Recursion




JE
Recursion

m A process by which a function calls itself repeatedly

Either directly.
m X calls X

Or cyclically in a chain.
m XcallsY,and Y calls X

m Used for repetitive computations in which each
action is stated In terms of a previous result

fact(n) = n * fact (n-1)



m For a problem to be written in recursive form, two
conditions are to be satisfied:

It should be possible to express the problem in
recursive form

= Solution of the problem in terms of solution of the same
problem on smaller sized data
The problem statement must include a
stopping/terminating condition

m The direct solution of the problem for a small enough
size
_ Stopping/Terminating
fact(n) = 1, f Nn=0 “" condition

n* fact(n-1), if n>0
“~

Recursive definition
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m Examples:

Factorial:
fact(0) = 1
fact(n) = n * fact(n-1),ifn>0
GCD:
gcd (m, m)=m
gcd (m, n) = gcd (m%n, n), If m >n
gcd (m, n) = gcd (n, n%m), If m <n
Fibonacci series (1,1,2,3,5,8,13,21,....)
fib (0) =1
fib (1) =1
fib (n) =fib (n-1) + fib (n-2),ifn>1




BN
Factorial

long Int fact (int n)

{
if (n==1)
return (1);
else

return (n * fact(n-1));



= B
Factorial Execution

long int fact (int n)

{
If (n==1)return (1);
else return (n * fact(n-1));

}




= B
Factorial Execution

fact(4)
}

long int fact (int n)

{
If (n==1)return (1),
else return (n* fact(n-1));

}




= B
Factorial Execution

faict(4)
If (4==1)return (1),
else return (4 * fact(3));

long int fact (int n)

{
If (n==1)return (1),
else return (n* fact(n-1));

}




Factorial Execution

faict(4)
If (4==1)return (1),
else return (4 * fact(3));

If (3==1)return (1);
else return (3 * fact(2));

{

}

long int fact (int n)

If (n==1)return (1),
else return (n* fact(n-1));




Factorial Execution

fact(4)
|

If (4==1)return (1),
else return (4 * fact(3));

If (3==1)return (1);
else return (3 * fact(2));

If (2==1)return (1);

else return (2 * fact(1));

{

}

long int fact (int n) )

If (n==1)return (1),
else return (n* fact(n-1));
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= B
Factorial Execution

fact(4)
|

If (4==1)return (1),
else return (4 * fact(3));

If (3==1)return (1);
else return (3 * fact(2));

If (2==1)return (1);
else return (2 * fact(1));

long int fact (int n) |

{ . .
if (n==1)return (1); (1 ==1)return (1)

else return (n* fact(n-1));

}




= B
Factorial Execution

fact(4)
}

If (4==1)return (1),
else return (4 * fact(3));

If (3==1)return (1);
else return (3 * fact(2));

If (2==1)return (1);

else return (2 * fact(1)); 1
long int fact (int n) | \

{ . .
if (n==1)return (1); (1 ==1)return (1)

else return (n* fact(n-1));

}




= B
Factorial Execution

fact(4)
|

If (4==1)return (1),
else return (4 * fact(3));

If (3==1)return (1);

else return (3 * f?ct(Z)); - 2
if (2==1) retum
else return (2 * fact(1)); 1
long int fact (int n) l \
{ If (1==1)return (1),

If (n==1)return (1),
else return (n* fact(n-1));

}




= B
Factorial Execution

faict(4)
If (4==1)return (1),
else return (4 * fact(3)); « 6
|
if (3==1) retum
else return (3 * fact(2)); « 2
|
if (2==1) retum
else return (2 * fact(1)); 1
long int fact (int n) l \
{ if (1==1) return (1);

If (n==1)return (1),
else return (n* fact(n-1));

}




= B
Factorial Execution

faict(4) - 24
if (4==1) retum

else return (4 * f?ct(S)); - 6
if (3==1) retum
else return (3 * f?ct(Z)); - 2
if (2==1) retum
else return (2 * fact(1)); 1
long int fact (int n) l \
{ If (1==1)return (1),

If (n==1)return (1),
else return (n* fact(n-1));

}




Example: Finding max in an array

int findMax(int A[ |, int n) Terminating condition. Smalll

{ size problem that you know
int temp: how to solve directly without
if (n==1) calling any functions

{
return A[O];

}
temp = findMax(A, n-1); «——
If (A[n-1] > temp)
return A[n-1];
else return temp;

Recursive call. Find the max
In the first n-1 elements
(exact same problem, just
solved on a smaller array).




