Recursion

JE
Recursion

m A process by which a function calls itself repeatedly

Either directly.
m X calls X

Or cyclically in a chain.
m XcallsY,and Y calls X

m Used for repetitive computations in which each
action is stated In terms of a previous result

fact(n) = n * fact (n-1)

m For a problem to be written in recursive form, two
conditions are to be satisfied:

It should be possible to express the problem in
recursive form

= Solution of the problem in terms of solution of the same
problem on smaller sized data
The problem statement must include a
stopping/terminating condition

m The direct solution of the problem for a small enough
size
_ Stopping/Terminating
fact(n) = 1, f Nn=0 “" condition

n* fact(n-1), if n>0
“~

Recursive definition
3

m Examples:

Factorial:
fact(0) = 1
fact(n) = n * fact(n-1),ifn>0
GCD:
gcd (m, m)=m
gcd (m, n) = gcd (m%n, n), If m >n
gcd (m, n) = gcd (n, n%m), If m <n
Fibonacci series (1,1,2,3,5,8,13,21,....)
fib (0) =1
fib (1) =1
fib (n) =fib (n-1) + fib (n-2),ifn>1

BN
Factorial

long Int fact (int n)

{
if (n==1)
return (1);
else

return (n * fact(n-1));

= B
Factorial Execution

long int fact (int n)

{
If (n==1)return (1);
else return (n * fact(n-1));

}

= B
Factorial Execution

fact(4)
}

long int fact (int n)

{
If (n==1)return (1),
else return (n* fact(n-1));

}

= B
Factorial Execution

faict(4)
If (4==1)return (1),
else return (4 * fact(3));

long int fact (int n)

{
If (n==1)return (1),
else return (n* fact(n-1));

}

Factorial Execution

faict(4)
If (4==1)return (1),
else return (4 * fact(3));

If (3==1)return (1);
else return (3 * fact(2));

{

}

long int fact (int n)

If (n==1)return (1),
else return (n* fact(n-1));

Factorial Execution

fact(4)
|

If (4==1)return (1),
else return (4 * fact(3));

If (3==1)return (1);
else return (3 * fact(2));

If (2==1)return (1);

else return (2 * fact(1));

{

}

long int fact (int n))

If (n==1)return (1),
else return (n* fact(n-1));

10

= B
Factorial Execution

fact(4)
|

If (4==1)return (1),
else return (4 * fact(3));

If (3==1)return (1);
else return (3 * fact(2));

If (2==1)return (1);
else return (2 * fact(1));

long int fact (int n) |

{ . .
if (n==1)return (1); (1 ==1)return (1)

else return (n* fact(n-1));

}

= B
Factorial Execution

fact(4)
}

If (4==1)return (1),
else return (4 * fact(3));

If (3==1)return (1);
else return (3 * fact(2));

If (2==1)return (1);

else return (2 * fact(1)); 1
long int fact (int n) | \

{ . .
if (n==1)return (1); (1 ==1)return (1)

else return (n* fact(n-1));

}

= B
Factorial Execution

fact(4)
|

If (4==1)return (1),
else return (4 * fact(3));

If (3==1)return (1);

else return (3 * f?ct(Z)); - 2
if (2==1) retum
else return (2 * fact(1)); 1
long int fact (int n) l \
{ If (1==1)return (1),

If (n==1)return (1),
else return (n* fact(n-1));

}

= B
Factorial Execution

faict(4)
If (4==1)return (1),
else return (4 * fact(3)); « 6
|
if (3==1) retum
else return (3 * fact(2)); « 2
|
if (2==1) retum
else return (2 * fact(1)); 1
long int fact (int n) l \
{ if (1==1) return (1);

If (n==1)return (1),
else return (n* fact(n-1));

}

= B
Factorial Execution

faict(4) - 24
if (4==1) retum

else return (4 * f?ct(S)); - 6
if (3==1) retum
else return (3 * f?ct(Z)); - 2
if (2==1) retum
else return (2 * fact(1)); 1
long int fact (int n) l \
{ If (1==1)return (1),

If (n==1)return (1),
else return (n* fact(n-1));

}

Example: Finding max in an array

int findMax(int A[|, int n) Terminating condition. Smalll

{ size problem that you know
int temp: how to solve directly without
if (n==1) calling any functions

{
return A[O];

}
temp = findMax(A, n-1); «——
If (A[n-1] > temp)
return A[n-1];
else return temp;

Recursive call. Find the max
In the first n-1 elements
(exact same problem, just
solved on a smaller array).

