Fundamentals of C

"
First C program — print on screen

#include <stdio.h> Output

e

{

printf ("Hello, World! \n") ;
return O;

More print

#include <stdio.h>
iInt main()

{

printf ("Hello, World! ") ;
printf ("Hello \n World! \n") ;
return O;

Output

Hello, World! Hello
World!

S
A Simple C program

#include <stdio.h>
Int main()

{

Int X, y, sum, max;
scanf(*%d%d”, &x, &y);

sum =X +y;

If (X >y) max = x;

else max =y,

printf (“Sum = %d\n”, sum);
printf (“Larger = %d\n”, max);
return O;

When you run the program

Output after you type 15 and 20
15 20

Sum = 35
Larger = 20

Reading values from keyboard

#include <stdio.h>
Int main()

{

Int numM ;
scanf ("%d", &num) ;
printf ("No. of students Is %d\n”, num);

return O;

Centigrade to Fahrenheit

#include <stdio.h>
iInt main()

{

float cent, fahr;
scanf(“%f”,¢);

fahr = cent*(9.0/5.0) + 32,
printf(“%f C equals %f F\n”, cent, fahr);

return O;

What does this do?

#include <stdio.h>
iInt main()

{

INnt X, y;

scanf(“%d%d”,&x,&Y);

If (x>y) printf(“Largest is %d\n”,X);
printf(“Largest is %d\n",y);

return O;

largest-2.c

Structure of a C program

m A collection of functions (we will see what they
are later)

m Exactly one special function named main must
be present. Program always starts from there

m Each function has statements (instructions) for
declaration, assignment, condition check,
looping etc.

m Statements are executed one by one

#include <stdio.h> main function

int main() —

{

/ Declaration statement
Int X, y, sum, max;

scanf(“%d%d”, &x, &y);—— Input statement
Assignment statements

SUM =X +Vy,; -
if (X >y)

max = X;
els

Control statement

max =y,
printf (“Sum = %d\n”, sum); + Output statement
printf (“Larger = %d\n”, max); —
return O: « Return statement

9

Writing a C program

You will have to understand what different statements
do to decide which you should use in what order to
solve your problem

There Is a fixed format (“syntax”) for writing each
statement and other things. Need to remember the
syntax

0 Do not question why you have to type exactly like
this, you just have to or it is not a C program!!

O Compiler will give error if your typed program does
not match required C syntax

There are other rules to follow

10

Things you will see in a C program (we

will look at all these one by one)

Variables
Constants
Expressions (Arithmetic, Logical, Assignment)

Statements (Declaration, Assignment, Control
(Conditional/Branching, Looping))

Arrays

Functions
Structures

Pointers

Few other things....

11

o
The C Character Set

m The C language alphabet
O Uppercase letters ‘A’ to ‘Z’
O Lowercase letters ‘a’ to ‘7’
O Digits ‘0" to ‘9’
O Certain special characters:

! # % 4 & * ()
o+ =~ L1
{ }
< > / ? blank

A C program should not contain anything else

" A
Variables

m Very important concept for programming

m An entity that has a value and is known to the
program by a name

m Can store any temporary result while executing a
program

m Can have only one value assigned to it at any given
time during the execution of the program

m The value of a variable can be changed during the
execution of the program

13

o
Contd.

m Variables stored in memory

m Remember that memory Is a list of storage
locations, each having a unique address

m A variable is like a bin
O The contents of the bin Is the value of the variable

O The variable name Is used to refer to the value of
the variable

O A variable is mapped to a location of the memory,
called its address

14

Example

#include <stdio.h>

Int main()

{
Int X;
Inty;
X=10; X=20; X=X+1; X=X*5;
Y=15: Y=Y+3: Y=Y/6;
printf(“X = %d, Y= %d\n", X, Y);
return O;

15

Variables in Memory

Instruction executed

®© 3 - o

INt X

INtY

Memory location allocated
to variables X and Y

2 —X
? —Y

16

Variables in Memory

Instruction executed

®© 3 - o

X =20

X=X+l

X =X*5

Memory location allocated
to variable X

X =10 \
10

17

Variables in Memory

Instruction executed

®© 3 - o

X =10

X =) w——m— 20

X=X+l

X =X*5

Memory location allocated
to variable X

18

Variables in Memory

Instruction executed

Memory location allocated

®© 3 - o

X =10
X =20
X=X+l

X =X*5

to variable X

/ 21

19

Variables in Memory

Instruction executed

®© 3 - o

X =10
X =20
X=X+l

X =X*5

Memory location allocated
to variable X

105

20

Variables (contd.)

Y=15
Y =Y+3

Y=Y/6

105

15

Lo

21

Variables (contd.)

Y=15
Y =Y+3

Y=Y/6

105

18

22

Variables (contd.)