"
Important things to remember

m Think how the whole problem (finding max of n
elements in A) can be solved if you can solve the
exact same problem on a smaller problem (finding
max of first n-1 elements of the array). But then, do
NOT think how the smaller problem will be solved,

just call the function recursively and assume it will
be solved.

m \When you write a recursive function

m First write the terminating/base condition
= Then write the rest of the function
m Always double-check that you have both



Back to Factorial: Look at the variable
addresses (a slightly different program) !

Int main()
{
Int Xx,y;
scanf(*'%d"",&X);
y = fact(x);
printf (""M: x=%d, y = %d\n"", X,y);
return O;

}
Int fact(int data)
{intval =1;

printf("'F: data = %d, &data = %u \n
&val = %u\n", data, &data, &val);

If (data>1) val = data*fact(data-1);
return val,

}

Output

4
F: data = 4, &data = 3221224528
&val = 3221224516

F: data = 3, &data = 3221224480
&val = 3221224468

F: data = 2, &data = 3221224432
&val = 3221224420

F: data =1, &data = 3221224384
&val = 3221224372
M:x=4,y=24

18




B The memory addresses for the variable data are
different in different calls!

B They are not the same variable.

B Each function call will have its own set of variables,
even If the name of the variable Is the same as it is the
same function being called

B Change made to one will not be seen by the calling
function on return
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Int main()
{ Output
Int X,y; 4
scant(**%d", &x); count=1, data=1
y : BB count=1, data=2
printf (""M: x= %d, y = %d\n"", X,y);
S O count=1, data=3
1 count=1, data=4
Int fact(int data) M: x=4,y =24
{

Int val = 1, count = 0;
If (data>1) val = data*fact(data-1);
count++;

printf(“count = %d, data = %d\n”,
count, data);

return val;

e Count did not change
even though ++ done!

 Each call does it onits
own copy, lost on return

20
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«
Fibonacci Numbers

Fibonacci recurrence:
fio(n)=11fn=0or 1;
=fib(n —2) +fib(n -1)
otherwise;

Int fib (int n){
f (n==0o0orn==1)
return 1; [Base]
return fib(n-2) + fib(n-1) ;
[Recursive]

21



——EE————

int fib (intn) { : :
if(n==0 || n==1) Fibonacci recurrence:
returnl; | fib(n)=1ifn=0o0r1,
\ return fib(n-2) + fib(n-1) ; = fib(n — 2) + fib(n — 1)
otherwise;
fib (5)
fib (3) fib (4)
fib (1) fib (2) fib (2) fib (3)
fib (0) | |fib (1) | |fib (0)]|fib (1) | fib (1) fib (2)

fib (0)

fib (1)

22




.—
Int fib (int n)

{

if(n==0]] n==1)

return 1;

return fib(n-2) + fib(n-1) ;

Fibonacci recurrence:
fib(n)=1ifn=0o0r1,
=fib(n —2) +fib(n-1)

otherwise:
fib (5)
fib (3) fib (4)
/\
fib (1) fib (2) fib (2) fib (3)
! /\ /\
fib (0) fib (1) fib (0) | |fib (1) | fib (1) fib (2)
1 1 1 1 1
fib (0) fib (1)

fib.c

23




———————

int fib (intn) { : :
if (n==0 | | n==1) Fibonacci recurrence:
returnl; fib(n)=1ifn=0o0r1,
\ return fib(n-2) + fib(n-1) ; = fib(n — 2) + fib(n — 1)
g otherwise,
fib (5)
3 5
fib (3) fib (4)
1/\ 2 2 3
fib (1) fib (2) fib (2) fib (3)
L 1% 1 1/\1 1 2
fib (0)| |fib (1)| |fib (0)|fib (1) | fib (1) fib (2)
1 1 1 1 1 L
fib (0) fib (1)
1 1

24




S
Example: Sum of Squares

Int sumSquares (int m, int n)

{
Int middle ;
If (m == n) return(m*m);
else
{

middle = (m+n)/2;
return (sumSquares(m,middle)
+ sumSquares(middle+1,n));

25



Annotated Call Tree

355

sumSquares(5,10)

245
sumSquares(8,10)

145 / 100

110
sumSquares(5,7)
6l 49
sumSquares(5,6) sumSquares(7,7)

sumSquares(8,9)| |sumSquares(10,10)

/2

36

WA

sumSquares(5,5)

sumSquares(6,6) | [sum

Squares(8,8) [sumSquares(9,9)

25

36 49

64 81 100

26



" J
Example: Printing the digits of an Integer In
Reverse

m Print the last digit, then print the remaining number

In reverse
EX: If integer is 743, then reversed is print 3 first,
then print the reverse of 74

void printReversed(int i)
{
if i<10) {
printf(“%d\n”, 1); return;
}
else {
printf(“%d”, 1%10);
printReversed(i/10);
}