"
Important things to remember

m Think how the whole problem (finding max of n
elements in A) can be solved if you can solve the
exact same problem on a smaller problem (finding
max of first n-1 elements of the array). But then, do
NOT think how the smaller problem will be solved,

just call the function recursively and assume it will
be solved.

m \When you write a recursive function

m First write the terminating/base condition
= Then write the rest of the function
m Always double-check that you have both

Back to Factorial: Look at the variable
addresses (a slightly different program) !

Int main()
{
Int Xx,y;
scanf(*'%d"",&X);
y = fact(x);
printf (""M: x=%d, y = %d\n"", X,y);
return O;

}
Int fact(int data)
{intval =1;

printf("'F: data = %d, &data = %u \n
&val = %u\n", data, &data, &val);

If (data>1) val = data*fact(data-1);
return val,

}

Output

4
F: data = 4, &data = 3221224528
&val = 3221224516

F: data = 3, &data = 3221224480
&val = 3221224468

F: data = 2, &data = 3221224432
&val = 3221224420

F: data =1, &data = 3221224384
&val = 3221224372
M:x=4,y=24

18

B The memory addresses for the variable data are
different in different calls!

B They are not the same variable.

B Each function call will have its own set of variables,
even If the name of the variable Is the same as it is the
same function being called

B Change made to one will not be seen by the calling
function on return

19

Int main()
{ Output
Int X,y; 4
scant(**%d", &x); count=1, data=1
y : BB count=1, data=2
printf (""M: x= %d, y = %d\n"", X,y);
S O count=1, data=3
1 count=1, data=4
Int fact(int data) M: x=4,y =24
{

Int val = 1, count = 0;
If (data>1) val = data*fact(data-1);
count++;

printf(“count = %d, data = %d\n”,
count, data);

return val;

e Count did not change
even though ++ done!

 Each call does it onits
own copy, lost on return

20

| 1

«
Fibonacci Numbers

Fibonacci recurrence:
fio(n)=11fn=0or 1;
=fib(n —2) +fib(n -1)
otherwise;

Int fib (int n){
f (n==0o0orn==1)
return 1; [Base]
return fib(n-2) + fib(n-1) ;
[Recursive]

21

——EE————

int fib (intn) { : :
if(n==0 || n==1) Fibonacci recurrence:
returnl; | fib(n)=1ifn=0o0r1,
\ return fib(n-2) + fib(n-1) ; = fib(n — 2) + fib(n — 1)
otherwise;
fib (5)
fib (3) fib (4)
fib (1) fib (2) fib (2) fib (3)
fib (0) | |fib (1) | |fib (0)]|fib (1) | fib (1) fib (2)

fib (0)

fib (1)

22

.—
Int fib (int n)

{

if(n==0]] n==1)

return 1;

return fib(n-2) + fib(n-1) ;

Fibonacci recurrence:
fib(n)=1ifn=0o0r1,
=fib(n —2) +fib(n-1)

otherwise:
fib (5)
fib (3) fib (4)
/\
fib (1) fib (2) fib (2) fib (3)
! /\ /\
fib (0) fib (1) fib (0) | |fib (1) | fib (1) fib (2)
1 1 1 1 1
fib (0) fib (1)

fib.c

23

———————

int fib (intn) { : :
if (n==0 | | n==1) Fibonacci recurrence:
returnl; fib(n)=1ifn=0o0r1,
\ return fib(n-2) + fib(n-1) ; = fib(n — 2) + fib(n — 1)
g otherwise,
fib (5)
3 5
fib (3) fib (4)
1/\ 2 2 3
fib (1) fib (2) fib (2) fib (3)
L 1% 1 1/\1 1 2
fib (0)| |fib (1)| |fib (0)|fib (1) | fib (1) fib (2)
1 1 1 1 1 L
fib (0) fib (1)
1 1