Y=15
Y =Y+3

Y=Y/6

105

Lo

23

Data Types

m Each variable has a type, indicates what
type of values the variable can hold

m Four common data types in C
INnt - can store integers (usually 4 bytes)

float - can store single-precision floating
point numbers (usually 4 bytes)

double - can store double-precision floating
point numbers (usually 8 bytes)

char - can store a character (1 byte)

24

Contd.

m First rule of variable use: Must declare a variable
(specify its type and name) before using it
anywhere in your program

m All variable declarations should ideally be at the
beginning of the main() or other functions

O There are exceptions, we will see later

m A value can also be assigned to a variable at the
time the variable Is declared

Int speed = 30;
char flag ='y’;

25

W
Variable Names

Sequence of letters and digits

First character must be a letter or *
No special characters other than * ’
No blank in between

Names are case-sensitive (max and Max are two
different names)

m Examples of valid names:
O1 rankl MAX max Min class rank

m Examples of invalid names:
Oa's factrec 2sqroot class,rank

26

More Valid and Invalid Identifiers

m Valid identifiers m Invalid identifiers
X 10abc
abc my-name
simple_interest “hello”
al23 simple interest
LIST (area)
stud _name %rate
Empl 1
Empl 2

avg_empl salary

" J
C Keywords

m Used by the C language, cannot be used
as variable names

m Examples:

Int, float, char, double, main, if else, for, while.
do, struct, union, typedef, enum, void, return,
signed, unsigned, case, break, sizeof,....

There are others, see textbook...

Example 1

#include <stdio.h>

iInt main()

{ /Three Int type variables declared
Int X, y, sum;
scanf(“%d%d”,&x,&y); - Values assigned
sum =X +;
printf(“%d plus %d 1s %d\n”, X, y, sum);
return O;

29

Example - 2

#include <stdio.h>

Int main()

{ Assigns an initial value to d2,
float X V3 / can be changed later
Int d1, d2 = 10;

scanf(“%f%f%d”,&x, &y, &d1);

printf(“%f plus %f i1s %f\n”, X, y, X+y);

printf(“%d minus %d is %d\n”, d1, d2, d1-d2);
return O;

30

=
Read-only variables

m Variables whose values can be initialized during
declaration, but cannot be changed after that

m Declared by putting the const keyword in front of
the declaration

m Storage allocated just like any variable

m Used for variables whose values need not be
changed
O Prevents accidental change of the value

31

Correct
Int main() {
const int LIMIT = 10; o
it Incorrect: Limit changed
scanf(“%d”, &n); int main() {
if (n > LIMIT) const int Limit = 10;
printf(“Out of Int n;
limit”); scanf(“%d”, &n);
return O; Limit = Limit + n;
) printf(“New limit is %d”, Limit);
return O;
}

2-const-change-error.c
32

" A
Constants

m Integer constants

O Consists of a sequence of digits, with possibly a plus
or a minus sign before it

O Embedded spaces, commas and non-digit characters
are not permitted between digits

m Floating point constants

m Two different notations:
O Decimal notation: 25.0, 0.0034, .84, —2.234
O Exponential (scientific) notation
3.45e23, 0.123e-12, 123e2

e means “10 to the power of”

33

" .
Contd.

m Character constants

O Contains a single character enclosed within a pair of
single quote marks.

Examples :; 2, ‘+’, ‘'Z
m Some special backslash characters

\n new line

\t horizontal tab
\” single quote
\” double quote

VW backslash
\Q’ null

34

"
Typical Size of Data Types

char — 1 byte

Int — 4 bytes
float — 4 bytes
double — 8 bytes

m “Typical”, because some of them vary depending on
machine/OS type

m Never use the values (1, 4, 8) directly, use the sizeof()
operator given

O sizeof(char) will give 1, sizeof(int) will give 4 and so on your
PC/Laptop

35

= |
Input: scanf function

m Performs input from keyboard

m It requires a format string and a list of variables into
which the value received from the keyboard will be
stored

m format string = individual groups of characters
(usually ‘%’ sign, followed by a conversion character),
with one character group for each variable in the list

Variable list (note the &

int a, b; before a variable name)

float c;
scanf(“%d %d %f” &a &b &c)

Format string

36

Commonly used conversion characters
c for char type variable
d forint type variable
f for float type variable
If for double type variable

Examples
scanf ("%d", &size) ;
scanf ("%c", &nextchar) ;
scanf ("%f", &length) ;
scanf (“%d%d”, &a, &b);

37

=
Examples

m scanf ("%d", &size) ;

Reads one integer from keyboard into an int
type variable named size

m scanf ("%c", &nextchar) ;

m Reads one character from keyboard into a
char type variable named nextchar

38

=
Examples

m scanf ("%f", &length) ;

Reads one floating point (real) number from
Keyboard into a float type variable named
ength

m scanf (“%d%d”, &a, &b);
m Reads two integers from keyboard, the first

one in an int type variable named a and the
second one in an int type variable named b

39

m Important:

O scanf will wait for you to type the input from the
keyboard

O You must type the same number of inputs as the
number of %’s In the format string

O Example: if you have scanf(“%d%d”,...), then you
must type two integers (in same line or different
lines), or scanf will just wait and the next statement
will not be executed

