressOf (&)

◼ Remember that each variable is stored at a memory

location with an unique address

◼ Putting & before a variable name gives the starting

address of the variable (where it is stored, not the

value)

◼ Can be put before any variable (with no blank in

between)

 int a =10;

 printf(“Value of a is %d, and address of a is

%d\n”, a, &a);

15

Example

int main()

{

 int i;

 int data[10];

 for(i=0; i<10; i++)

 printf("&Data[%d] = %u\n", i, &data[i]);

 return 0;

}

&Data[0] = 3221224480

&Data[1] = 3221224484

&Data[2] = 3221224488

&Data[3] = 3221224492

&Data[4] = 3221224496

&Data[5] = 3221224500

&Data[6] = 3221224504

&Data[7] = 3221224508

&Data[8] = 3221224512

&Data[9] = 3221224516

Output

16

Initialization of Arrays

◼ General form:

 type array_name[size] = { list of values };

◼ Examples:

 int marks[5] = {72, 83, 65, 80, 76};

 char name[4] = {‘A’, ‘m’, ‘i’, ‘t’};

◼ The size may be omitted. In such cases the

compiler automatically allocates enough space

for all initialized elements

 int flag[] = {1, 1, 1, 0};

 char name[] = {‘A’, ‘m’, ‘i’, ‘t’};

17

How to read the elements of an

array?

◼ By reading them one element at a time

 for (j=0; j<25; j++)

 scanf (“%f”, &a[j]);

◼ The ampersand (&) is necessary

◼ The elements can be entered all in one line or in

different lines

18

A Warning

◼ In C, while accessing array elements, array bounds
are not checked

◼ Example:
int marks[5];

:

:

marks[8] = 75;

 The above assignment would not necessarily cause an
error

 Rather, it may result in unpredictable program results,
which are very hard to debug

19

Reading into an array
int main() {

 const int MAX_SIZE = 100;

 int i, size;

 float marks[MAX_SIZE];

 float total;

 scanf("%d",&size);

 for (i=0, total=0; i<size; i++)

 {

 scanf("%f",&marks[i]);

 total = total + marks[i];

 }

 printf("Total = %f \n Avg = %f\n", total,

total/size);

 return 0;

}

4

2.5

3.5

4.5

5

Total = 15.500000

 Avg = 3.875000

Output

20

How to print the elements of an

array?

◼ By printing them one element at a time

 for (j=0; j<25; j++)

 printf (“\n %f”, a[j]);

 The elements are printed one per line

 printf (“\n”);

 for (j=0; j<25; j++)

 printf (“ %f”, a[j]);

 The elements are printed all in one line (starting with a

new line)

21

How to copy the elements of one

array to another?

◼ By copying individual elements

 for (j=0; j<25; j++)

 a[j] = b[j];

◼ The element assignments will follow the rules

of assignment expressions

◼ Destination array must have sufficient size

22

Example 1: Find the minimum of a

set of 10 numbers
int main()

{

 int a[10], i, min;

 for (i=0; i<10; i++)

 scanf (“%d”, &a[i]);

 min = a[0];

 for (i=1; i<10; i++)

 {

 if (a[i] < min)

 min = a[i];

 }

 printf (“\n Minimum is %d”, min);

 return 0;

}

23

const int size = 10;

int main()

{

 int a[size], i, min;

 for (i=0; i<size; i++)

 scanf (“%d”, &a[i]);

 min = a[0];

 for (i=1; i<size; i++)

 {

 if (a[i] < min)

 min = a[i];

 }

 printf (“\n Minimum is %d”, min);

 return 0;

}

Alternate Version 1

Change only one

 line to change the

problem size

24

#define size 10

int main()

{

 int a[size], i, min;

 for (i=0; i<size; i++)

 scanf (“%d”, &a[i]);

 min = a[0];

 for (i=1; i<size; i++)

 {

 if (a[i] < min)

 min = a[i];

 }

 printf (“\n Minimum is %d”, min);

 return 0;

}

Alternate Version 2

Change only one

 line to change the

problem size

Used #define macro

25

#define macro

◼ #define X Y

◼ Preprocessor directive

The #include you have been using is also a

preprocessor directive

◼ Compiler will first replace all occurrences of

string X with string Y in the program, then

compile the program

◼ Similar effect as read-only variables (const), but

no storage allocated

26

int main()

{

 int a[100], i, min, n;

 scanf (“%d”, &n); /* Number of elements */

 for (i=0; i<n; i++)

 scanf (“%d”, &a[i]);

 min = a[0];

 for (i=1; i<n; i++)

 {

 if (a[i] < min)

 min = a[i];

 }

 printf (“\n Minimum is %d”, min);

 return 0;

}

Alternate Version 3

Define an array of

large size and use

only the required

number of elements

27

Example 2:

Computing

cgpa

const int nsub = 6;

int main()

{

 int grade_pt[nsub], cred[nsub], i, gp_sum=0,

cred_sum=0;

 double gpa;

 for (i=0; i<nsub; i++)

 scanf (“%d %d”, &grade_pt[i], &cred[i]);

 for (i=0; i<nsub; i++)

 {

 gp_sum += grade_pt[i] * cred[i];

 cred_sum += cred[i];

 }

 gpa = ((float) gp_sum) / cred_sum;

 printf (“\n Grade point average: is %.2lf”, gpa);

 return 0;

}

Handling two arrays

at the same time

28

Things you cannot do

◼ You cannot

 use = to assign one array variable to another

 a = b; /* a and b are arrays */

 use == to directly compare array variables

 if (a = = b) ………..

 directly scanf or printf arrays

 printf (“……”, a);

29

Character Arrays and Strings

char C[8] = { 'a', 'b', 'h', 'i', 'j', 'i', 't', '\0' };

◼ C[0] gets the value 'a', C[1] the value 'b', and so on.
The last (7th) location receives the null character ‘\0’

◼ Null-terminated (last character is ‘\0’) character arrays
are also called null-terminated strings or just strings.