24

S
Example: Sum of Squares

Int sumSquares (int m, int n)

{
Int middle ;
If (m == n) return(m*m);
else
{

middle = (m+n)/2;
return (sumSquares(m,middle)
+ sumSquares(middle+1,n));

25

Annotated Call Tree

355

sumSquares(5,10)

245
sumSquares(8,10)

145 / 100

110
sumSquares(5,7)
6l 49
sumSquares(5,6) sumSquares(7,7)

sumSquares(8,9)| |sumSquares(10,10)

/2

36

WA

sumSquares(5,5)

sumSquares(6,6) | [sum

Squares(8,8) [sumSquares(9,9)

25

36 49

64 81 100

26

" J
Example: Printing the digits of an Integer In
Reverse

m Print the last digit, then print the remaining number

In reverse
EX: If integer is 743, then reversed is print 3 first,
then print the reverse of 74

void printReversed(int i)
{
if i<10) {
printf(“%d\n”, 1); return;
}
else {
printf(“%d”, 1%10);
printReversed(i/10);
}

27 }

JE
Counting Zeros In a Positive Integer

m Check last digit from right

If it 1S O, number of zeros = 1 + number of zeroes
In remaining part of the number

If it IS non-0, number of zeros = number of zeroes
In remaining part of the number

Int zeros(int number)
{
If(number<10) return O;
If (number%210 == 0)
return(1+zeros(number/10));
else
return(zeros(number/10));

28

" S
Example: Binary Search

m Searching for an element k in a sorted array A with n
elements
m |dea:
Choose the middle element A[n/2]
f k == A[n/2], we are done
f k < A[n/2], search for k between A[O] and A[n/2 -1]
f k > A[n/2], search for k between A[n/2 + 1] and A[n-1]

Repeat until either k is found, or no more elements to
search

m Requires less number of comparisons than linear
search In the worst case (log,n instead of n)

29

Int binsearch(int A[|, int low, int high, int k)
{
Int mid;
printf(“low = %d, high = %d\n”, low, high);
If (low > high)
return O;
mid = (low + high)/2;
printf(*“mid = %d, A[%d] = %d\n\n”, mid, mid, A[mid]);
If (A[mid] == k)
return 1;
else {
If (A[mid] > k)
return (binsearch(A, low, mid-1, k));
else
return(binsearch(A, mid+1, high, k));

30

Int main()

{
Int A[25], n, k, I, found,;

scanf(“%d”, &n);
for (1=0; i<n; I++) scanf(“%d”, &AJl]);
scanf(“%d”, &k);
found = binsearch(A, 0, n-1, k);
If (found == 1)

printf(“%d Is present in the array\n”, k);
else

printf(“%d is not present in the array\n”, k);

31

JE
Output

8

911141719 20 23 27
21

low =0, high=7

mid = 3, A[3] =17

low =4, high=7
mid = 5, A[5] =20

low = 6, high =7
mid = 6, A[6] = 23

low =6, high=5
21 is not present in the array

8

9111417 19 20 23 27
14

low =0, high =7

mid = 3, A[3] = 17

low = 0, high =2
mid =1, A[1l] =11

low = 2, high = 2
mid = 2, A[l2] =14

14 is present in the array

32

JE——
Static Variables

m Declared using the static keyword

m Static variables stay in existence rather than
coming and going everytime the function is called

m Example: Counting number of O’s Iin an array

Int main() {

int A[]={1,0,0, 4,5, 0};
cntZero(A, 10, 1);
return O;

}

33

{

void cntZero(int A[], int n, int print)

Int i;
static int count = 0;
printf(*'Called with: n=%d, count = %d\n"*, n, count);
printf(*'&n=%p, &count = %p\n\n"*, &n, &count);
If(n==1){
If (A[0] == 0) count++;
return;
}
If (A[n-1] == 0) count++;
cntZero(A, n-1, 0);
If (print ==1)
printf(*'n=%d, No. of zeros = %d\n"*, n, count);
return;