40

=
Reading a single character

m A single character can be read using scanf with
%cC

m |t can also be read using the getchar() function

char c;
c = getchar();

m Program waits at the getchar() line until a
character Is typed, and then reads it and stores it

IN C

41

=
Output: printf function

m Performs output to the standard output device
(typically defined to be the screen)

m |t requires a format string in which we can
specify:
O The text to be printed out
O Specifications on how to print the values
printf ("The number is %d\n", num);

O The format specification %d causes the value
listed after the format string to be embedded In
the output as a decimal number in place of %d

O Output will appear as: The number is 125 '

Contd.

m General syntax:
printf (format string, argl, arg2, ..., argn);

format string refers to a string containing
formatting information and data types of the
arguments to be output

the arguments argl, arg2, ... represent list of
variables/expressions whose values are to be
printed

m [he conversion characters are the same
as In scanf

43

m Examples:

printf (“Average of %d and %d is %f”, a, b, avg);

orintf (“Hello \nGood \nMorning \n”);

orintf (“%3d %3d %5d”, a, b, a*b+2);

orintf (“%7.2f %5.1f", X, y);

m Many more options are available for both
printf and scanf

Read from the book

Practice them in the lab

44

More Examples

(Explain the outputs to test if you understood format strings etc.)

45

S
More print
#include <stdio.h>
int main() Jorld
{

printf ("Hello, World! ") ;
printf ("Hello \n World! \n") ;
return O;

46

Some more print

#include <stdio.h>

iInt main()

{

orintf ("
orintf ("
orintf ("

return O;

o, World! \n") ;
o \n World! \n") ;
\no \t World! \n") ;

Hello,

Hello

Output
World!

World!

Hell
o)

World!

47

Some more print Output
Enter values for f1 and f2:
#include <stdio.h> 23.5 14.326
int main() Enter values for x1 and x2:
{ 54 7
_ f1 = 23.500000, f2 = 14.33
float f1, f2: X1 = 54. x2 = 7
Int X1, x2;

: " " Can you explain why 14.326
printf(“Enter values for f1 and f2: \n”); got printed as 14.33?

scanf(“%f%f”, &f1, &f2);

printf(“Enter values for x1 and x2: \n”);
scanf(“%d%d”, &x1, &x2);

printf(“f1 = %f, f2 = %5.2An", f1, 12);
printf(*x1 = %d, x2 = %10d\n”, X1, x2);

return O;

Some more print

#include <stdio.h>

iInt main()

{
char c1, c2;
scanf(“%c%c”, &cl, &c2);
printf(“%c%c”, c1, c2);
return O;

Output

49

What about this?

oo <sgor- TN

Output

INT Main () Can you explain why only ‘a’
was printed this time, even

{ though it is the same program
as in the last slide? Note the

difference from the last slide

Char C11 C21 carefully. Also note that two
characters were read this time
Scanf(“%C%C”, &Cl, &CZ), also, or scanf would have
waited
printf(“%c%c”, c1, c2);

return O;

50

" A
Practice Problems

m Write C programs to

1. Read two integers and two floating point numbers, each in a separate
scanf() statement (so 4 scanf’s) and print them with separate printf
statements (4 printf’'s) with some nice message

2. Repeat 1, but now read all of them in a single scanf statement and
print them in a single printf statement

3. Repeat 1 and 2 with other data types like double and char

4. Repeat 1 and 2, but now print all real numbers with only 3 digits after
the decimal point

5. Read 4 integers in a single scanf statement, and print them (using a
single printf statement) in separate lines such that the last digit of
each integer is exactly 10 spaces away from the beginning of the line
it is printed in (the 9 spaces before will be occupied by blanks or other
digits of the integer). Remember that different integers can have
different number of digits

6. Repeat5, but now the first integer of each integer should be exactly 8

spaces away from the beginning of the line it is printed in. ey

	Fundamentals of C
	First C program – print on screen
	More print
	A Simple C program
	Slide Number 5
	Centigrade to Fahrenheit
	What does this do?
	Structure of a C program
	Slide Number 9
	Writing a C program
	Things you will see in a C program (we will look at all these one by one)
	The C Character Set
	Variables
	Contd.
	Example
	Variables in Memory
	Variables in Memory
	Variables in Memory
	Variables in Memory
	Variables in Memory
	Variables (contd.)
	Variables (contd.)
	Variables (contd.)
	Data Types
	Contd.
	Variable Names
	More Valid and Invalid Identifiers
	C Keywords
	Example 1
	Example - 2
	Read-only variables
	Slide Number 32
	Constants
	Contd.
	Typical Size of Data Types
	Input: scanf function
	Slide Number 37
	Examples
	Examples
	Slide Number 40
	Reading a single character
	Output: printf function
	Contd.
	Slide Number 44
	More Examples�(Explain the outputs to test if you understood format strings etc.)
	More print
	Some more print
	Some more print
	Some more print
	What about this?
	Practice Problems