27 }




JE
Counting Zeros In a Positive Integer

m Check last digit from right

If it 1S O, number of zeros = 1 + number of zeroes
In remaining part of the number

If it IS non-0, number of zeros = number of zeroes
In remaining part of the number

Int zeros(int number)
{
If(number<10) return O;
If (number%210 == 0)
return(1+zeros(number/10));
else
return(zeros(number/10));

28



" S
Example: Binary Search

m Searching for an element k in a sorted array A with n
elements
m |dea:
Choose the middle element A[n/2]
f k == A[n/2], we are done
f k < A[n/2], search for k between A[O] and A[n/2 -1]
f k > A[n/2], search for k between A[n/2 + 1] and A[n-1]

Repeat until either k is found, or no more elements to
search

m Requires less number of comparisons than linear
search In the worst case (log,n instead of n)

29



Int binsearch(int A[ |, int low, int high, int k)
{
Int mid;
printf(“low = %d, high = %d\n”, low, high);
If (low > high)
return O;
mid = (low + high)/2;
printf(*“mid = %d, A[%d] = %d\n\n”, mid, mid, A[mid]);
If (A[mid] == k)
return 1;
else {
If (A[mid] > k)
return (binsearch(A, low, mid-1, k));
else
return(binsearch(A, mid+1, high, k));
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Int main()

{
Int A[25], n, k, I, found,;

scanf(“%d”, &n);
for (1=0; i<n; I++) scanf(“%d”, &AJl]);
scanf(“%d”, &k);
found = binsearch(A, 0, n-1, k);
If (found == 1)

printf(“%d Is present in the array\n”, k);
else

printf(“%d is not present in the array\n”, k);

31



JE
Output

8

911141719 20 23 27
21

low =0, high=7

mid = 3, A[3] =17

low =4, high=7
mid = 5, A[5] =20

low = 6, high =7
mid = 6, A[6] = 23

low =6, high=5
21 is not present in the array

8

9111417 19 20 23 27
14

low =0, high =7

mid = 3, A[3] = 17

low = 0, high =2
mid =1, A[1l] =11

low = 2, high = 2
mid = 2, A[l2] =14

14 is present in the array

32



JE——
Static Variables

m Declared using the static keyword

m Static variables stay in existence rather than
coming and going everytime the function is called

m Example: Counting number of O’s Iin an array

Int main() {

int A[]={1,0,0, 4,5, 0};
cntZero(A, 10, 1);
return O;

}

33



{

void cntZero(int A[], int n, int print)

Int i;
static int count = 0;
printf(*'Called with: n=%d, count = %d\n"*, n, count);
printf(*'&n=%p, &count = %p\n\n"*, &n, &count);
If(n==1){
If (A[0] == 0) count++;
return;
}
If (A[n-1] == 0) count++;
cntZero(A, n-1, 0);
If (print ==1)
printf(*'n=%d, No. of zeros = %d\n"*, n, count);
return;




=
Output

Called with: n=6, count=0
&N=0x7ffe074392c4, &count= 0x40401c
Called with: n=5, count=1
&N=0x7ffe074392a4, &count= 0x40401c
Called with: n=4, count=1
&N=0x7ffe07439284, &count= 0x40401c
Called with: n=3, count=1
&N=0x7ffe07439264, &count= 0x40401c
Called with: n=2, count= 2
&N=0x7ffe07439244, &count= 0x40401c
Called with: n=1, count= 3
&N=0x7ffe07439224, &count= 0x40401cn=6,

No. of zeros = 3

35




JE—
Another Example

Int Fib (int, int);

Int main()
{
INt n;
scanf("'%d", &n);
If (n==0||n==1)
printf(*'F(%d) = %d \n"', n, 1);
else
printf("'"F(%d) = %d \n"", n,
Fib(n,2));
return O;

Int Fib(int n, Int 1)
{
static int m1, m2;
Int res, temp;
If (1I==2) {m1 =1; m2=1;}
If (n==1) res =ml+ m2;
else
{ temp =m1;
ml =ml+m2;
m2 = temp;
res = Fib(n, 1+1);
}

return res;
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Static Variables: See the addresses!