=
Output

Called with: n=6, count=0
&N=0x7ffe074392c4, &count= 0x40401c
Called with: n=5, count=1
&N=0x7ffe074392a4, &count= 0x40401c
Called with: n=4, count=1
&N=0x7ffe07439284, &count= 0x40401c
Called with: n=3, count=1
&N=0x7ffe07439264, &count= 0x40401c
Called with: n=2, count= 2
&N=0x7ffe07439244, &count= 0x40401c
Called with: n=1, count= 3
&N=0x7ffe07439224, &count= 0x40401cn=6,

No. of zeros = 3

35

JE—
Another Example

Int Fib (int, int);

Int main()
{
INt n;
scanf("'%d", &n);
If (n==0||n==1)
printf(*'F(%d) = %d \n"', n, 1);
else
printf("'"F(%d) = %d \n"", n,
Fib(n,2));
return O;

Int Fib(int n, Int 1)
{
static int m1, m2;
Int res, temp;
If (1I==2) {m1 =1; m2=1;}
If (n==1) res =ml+ m2;
else
{ temp =m1;
ml =ml+m2;
m2 = temp;
res = Fib(n, 1+1);
}

return res;

36

Static Variables: See the addresses!

Int Fib(int n, Int 1)
{
static int m1, m2;
Int res, temp;
if (I==2) {m1 =1; m2=1;}
printf(*'F: m1=%d, m2=%d, n=%d,
1=%d\n"", m1,m2,n,i);
printf("'F: &m1=%u, &m2=%u\n"",
&ml,&m?2);
printf("'F: &res=%u, &temp=%u\n"’,
&res,&temp);
If (n==1) res=ml+ m2;
else { temp =ml; ml=ml+m2;
m2 = temp;
res = Fib(n, i+1); }
return res;

}

Output

' ml=1, m2=1, n=5, 1=2

: &mM1=134518656, &mM2=134518660

: &res=3221224516, &temp=3221224512
: m1=2, m2=1, n=5, i1=3

: &mM1=134518656, &mM2=134518660

: &res=3221224468, &temp=3221224464
' m1=3, m2=2, n=5, i=4

: &mM1=134518656, &mM2=134518660

: &res=3221224420, &temp=3221224416
: m1=5, m2=3, n=5, i=5

: &mM1=134518656, &mM2=134518660

: &res=3221224372, &temp=3221224368

F(5)=8

37

" J
Common Errors in Writing Recursive
Functions

m Non-terminating Recursive Function (Infinite recursion)
No base case

Int badFactorial(int x) {
return x * badFactorial(x-1);

}

O The base case Is never reached

m_t angt_herBadFactorlal(mt X) { int badSum2(int x)
If(x == 0)
return 1; 1 _
else If(x==1) return 1;
return x*(x-1)*anotherBadFactorial(x-2); return(badSum2(x--));
[/ When X is odd, base case never reached!! }
}

S
Common Errors in Writing Recursive Functions

m Mixing up loops and recursion

Int anotherBadFactorial(int x) {
Int i, fact = 0;
If (x ==0)
return 1;
else {
for (i=x; 1>0; 1=1-1) {
fact = fact + x*anotherBadFactorial(x-1);

}

return fact;

}

}

m |n general, if you have recursive function calls within a
loop, think carefully If you need it. Most recursive
functions you will see in this course will not need this

JE—
Recursion vs. Iteration

m Repetition
teration: explicit loop
Recursion: repeated function calls
m Termination
Iteration: loop condition fails
Recursion: base case recognized
m Both can have infinite loops
m Balance

Choice between performance (iteration) and good
software engineering (recursion).

