Structures

What I1s a Structure?

m Used for handling a group of logically related data
items
Examples:
» Student name, roll number, and marks
m Real part and complex part of a complex number

m Helps in organizing complex data in a more
meaningful way

m The individual structure elements are called members

"
Defining a Structure

struct tag {
member 1;
member 2;

member m;

%

struct Is the required C keyword
tag Is the name of the structure

member 1, member 2, ... are individual member
declarations

Do not forget the ; at the end!

" B
Contd.

m The individual members can be ordinary
variables, pointers, arrays, or other structures
(any data type)

The member names within a particular
structure must be distinct from one another

A member name can be the same as the
name of a variable defined outside of the
structure

m Once a structure has been defined, the
Individual structure-type variables can be
declared as:

structtag var_1, var 2, ..., var_n;

"
Example

m A structure definition

struct student {
char name|[30];
Int roll_number;
Int total marks;
char dob[10];

g

m Defining structure variables:

struct student al, a2, a3:

\ J
Y

A new data-type

S
A Compact Form

It Is possible to combine the declaration of the
structure with that of the structure variables:

struct tag {
member 1;
member 2;

member m;
} var_1,var 2,...,var_n;

m Declares three variables of type struct tag
m [n this form, tag Is optional

JE—
Accessing a Structure

m The members of a structure are processed
iIndividually, as separate entities

Each member Is a separate variable
m A structure member can be accessed by writing
variable.member

where variable refers to the name of a structure-type
variable, and member refers to the name of a
member within the structure

m Examples:
al.name, a2.name, al.roll number, a3.dob

" S
Example: Complex number addition

struct complex

{

float real;
float Img;

« Defines the structure

%

Int main()

{

/ Declares 3 variable of type struct complex

struct complex a, b, c;

HO 0 7 1 .
scant (HO/Of O/Of”’ &a.real, &a'!mg): Accessing the variables is the same
scanf (“%f %f", &b.real, &b.iImg); as any other variable, just have to

c.real = a.real + b.real; follow the syntax to specify which field
C img =) img +b img' of the Structure you want

printf (“\n %f + %f J”, c.real, c.img);

return O;

Operations on Structure Variables

m Unlike arrays, a structure variable can be directly
assigned to another structure variable of the
same type

al = az;
= All the individual members get assigned

m Two structure variables can not be compared for
equality or inequality
If (al == a2)...... . this cannot be done

" S
Arrays of Structures

m Once a structure has been defined, we can declare
an array of structures

struct student class[50];

\ J
Y

type name

The individual members can be accessed as:
class]i].name

class[5].roll_number

JE
Example: Reading and Printing Array

of Structures

Int main()

{
struct complex A[100];
Int n;

scanf(“%d”, &n);
for (i=0; i<n; i++)

scanf(“%f%f”, &AJi].real, &A[i].imQ);
for (i=0; i<n; i++)

printf(*%f + i1%MRn”, A[i].real, A[i].imQ);

11

S
Arrays within Structures

m A structure member can be an array

struct student

{
char name[30];
Int roll_number;
iInt marks|[5];
char dob[10];

} al, a2, a3;

m The array element within the structure can be
accessed as:

al.marks[2], al.dob[3],...

12

JE——
Structure Initialization

m Structure variables may be initialized following similar

rules of an array. The values are provided within the
second braces separated by commas

An example:
struct complex a={1.0,2.0}, b={-3.0,4.0};

. .

a.real=1.0; a.img=2.0;
b.real=-3.0; b.img=4.0;

13

Parameter Passing in a Function

m Structure variables can be passed as parameters like

any other variables. Only the values will be copied
during function invocation

Int chkEqual(struct complex a, struct complex b)
{
If ((a.real==Db.real) && (a.img==b.img))
return 1;
else return O;

14

Parameter Passing in a Function

m Array of structures can be passed as parameters the
same way as normal arrays

m Values are changed in the array as before

void (struct complex a[], struct complex b[|, int n)
{ . .
Int i;
for (1=0; I<n, 1++) {
b[i].real += ali].real;
b[i].img += a]i].imgQ;

15

S
Returning structures

m |t is also possible to return structure values from a
function. The return data type of the function should
be as same as the data type of the structure itself

struct complex add(struct complex a, struct complex b)

{

struct complex tmp;

tmp.real = a.real + b.real,
tmp.img = a.img + b.img;
return(tmp);

Direct arithmetic operations are not possible with structure variables
16

Defining data type: using typedef

One may define a structure data-type with a single
name

typedef struct newtype {
member-variablel;
member-variable2;

member-variableN;
} mytype;

mytype Is the name of the new data-type
Also called an alias for struct newtype

Writing the tag name newtype is optional, can be
skipped

Naming follows rules of variable naming 17

typedef : An example

typedef struct {

float real:
float iImag;
} COMPLEX;

m Defined a new data type named COMPLEX. Now
can declare and use variables of this type

_COMPLEX a, b, c;

18

m Note: typedef is not restricted to just structures,
can define new types from any existing type

m Example:
typedef int INTEGER

Defines a new type named INTEGER from the
known type int

Can now define variables of type INTEGER which
will have all properties of the int type

INTEGER a, b, c;

19

S
The earlier program using typedef

typedef struct{
float real,
float Img;
} COMPLEX,

COMPLEX add(COMPLEX a, COMPLEX b)

{
_COMPLEX tmp;

tmp.real = a.real + b.real,
tmp.img = a.img + b.img;
return(tmp);

20

" I
Contd.

void print (COMPLEX a) Output

{ (4.000000, 5.000000)

printf("(%f, %f) \n",a.real,a.img); (10.000000, 15.000000)
) (14.000000, 20.000000)

Int main()

{
_COMPLEX x={4.0,5.0}, y={10.0,15.0}, z;

print(x);
print(y);
z = add(x,y);
print(z);
return O;

} swap.c 21

"
Practice Problems

1. Extend the complex number program to include functions for
addition, subtraction, multiplication, and division

2. Define a structure for representing a point in two-dimensional
Cartesian co-ordinate system. Using this structure for a point

1. Write a function to return the distance between two given
points

2. Write a function to return the middle point of the line
segment joining two given points

3. Write a function to compute the area of a triangle formed
by three given points

4. Write a main function and call the functions from there

after reading in appropriate inputs (the points) from the
keyboard

22

3.

Define a structure STUDENT to store the following data for a
student: name (null-terminated string of length at most 20
chars), roll no. (integer), CGPA (float). Then

1.

In main, declare an array of 100 STUDENT structures.
Read an integer n and then read in the details of n students
In this array

Write a function to search the array for a student by name.
Returns the structure for the student if found. If not found,
return a special structure with the name field set to empty
string (just a \0’)

Write a function to search the array for a student by roll no.

Write a function to print the details of all students with
CGPA > x for a given x

Call the functions from the main after reading in name/roll
no/CGPA to search

23

	Structures
	What is a Structure?
	Defining a Structure
	Contd.
	Example
	A Compact Form
	Accessing a Structure
	Example: Complex number addition
	Operations on Structure Variables
	Arrays of Structures
	Example: Reading and Printing Array of Structures
	Arrays within Structures
	Structure Initialization
	Parameter Passing in a Function
	Parameter Passing in a Function
	Returning structures
	Defining data type: using typedef
	typedef : An example
	Slide Number 19
	The earlier program using typedef
	Contd.
	Practice Problems
	Slide Number 23