Int Fib(int n, Int 1)
{
static int m1, m2;
Int res, temp;
if (I==2) {m1 =1; m2=1;}
printf(*'F: m1=%d, m2=%d, n=%d,
1=%d\n"", m1,m2,n,i);
printf("'F: &m1=%u, &m2=%u\n"",
&ml,&m?2);
printf("'F: &res=%u, &temp=%u\n"’,
&res,&temp);
If (n==1) res=ml+ m2;
else { temp =ml; ml=ml+m2;
m2 = temp;
res = Fib(n, i+1); }
return res;

}

Output

' ml=1, m2=1, n=5, 1=2

: &mM1=134518656, &mM2=134518660

: &res=3221224516, &temp=3221224512
: m1=2, m2=1, n=5, i1=3

: &mM1=134518656, &mM2=134518660

: &res=3221224468, &temp=3221224464
' m1=3, m2=2, n=5, i=4

: &mM1=134518656, &mM2=134518660

: &res=3221224420, &temp=3221224416
: m1=5, m2=3, n=5, i=5

: &mM1=134518656, &mM2=134518660

: &res=3221224372, &temp=3221224368

F(5)=8
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Common Errors in Writing Recursive
Functions

m Non-terminating Recursive Function (Infinite recursion)
No base case

Int badFactorial(int x) {
return x * badFactorial(x-1);

}

O The base case Is never reached

m_t angt_herBadFactorlal(mt X) { int badSum2(int x)
If(x == 0)
return 1; 1 _
else If(x==1) return 1;
return x*(x-1)*anotherBadFactorial(x-2); return(badSum2(x--));
[/ When X is odd, base case never reached!! }
}




S
Common Errors in Writing Recursive Functions

m Mixing up loops and recursion

Int anotherBadFactorial(int x) {
Int i, fact = 0;
If (x ==0)
return 1;
else {
for (i=x; 1>0; 1=1-1) {
fact = fact + x*anotherBadFactorial(x-1);

}

return fact;

}

}

m |n general, if you have recursive function calls within a
loop, think carefully If you need it. Most recursive
functions you will see in this course will not need this



JE—
Recursion vs. Iteration

m Repetition
teration: explicit loop
Recursion: repeated function calls
m Termination
Iteration: loop condition fails
Recursion: base case recognized
m Both can have infinite loops
m Balance

Choice between performance (iteration) and good
software engineering (recursion).

40



m Every recursive program can also be written without
recursion

m Recursion is used for programming convenience,
not for performance enhancement

m Sometimes, if the function being computed has a
nice recursive form, then a recursive code may be
more readable

41



How are function calls implemented?

m The following applies in general, with minor variations

that are implementation dependent
The system maintains a stack In

memory

m Stack Is a last-In first-out structure

= TWO operations on stack, pus

Whenever there is a function cal
record gets pushed into the stac

m Activation record consists of t

N and pop

. the activation
K

ne return address

In the calling program, the return value from the
function, and the local variables inside the

function

42



STACK

\-

Int main()

/

int gcd (int x, int y)

= return (result);

}

Local
Variables

Return Value

}
Activation<
record
Before call

Return Addr

After call

After return

43



Int main()

int ncr (int n, intr)

return (fact(n)/

 I—

fact(r)/fact(n-r)); | 3times

— int fact (int n)

X = ncr (a, b); — {
........ k
}
}
LV1, RV1, RA1
Before call Call ncr

LV2, RV2, RA2

LV1, RV1, RAl

3 times

~ return (result);

}

LV1, RV1, RAl

Call fact

fact returns

ncr returns

44




JE—
What happens for recursive calls?

m \What we have seen ....

Space for activation record is allocated on the
stack when a function call is made

Space allocated for activation record is de-
allocated on the stack when the function returns

m In recursion, a function calls itself

Several function calls going on, with none of the
function calls returning back

m Space for activation records allocated on the stack
continuously

m Large stack space required
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Space for activation records are de-allocated, when
the termination condition of recursion is reached

m We shall illustrate the process by an example of

computing factorial
Activation record looks like:

Local
Variables

Return Value
Return Addr
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Example:: main() calls fact(3)

Int main()
{ | Int fact (int n)
Int n;
— 3. {
= o if (n==0)
printf (“%d \n”, fact(n) ); return (1):
return O; Silee
) return (n * fact(n-1));
}

47



" A
TRACE OF THE STACK DURING EXECUTION
>
n=0
1
RA .. fact fact
main n=1 =1 2=1 return.s
calls ) ) 1"1=1 {0 main
RA .. fact| |RA .. fact| [RA .. fact
fact n=2 n=>2 =2 n=2 n=>2
1 - . i . 2+1 =2 ‘
RA .. fact||RA .. fact| |RA .. fact| [RA .. fact||RA .. fact
n=3 n=3 =3 n=3 n=3 n=3 n=3
- - - - - - 3*2=06
RA .. main| [RA .. main| RA .. main| RA .. main| [RA .. main| RA .. main| |RA .. main
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Do Yourself

m Trace the activation records for the following

version of Fibonacci sequence

int f(intn)
{

Inta, b:

if (n <2) return (n);

else {
a = f(n-1);
b =f(n-2);
y — return (a+b);
}
}

void main() {

7 orintf(“Fib(4) is: %d \n”, (4)):

main }

Local
Variables
(n, a, b)