40

m Every recursive program can also be written without
recursion

m Recursion is used for programming convenience,
not for performance enhancement

m Sometimes, if the function being computed has a
nice recursive form, then a recursive code may be
more readable

41

How are function calls implemented?

m The following applies in general, with minor variations

that are implementation dependent
The system maintains a stack In

memory

m Stack Is a last-In first-out structure

= TWO operations on stack, pus

Whenever there is a function cal
record gets pushed into the stac

m Activation record consists of t

N and pop

. the activation
K

ne return address

In the calling program, the return value from the
function, and the local variables inside the

function

42

STACK

\-

Int main()

/

int gcd (int x, int y)

= return (result);

}

Local
Variables

Return Value

}
Activation<
record
Before call

Return Addr

After call

After return

43

Int main()

int ncr (int n, intr)

return (fact(n)/

 I—

fact(r)/fact(n-r)); | 3times

— int fact (int n)

X = ncr (a, b); — {
........ k
}
}
LV1, RV1, RA1
Before call Call ncr

LV2, RV2, RA2

LV1, RV1, RAl

3 times

~ return (result);

}

LV1, RV1, RAl

Call fact

fact returns

ncr returns

44

JE—
What happens for recursive calls?

m \What we have seen

Space for activation record is allocated on the
stack when a function call is made

Space allocated for activation record is de-
allocated on the stack when the function returns

m In recursion, a function calls itself

Several function calls going on, with none of the
function calls returning back

m Space for activation records allocated on the stack
continuously

m Large stack space required

45

Space for activation records are de-allocated, when
the termination condition of recursion is reached

m We shall illustrate the process by an example of

computing factorial
Activation record looks like:

Local
Variables

Return Value
Return Addr

46

Example:: main() calls fact(3)

Int main()
{ | Int fact (int n)
Int n;
— 3. {
= o if (n==0)
printf (“%d \n”, fact(n)); return (1):
return O; Silee
) return (n * fact(n-1));
}

47

" A
TRACE OF THE STACK DURING EXECUTION
>
n=0
1
RA .. fact fact
main n=1 =1 2=1 return.s
calls)) 1"1=1 {0 main
RA .. fact| |RA .. fact| [RA .. fact
fact n=2 n=>2 =2 n=2 n=>2
1 - . i . 2+1 =2 ‘
RA .. fact||RA .. fact| |RA .. fact| [RA .. fact||RA .. fact
n=3 n=3 =3 n=3 n=3 n=3 n=3
- - - - - - 3*2=06
RA .. main| [RA .. main| RA .. main| RA .. main| [RA .. main| RA .. main| |RA .. main

40

Do Yourself

m Trace the activation records for the following

version of Fibonacci sequence

int f(intn)
{

Inta, b:

if (n <2) return (n);

else {
a = f(n-1);
b =f(n-2);
y — return (a+b);
}
}

void main() {

7 orintf(“Fib(4) is: %d \n”, (4)):

main }

Local
Variables
(n, a, b)

Return Value

Return Addr
(either main,
or X, orY)

49

Additional Example

Towers of Hanoi Problem

ol lw|dviE

LEFT CENTER RIGHT

51

m nitially all the disks are stacked on the LEFT pole

m Required to transfer all the disks to the RIGHT pole
Only one disk can be moved at a time.
A larger disk cannot be placed on a smaller disk

m CENTER pole is used for temporary storage of disks

52

m Recursive statement of the general problem of n
disks

Step 1.
= Move the top (n-1) disks from LEFT to CENTER

Step 2:
m Move the largest disk from LEFT to RIGHT

Step 3.
m Move the (n-1) disks from CENTER to RIGHT

53

Tower of Hanol

54

Tower of Hanol

‘ [] ‘
J |

[I{)
A B C

55

Tower of Hanol

‘ [] ‘

J |

[|]
A B C

56

Tower of Hanol

57

Towers of Hanol function

void towers (int n, char from, char to, char aux)

{

[* Base Condition */

if (n==1) {
printf (“Disk 1 : %c - &c \n”, from, to) ;
return ;

}

[* Recursive Condition */
towers (n-1, from, aux, to) ;

58

Towers of Hanol function

void towers (int n, char from, char to, char aux)

{

[* Base Condition */

if (n==1) {
printf (“Disk 1 : %c - &c \n”, from, to) ;
return ;

}

/* Recursive Condition */
towers (n-1, from, aux, to) ;
printf (“Disk %d : %c = %c\n”, n, from, to) ;