◼ Strings can be initialized in an alternative way. The
last declaration is equivalent to:

 char C[8] = "abhijit";

◼ The trailing null character is missing here. C
automatically puts it at the end if you define it like this

◼ Note also that for individual characters, C uses single
quotes, whereas for strings, it uses double quotes

30

Reading strings: %s format

int main()

{

 char name[25];

 scanf("%s", name);

 printf("Name = %s \n", name);

 return 0;

}

%s reads a string into a character array

given the array name or start address.

It ends the string with the special “null” character ‘\0’.

31

Example: Finding length of a string

#define SIZE 25

int main()

{

 int i, length=0;

 char name[SIZE];

 scanf("%s", name);

 printf("Name = %s \n", name);

 for (i=0; name[i]!='\0'; i++)

 length++;

 printf(“Length = %d\n", length);

 return 0;

}

Satyanarayana

Name = Satyanarayana

Length = 13

Note that character strings read

in %s format end with ‘\0’

Output

32

Example: Counting the number of a’s

#define SIZE 25

int main()

{

 int i, count=0;

 char name[SIZE];

 scanf("%s", name);

 printf("Name = %s \n", name);

 for (i=0; name[i]!='\0'; i++)

 if (name[i] == 'a') count++;

 printf("Total a's = %d\n", count);

 return 0;

}

Satyanarayana

Name = Satyanarayana

Total a's = 6

Note that character strings read

in %s format end with ‘\0’

Output

33

Example: Palindrome Checking
int main()

{

 int i, flag, count=0;

 char name[25];

 scanf("%s", name); /* Read Name */

 for (i=0; name[i]!='\0'; i++); /* Find Length of String */

 count=i; flag = 0;

 /* Loop below checks for palindrome by comparison*/

 for(i=0; i<count; i++)

 if (name[i]!=name[count-i-1])

 flag = 1;

 if (flag ==0) printf ("%s is a Palindrome\n", name);

 else printf("%s is NOT a Palindrome\n", name);

 return 0;

}

34

Practice Problems
1. Read in an integer n (n < 25). Read n integers in an array A. Then do the following

(write separate programs for each, only the reading part is common).

1. find the sum of the absolute values of the integers.

2. Copy the positive and negative integers in the array into two additional arrays
B and C respectively. Print A, B, and C.

3. Exchange the values of every pair of values from the start (so exchange A[0]
and A[1], A[2] and A[3] and so on). If the number of elements is odd, the last
value should stay the same.

2. Read in two integers n and m (n, m < 50). Read n integers in an array A. Read m
integers in an array B. Then do the following (write separate programs for each,
only the reading part is common).

1. Find if there are any two elements x, y in A and an element z in B, such that x
+ y = z

2. Copy in another array C all elements that are in both A and B (intersection)

3. Copy in another array C all elements that are in either A and B (union)

4. Copy in another array C all elements that are in A but not in B (difference)

3. Read in two null-terminated strings A and B (using %s. Assume max characters <
25 in each). Create another string C that is the concatenation of A and B (A
followed by B). Print A, B, C using %s

4. Read in two null-terminated strings A and B. Check if A is lexicographically smaller,
larger, or equal to B and print appropriate messages in each case.

	Slide 1: 1-d Arrays
	Slide 2: Array
	Slide 3: Example: Printing Numbers in Reverse
	Slide 4: The Problem
	Slide 5: Printing in Reverse Using Arrays
	Slide 6: Using Arrays
	Slide 7: A first example
	Slide 8: The result
	Slide 9: Declaring Arrays
	Slide 10
	Slide 11: Accessing Array Elements
	Slide 12: Contd.
	Slide 13: How is an array stored in memory?
	Slide 14: A Special Operator: AddressOf (&)
	Slide 15: Example
	Slide 16: Initialization of Arrays
	Slide 17: How to read the elements of an array?
	Slide 18: A Warning
	Slide 19: Reading into an array
	Slide 20: How to print the elements of an array?
	Slide 21: How to copy the elements of one array to another?
	Slide 22: Example 1: Find the minimum of a set of 10 numbers
	Slide 23
	Slide 24
	Slide 25: #define macro
	Slide 26
	Slide 27: Example 2: Computing cgpa
	Slide 28: Things you cannot do
	Slide 29: Character Arrays and Strings
	Slide 30: Reading strings: %s format
	Slide 31: Example: Finding length of a string
	Slide 32: Example: Counting the number of a’s
	Slide 33: Example: Palindrome Checking
	Slide 34: Practice Problems

