
One-Dimensional Arrays
Random access lists of elements

1

CS10003 PROGRAMMING AND DATA STRUCTURES

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Array

Many applications require multiple data items that have common characteristics.
• In mathematics, we often express such groups of data items in indexed form:

x
1
, x

2
, x

3
, …, x

n

Array is a data structure which can represent a collection of data items which
have the same data type (float / int / char /…).

2INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

int a, b, c;

scanf(“%d”, &a);

scanf(“%d”, &b);

scanf(“%d”, &c);

printf(“%d ”, c);

printf(“%d ”, b);

printf(“%d \n”, a);

int a, b, c, d;

scanf(“%d”, &a);

scanf(“%d”, &b);

scanf(“%d”, &c);

scanf(“%d”, &d);

printf(“%d ”, d);

printf(“%d ”, c);

printf(“%d ”, b);

printf(“%d \n”, a);

3 numbers

4 numbers

Example: Printing Numbers in Reverse

3INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

The Problem

Suppose we have 10 numbers to handle
Or 20
Or 100

Where do we store the numbers ? Use 100 variables ?

How to tackle this problem?
Solution:

•Use arrays

4INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Using Arrays
All the data items constituting the group share the same name

int x[10];

Individual elements are accessed by specifying the index

x[0] x[1] x[2] x[9]

x is a 10-element one
dimensional array

5INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Declaring Arrays
Like variables, the arrays used in a program must be declared before they are used

General syntax:
 type array-name [size];

• type specifies the type of elements that will be contained in the array (int, float, char, etc.)
• size is an integer constant which indicates the maximum number of elements that can be

stored inside the array

• Example: marks is an array that can store a maximum of 5 integers:

6

int marks[5];

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Array Declarations: examples
Examples:

 int x[10];
 char line[80];

 float points[150];

 char name[35];

If we are not sure of the exact size of the array that we will need, we can define an array of a large
enough size:
 int marks[50];

though in a particular run we may only be using, say, 10 elements.

7INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Accessing Array Elements
A particular element of the array can be accessed by specifying two things:

• Name of the array
• Index (relative position) of the element in the array

Important to remember: In C, the index of an array starts from 0, not 1

Example:
• An array is defined as int x[10];
• The first element of the array x can be accessed as x[0], fourth element as x[3], tenth

element as x[9], etc.

8INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

A First Example
int main()
{
 int i;
 int data[10];
 for (i=0; i<10; i++)
 data[i]= i;
 i=0;
 while (i<10)
 {
 printf("Data[%d] = %d\n", i, data[i]);
 i++;
 }
 return 0;
}

 “data” is a block of 10 integer variables:
data[0], data[1], …, data[9]

 Array size should be a constant

Data[0] = 0

Data[1] = 1

Data[2] = 2

Data[3] = 3

Data[4] = 4

Data[5] = 5

Data[6] = 6

Data[7] = 7

Data[8] = 8

Data[9] = 9

Output

9INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

How is an array stored in memory?
Starting from a given memory location, the successive array elements are allocated space in

consecutive memory locations

• Let x: starting address of the array in memory
 k: number of bytes allocated per array element (e.g., 4 for each int, 1 for each char)

• The array element A[i] is allocated memory location at address x + i * k

10

Array A

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

A Special Operator: AddressOf (&)
Remember that each variable is stored at a memory location with a unique address.

Putting & before a variable name gives the starting address of the variable in the memory (where
it is stored, not the value).

Can be put before any variable (with no blank in between)
int a =10;

 printf (“Value of a is %d, and address of a is %d\n”, a, &a);

Similarly, if we have an array, say, int Data[10];
Memory address of the first array element is &Data[0]
Memory address of the second array element is &Data[1]
Memory address of the third array element is &Data[2]

11INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Example
int main()

{

 int i;

 int data[10];

 for(i=0; i<10; i++)

 printf("&Data[%d] = %u\n", i, &data[i]);

 return 0;

}

&Data[0] = 3221224480

&Data[1] = 3221224484

&Data[2] = 3221224488

&Data[3] = 3221224492

&Data[4] = 3221224496

&Data[5] = 3221224500

&Data[6] = 3221224504

&Data[7] = 3221224508

&Data[8] = 3221224512

&Data[9] = 3221224516

Output

Note: memory addresses are being printed
as unsigned integers using %u in printf

Typically, variables are allocated memory
locations whose addresses are multiple of 4.

12INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

How to read the elements of an array?
By reading them one element at a time.

Suppose we have declared an array: float a[25];

 for (j=0; j<25; j++)
 scanf (“%f”, &a[j]);

Note the ampersand (&) in scanf.

The elements can be entered all in one line or in different lines.

13INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Reading into an array: example
int main() {

 const int MAX_SIZE = 100;

 int i, size;

 float marks[MAX_SIZE];

 float total;

 scanf("%d", &size);

 for (i=0, total=0; i<size; i++)

 {

 scanf("%f", &marks[i]);

 total = total + marks[i];

 }

 printf("Total = %f \n Avg = %f\n",

 total, total/size);

 return 0;

}

4

2.5

3.5

4.5

5

Total = 15.500000

 Avg = 3.875000

Output

Input a list of marks from the user
and compute their total and average

14INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Printing in Reverse Using Arrays
int main()

{

 int n, A[100], i;

 printf (“How many numbers to read? “);

 scanf (“%d”, &n);

 for (i=0; i < n; ++i)

scanf (“%d”, &A[i]); // input the i-th array element

 for (i=n-1; i >= 0; --i)// note – loop counts downward

printf (“%d ”, A[i]); // output the i-th array element

 printf(“\n”);

 return 0;

}

15INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Indexes into Arrays
The array index can be any expression that evaluates to an integer between 0 and n-1 where n is
the maximum number of elements possible in the array.

 a[x+2] = 25;
 b[3*x-y] = a[10-x] + 5;

Remember that each array element is a variable in itself, and can be used anywhere a variable
can be used (in expressions, assignments, conditions,…)

16INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Initialization of Arrays
General form:

 type array_name[size] = { comma-separated list of values };

Examples:
 int marks[5] = {72, 83, 65, 80, 76};
 char name[4] = {‘A’, ‘m’, ‘i’, ‘t’};

The size may be omitted if all initializers are specified. In such cases the compiler automatically
allocates enough space for all initialized elements:

 int flag[] = {1, 1, 1, 0};
 char name[] = {‘A’, ‘m’, ‘i’, ‘t’};

17INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

A Warning
In C, while accessing array elements, array bounds are not checked.

Example:
int marks[5];

:

:
marks[8] = 75;

• The above assignment would not necessarily cause an error.
• Rather, it may result in unpredictable program results, which are very hard to debug.

18INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

How to copy the elements of one array to another?
By copying individual elements:

 for (j=0; j<25; j++)
 a[j] = b[j];

The element assignments will follow the rules of assignment expressions.

Destination array must have sufficient size.

19

int a[25], b[25];

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Things you cannot do

You cannot:
• use = to assign one array variable to another

 a = b; /* a and b are arrays */
Indeed, a or b cannot be an l-value in any assignment.

• use == to compare arrays element by element
 if (a == b) ………
This is valid C syntax, but does not make element-by-element comparison

• directly scanf or printf arrays
(works, but not recommended unless purposefully made)

printf (“……”, a);
 scanf (“……”, a);

20

int a[25], b[25];

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Example: Find the minimum of a set of 10 numbers

21

int main()

{

 int a[10], i, min;

 for (i=0; i<10; i++)

 scanf (“%d”, &a[i]);

 min = a[0];

 for (i=1; i<10; i++)

 {

 if (a[i] < min)

 min = a[i];

 }

 printf (“\n Minimum is %d”, min);

 return 0;

}

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

22

#define size 10

int main()