59

JE—
Towers of Hanol function

void towers (int n, char from, char to, char aux)

{

[* Base Condition */

if (n==1) {
printf (“Disk 1 : %c - %c \n”, from, to) ;
return ;

}

/* Recursive Condition */
towers (n-1, from, aux, to) ;
printf (“Disk %d : %c - %c\n”, n, from, to) ;
towers (n-1, aux, to, from) ;

60

JE
TOH runs

void towers(int n, char from, char to, char aux)
{if (n==1)
{ printf ("'Disk 1 : %c -> %c \n"", from, to) ;
return ;
}
towers (n-1, from, aux, to) ;
printf ("'Disk %d : %c -> %c\n"", n, from, to) ;
towers (n-1, aux, to, from) ;
}
Int main()
{intn;
scanf(*'%d"", &n);
towers(n,’A",‘C",*B");
return O;

}

Output

Disk 1 :
Disk 2 :
Disk 1 :
Disk 3 :
Disk 1 :
Disk 2 :
Disk 1 :

A->C
A->B
C->B
A->C
B->A
B->C
A->C

61

" I
More TOH runs

Output

void towers(int n, char from, char to, char aux)
{1f (n==1)
{ printf ("'Disk 1 : %c -> %c \n"", from, to) ;
return ;
}
towers (n-1, from, aux, to) ;
printf ("'Disk %d : %c -> %c\n"", n, from, to) ;
towers (n-1, aux, to, from) ;
}
Int main()
{intn;
scanf(*'%d"", &n);
towers(n,"A",‘C",'B");
return O;

}

4
Disk 1 :
Disk 2 :
Disk 1 :
Disk 3 :
Disk 1 :
Disk 2 :
Disk 1 :
Disk 4 :
Disk 1 :
Disk 2 :
Disk 1 :
Disk 3 :
Disk 1 :
Disk 2 :
Disk 1 :

A->B
A->C
B->C
A->B
C->A
C->B
A->B
A->C
B->C
B->A
C->A
B->C
A->B
A->C
B->C

JE—
Practice Problems

1. Write a recursive function to search for an element in an
array

2. Write a recursive function to count the digits of a positive
Integer (do also for sum of digits)

3. Write a recursive function to reverse a null-terminated
string

4. Write a recursive function to convert a decimal number to
binary

5. Write a recursive function to check if a string Is a
palindrome or not

6. Write a recursive function to copy one array to another

Note:

* For each of the above, write the main functions to call the
recursive function also

* Practice problems are just for practicing recursion, recursion is
not necessarily the most efficient way of doing them 63

	Recursion
	Recursion
	Slide Number 3
	Slide Number 4
	Factorial
	Factorial Execution
	Factorial Execution
	Factorial Execution
	Factorial Execution
	Factorial Execution
	Factorial Execution
	Factorial Execution
	Factorial Execution
	Factorial Execution
	Factorial Execution
	Example: Finding max in an array
	Important things to remember
	Back to Factorial: Look at the variable addresses (a slightly different program) !
	Slide Number 19
	Slide Number 20
	Fibonacci Numbers
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Example: Sum of Squares
	Annotated Call Tree
	Example: Printing the digits of an Integer in Reverse
	Counting Zeros in a Positive Integer
	Example: Binary Search
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Static Variables
	Slide Number 34
	Slide Number 35
	Another Example
	Static Variables: See the addresses!
	Common Errors in Writing Recursive Functions
	Common Errors in Writing Recursive Functions
	Recursion vs. Iteration
	Slide Number 41
	How are function calls implemented?
	Slide Number 43
	Slide Number 44
	What happens for recursive calls?
	Slide Number 46
	Example:: main() calls fact(3)
	Slide Number 48
	Do Yourself
	Additional Example
	Towers of Hanoi Problem
	Slide Number 52
	Slide Number 53
	Tower of Hanoi
	Tower of Hanoi
	Tower of Hanoi
	Tower of Hanoi
	Towers of Hanoi function
	Towers of Hanoi function
	Towers of Hanoi function
	TOH runs
	More TOH runs
	Practice Problems