Return Value

Return Addr
(either main,
or X, orY)

49



Additional Example



Towers of Hanoi Problem

ol lw|dviE

LEFT CENTER RIGHT

51



m nitially all the disks are stacked on the LEFT pole

m Required to transfer all the disks to the RIGHT pole
Only one disk can be moved at a time.
A larger disk cannot be placed on a smaller disk

m CENTER pole is used for temporary storage of disks

52



m Recursive statement of the general problem of n
disks

Step 1.
= Move the top (n-1) disks from LEFT to CENTER

Step 2:
m Move the largest disk from LEFT to RIGHT

Step 3.
m Move the (n-1) disks from CENTER to RIGHT

53



Tower of Hanol
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Tower of Hanol

‘ [ ] ‘
J |

[ I{ )
A B C
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Tower of Hanol

‘ [ ] ‘

J |

[ | ]
A B C
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Tower of Hanol
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Towers of Hanol function

void towers (int n, char from, char to, char aux)

{

[* Base Condition */

if (n==1) {
printf (“Disk 1 : %c - &c \n”, from, to) ;
return ;

}

[* Recursive Condition */
towers (n-1, from, aux, to) ;

58



Towers of Hanol function

void towers (int n, char from, char to, char aux)

{

[* Base Condition */

if (n==1) {
printf (“Disk 1 : %c - &c \n”, from, to) ;
return ;

}

/* Recursive Condition */
towers (n-1, from, aux, to) ;
printf (“Disk %d : %c = %c\n”, n, from, to) ;

59



JE—
Towers of Hanol function

void towers (int n, char from, char to, char aux)

{

[* Base Condition */

if (n==1) {
printf (“Disk 1 : %c - %c \n”, from, to) ;
return ;

}

/* Recursive Condition */
towers (n-1, from, aux, to) ;
printf (“Disk %d : %c - %c\n”, n, from, to) ;
towers (n-1, aux, to, from) ;

60



JE
TOH runs

void towers(int n, char from, char to, char aux)
{if (n==1)
{ printf ("'Disk 1 : %c -> %c \n"", from, to) ;
return ;
}
towers (n-1, from, aux, to) ;
printf ("'Disk %d : %c -> %c\n"", n, from, to) ;
towers (n-1, aux, to, from) ;
}
Int main()
{intn;
scanf(*'%d"", &n);
towers(n,’A",‘C",*B");
return O;

}

Output

Disk 1 :
Disk 2 :
Disk 1 :
Disk 3 :
Disk 1 :
Disk 2 :
Disk 1 :

A->C
A->B
C->B
A->C
B->A
B->C
A->C

61




" I
More TOH runs

Output

void towers(int n, char from, char to, char aux)
{1f (n==1)
{ printf ("'Disk 1 : %c -> %c \n"", from, to) ;
return ;
}
towers (n-1, from, aux, to) ;
printf ("'Disk %d : %c -> %c\n"", n, from, to) ;
towers (n-1, aux, to, from) ;
}
Int main()
{intn;
scanf(*'%d"", &n);
towers(n,"A",‘C",'B");
return O;

}

4
Disk 1 :
Disk 2 :
Disk 1 :
Disk 3 :
Disk 1 :
Disk 2 :
Disk 1 :
Disk 4 :
Disk 1 :
Disk 2 :
Disk 1 :
Disk 3 :
Disk 1 :
Disk 2 :
Disk 1 :

A->B
A->C
B->C
A->B
C->A
C->B
A->B
A->C
B->C
B->A
C->A
B->C
A->B
A->C
B->C




JE—
Practice Problems

1. Write a recursive function to search for an element in an
array

2. Write a recursive function to count the digits of a positive
Integer (do also for sum of digits)

3. Write a recursive function to reverse a null-terminated
string

4. Write a recursive function to convert a decimal number to
binary

5. Write a recursive function to check if a string Is a
palindrome or not

6. Write a recursive function to copy one array to another

Note:

* For each of the above, write the main functions to call the
recursive function also

* Practice problems are just for practicing recursion, recursion is
not necessarily the most efficient way of doing them 63
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