{

 int a[size], i, min;

 for (i=0; i<size; i++)

 scanf (“%d”, &a[i]);

 min = a[0];

 for (i=1; i<size; i++)

 {

 if (a[i] < min)

 min = a[i];

 }

 printf (“\n Minimum is %d”, min);

 return 0;

}

Alternate Version 1

Change only one
 line to change

the
problem size

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

int main()

{

 int a[100], i, min, n;

 scanf (“%d”, &n); /* Number of elements */

 for (i=0; i<n; i++)

 scanf (“%d”, &a[i]);

 min = a[0];

 for (i=1; i<n; i++)

 {

 if (a[i] < min)

 min = a[i];

 }

 printf (“\n Minimum is %d”, min);

 return 0;

}

Alternate Version 2

Define an array of
large size and use
only the required

number of elements

23INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Example: Computing Grade Point Average
const int nsub = 6;
int main()

{

 int grade_pt[nsub], cred[nsub], i, gp_sum=0, cred_sum=0;

 double gpa;

 for (i=0; i<nsub; i++)

 scanf (“%d %d”, &grade_pt[i], &cred[i]);

 for (i=0; i<nsub; i++)

 {

 gp_sum += grade_pt[i] * cred[i];

 cred_sum += cred[i];

 }

 gpa = ((float) gp_sum) / cred_sum;

 printf (“\n Grade point average: is %f”, gpa);

 return 0;

}

Handling two
arrays

at the same time

cred[j] stores credit of subject j

grade_pt[j] stores grade point
obtained by a student in subject j

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 24

Example: Find largest contiguous sequence of equal numbers
#include<stdio.h>
int main()
{
 int i, n, A[20], k, maxbegin, maxcount, ssbegin, count;
 scanf ("%d", &n);
 for (i=0; i<n; i++) scanf ("%d", &A[i]);
 printf ("A = ");
 for (i=0; i<n; i++) printf ("%d, ", A[i]); printf("\n");
 maxbegin = 0; maxcount = 1;
 ssbegin = 0; count = 1; k = 1;
 while (k < n) {
 if (A[k] == A[k-1]) {
 count++;
 if (count > maxcount) {
 maxbegin = ssbegin;
 maxcount = count;
 }
 } else {
 ssbegin = k; count = 1;
 }
 k++;
 }
 printf ("Sequence starting from A[%d] of Length = %d, Value = %d \n",
 maxbegin, maxcount, A[maxbegin]);
}

25

10
1 2 2 2 3 2 2 2 2 7
A = 1, 2, 2, 2, 3, 2, 2, 2, 2, 7,
Sequence starting from A[5] of Length = 4, Value = 2

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Character array

26INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

Reading
characters into a
character array

#include <stdio.h>

int main() {

 char str[20];

 int i;

 printf("Enter 20 characters:\n");

 for (i = 0; i < 20; i++) {

 scanf(" %c", &str[i]);

 }

 printf("Characters entered:\n");

 for (i = 0; i < 20; i++) {

 printf("%c", str[i]);

 }

 return 0;

}

Practice Problems
1. Read in an integer n (n < 25). Read n integers in an array A. Then do the following (write separate programs

for each, only the reading part is common).
a) Find the sum of the absolute values of the integers.
b) Copy the positive and negative integers in the array into two additional arrays B and C respectively. Print

A, B, and C.
c) Exchange the values of every pair of values from the start (so exchange A[0] and A[1], A[2] and A[3] and

so on). If the number of elements is odd, the last value should stay the same.

2. Read in two integers n and m (n, m < 50). Read n integers in an array A. Read m integers in an array B. Then
do the following (write separate programs for each part, only the reading part is common).

a) Find if there are any two elements x, y in A and an element z in B, such that x + y = z
b) Copy in another array C all elements that are in both A and B (intersection)
c) Copy in another array C all elements that are in either A and B (union)
d) Copy in another array C all elements that are in A but not in B (difference)

27INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

