
1

Structures

2

What is a Structure?

 Used for handling a group of logically related data
items
 Examples:

 Student name, roll number, and marks
 Real part and complex part of a complex number

 Helps in organizing complex data in a more
meaningful way

 The individual structure elements are called members

3

Defining a Structure
struct tag {

member 1;
member 2;
:
member m;

};

 struct is the required C keyword
 tag is the name of the structure
member 1, member 2, … are individual member

declarations
Do not forget the ; at the end!

4

Contd.
 The individual members can be ordinary

variables, pointers, arrays, or other structures
(any data type)
The member names within a particular

structure must be distinct from one another
A member name can be the same as the

name of a variable defined outside of the
structure

 Once a structure has been defined, the
individual structure-type variables can be
declared as:

struct tag var_1, var_2, …, var_n;

5

Example
 A structure definition

struct student {
char name[30];
int roll_number;
int total_marks;
char dob[10];

};

 Defining structure variables:

struct student a1, a2, a3;

A new data-type

6

A Compact Form
 It is possible to combine the declaration of the

structure with that of the structure variables:

struct tag {
member 1;
member 2;
:
member m;

} var_1, var_2,…, var_n;

 Declares three variables of type struct tag
 In this form, tag is optional

7

Accessing a Structure

 The members of a structure are processed
individually, as separate entities
Each member is a separate variable

 A structure member can be accessed by writing
variable.member

where variable refers to the name of a structure-type
variable, and member refers to the name of a
member within the structure

 Examples:
a1.name, a2.name, a1.roll_number, a3.dob

8

Example: Complex number addition
struct complex

{
float real;
float img;

};
int main()
{

struct complex a, b, c;
scanf (“%f %f”, &a.real, &a.img);
scanf (“%f %f”, &b.real, &b.img);
c.real = a.real + b.real;
c.img = a.img + b.img;
printf (“\n %f + %f j”, c.real, c.img);
return 0;

}

Defines the structure

Declares 3 variable of type struct complex

Accessing the variables is the same
as any other variable, just have to
follow the syntax to specify which field
of the Structure you want

9

Operations on Structure Variables

 Unlike arrays, a structure variable can be directly
assigned to another structure variable of the
same type

a1 = a2;
 All the individual members get assigned

 Two structure variables can not be compared for
equality or inequality

if (a1 == a2)…… this cannot be done

10

Arrays of Structures

 Once a structure has been defined, we can declare
an array of structures

struct student class[50];

 The individual members can be accessed as:
class[i].name
class[5].roll_number

type name

int main()
{

struct complex A[100];
int n;
scanf(“%d”, &n);
for (i=0; i<n; i++)

scanf(“%f%f”, &A[i].real, &A[i].img);
for (i=0; i<n; i++)

printf(“%f + i%f\n”, A[i].real, A[i].img);
}

11

Example: Reading and Printing Array
of Structures

12

Arrays within Structures

 A structure member can be an array

 The array element within the structure can be
accessed as:

a1.marks[2], a1.dob[3],…

struct student
{

char name[30];
int roll_number;
int marks[5];
char dob[10];

} a1, a2, a3;

13

Structure Initialization
 Structure variables may be initialized following similar

rules of an array. The values are provided within the
second braces separated by commas

 An example:
struct complex a={1.0,2.0}, b={-3.0,4.0};

a.real=1.0; a.img=2.0;
b.real=-3.0; b.img=4.0;

14

Parameter Passing in a Function

 Structure variables can be passed as parameters like
any other variables. Only the values will be copied
during function invocation

int chkEqual(struct complex a, struct complex b)
{

if ((a.real==b.real) && (a.img==b.img))
return 1;

else return 0;
}

15

Parameter Passing in a Function

 Array of structures can be passed as parameters the
same way as normal arrays

 Values are changed in the array as before

void (struct complex a[], struct complex b[], int n)
{

int i;
for (i=0; i<n, i++) {

b[i].real += a[i].real;
b[i].img += a[i].img;

}
}

16

Returning structures
 It is also possible to return structure values from a

function. The return data type of the function should
be as same as the data type of the structure itself

struct complex add(struct complex a, struct complex b)
{

struct complex tmp;

tmp.real = a.real + b.real;
tmp.img = a.img + b.img;
return(tmp);

}

Direct arithmetic operations are not possible with structure variables

17

Defining data type: using typedef
 One may define a structure data-type with a single

name
typedef struct newtype {

member-variable1;
member-variable2;

.
member-variableN;

} mytype;

 mytype is the name of the new data-type
 Also called an alias for struct newtype
 Writing the tag name newtype is optional, can be

skipped
 Naming follows rules of variable naming

18

typedef : An example

typedef struct {
float real;
float imag;

} _COMPLEX;

 Defined a new data type named _COMPLEX. Now
can declare and use variables of this type

_COMPLEX a, b, c;

19

 Note: typedef is not restricted to just structures,
can define new types from any existing type

 Example:
 typedef int INTEGER
Defines a new type named INTEGER from the

known type int
Can now define variables of type INTEGER which

will have all properties of the int type

INTEGER a, b, c;

20

The earlier program using typedef
typedef struct{

float real;
float img;

} _COMPLEX;

_COMPLEX add(_COMPLEX a, _COMPLEX b)
{

_COMPLEX tmp;

tmp.real = a.real + b.real;
tmp.img = a.img + b.img;
return(tmp);

}

21

Contd.
void print (_COMPLEX a)
{

printf("(%f, %f) \n",a.real,a.img);
}

int main()
{

_COMPLEX x={4.0,5.0}, y={10.0,15.0}, z;

print(x);
print(y);
z = add(x,y);
print(z);
return 0;

} swap.c

(4.000000, 5.000000)
(10.000000, 15.000000)
(14.000000, 20.000000)

Output

22

Practice Problems
1. Extend the complex number program to include functions for

addition, subtraction, multiplication, and division
2. Define a structure for representing a point in two-dimensional

Cartesian co-ordinate system. Using this structure for a point
1. Write a function to return the distance between two given

points
2. Write a function to return the middle point of the line

segment joining two given points
3. Write a function to compute the area of a triangle formed

by three given points
4. Write a main function and call the functions from there

after reading in appropriate inputs (the points) from the
keyboard

3. Define a structure STUDENT to store the following data for a
student: name (null-terminated string of length at most 20
chars), roll no. (integer), CGPA (float). Then
1. In main, declare an array of 100 STUDENT structures.

Read an integer n and then read in the details of n students
in this array

2. Write a function to search the array for a student by name.
Returns the structure for the student if found. If not found,
return a special structure with the name field set to empty
string (just a ‘\0’)

3. Write a function to search the array for a student by roll no.
4. Write a function to print the details of all students with

CGPA > x for a given x
5. Call the functions from the main after reading in name/roll

no/CGPA to search
23

	Structures
	What is a Structure?
	Defining a Structure
	Contd.
	Example
	A Compact Form
	Accessing a Structure
	Example: Complex number addition
	Operations on Structure Variables
	Arrays of Structures
	Example: Reading and Printing Array of Structures
	Arrays within Structures
	Structure Initialization
	Parameter Passing in a Function
	Parameter Passing in a Function
	Returning structures
	Defining data type: using typedef
	typedef : An example
	Slide Number 19
	The earlier program using typedef
	Contd.
	Practice Problems
	Slide Number 23

