
1

Recursion

2

Recursion

 A process by which a function calls itself repeatedly
 Either directly.

 X calls X
 Or cyclically in a chain.

 X calls Y, and Y calls X

 Used for repetitive computations in which each
action is stated in terms of a previous result

fact(n) = n * fact (n-1)

3

 For a problem to be written in recursive form, two
conditions are to be satisfied:
 It should be possible to express the problem in

recursive form
 Solution of the problem in terms of solution of the same

problem on smaller sized data
The problem statement must include a

stopping/terminating condition
 The direct solution of the problem for a small enough

size

fact(n) = 1, if n = 0
= n * fact(n-1), if n > 0

Stopping/Terminating
condition

Recursive definition

4

 Examples:

Factorial:
fact(0) = 1
fact(n) = n * fact(n-1), if n > 0

GCD:
gcd (m, m) = m
gcd (m, n) = gcd (m%n, n), if m > n
gcd (m, n) = gcd (n, n%m), if m < n

Fibonacci series (1,1,2,3,5,8,13,21,….)
fib (0) = 1
fib (1) = 1
fib (n) = fib (n-1) + fib (n-2), if n > 1

5

Factorial

long int fact (int n)
{

if (n == 1)
return (1);

else
return (n * fact(n-1));

}

6

Factorial Execution

long int fact (int n)
{

if (n = = 1) return (1);
else return (n * fact(n-1));

}

7

Factorial Execution
fact(4)

long int fact (int n)
{

if (n = = 1) return (1);
else return (n * fact(n-1));

}

8

Factorial Execution
fact(4)

if (4 = = 1) return (1);
else return (4 * fact(3));

long int fact (int n)
{

if (n = = 1) return (1);
else return (n * fact(n-1));

}

9

Factorial Execution
fact(4)

if (4 = = 1) return (1);
else return (4 * fact(3));

if (3 = = 1) return (1);
else return (3 * fact(2));

long int fact (int n)
{

if (n = = 1) return (1);
else return (n * fact(n-1));

}

10

Factorial Execution
fact(4)

if (4 = = 1) return (1);
else return (4 * fact(3));

if (3 = = 1) return (1);
else return (3 * fact(2));

if (2 = = 1) return (1);
else return (2 * fact(1));

long int fact (int n)
{

if (n = = 1) return (1);
else return (n * fact(n-1));

}

11

Factorial Execution

if (1 = = 1) return (1);

fact(4)

if (4 = = 1) return (1);
else return (4 * fact(3));

if (3 = = 1) return (1);
else return (3 * fact(2));

if (2 = = 1) return (1);
else return (2 * fact(1));

long int fact (int n)
{

if (n = = 1) return (1);
else return (n * fact(n-1));

}

12

Factorial Execution

if (1 = = 1) return (1);

fact(4)

if (4 = = 1) return (1);
else return (4 * fact(3));

if (3 = = 1) return (1);
else return (3 * fact(2));

if (2 = = 1) return (1);
else return (2 * fact(1)); 1

long int fact (int n)
{

if (n = = 1) return (1);
else return (n * fact(n-1));

}

13

Factorial Execution

if (1 = = 1) return (1);

fact(4)

if (4 = = 1) return (1);
else return (4 * fact(3));

if (3 = = 1) return (1);
else return (3 * fact(2));

if (2 = = 1) return (1);
else return (2 * fact(1)); 1

2

long int fact (int n)
{

if (n = = 1) return (1);
else return (n * fact(n-1));

}

14

Factorial Execution

if (1 = = 1) return (1);

fact(4)

if (4 = = 1) return (1);
else return (4 * fact(3));

if (3 = = 1) return (1);
else return (3 * fact(2));

if (2 = = 1) return (1);
else return (2 * fact(1)); 1

2

6

long int fact (int n)
{

if (n = = 1) return (1);
else return (n * fact(n-1));

}

15

Factorial Execution

if (1 = = 1) return (1);

fact(4)

if (4 = = 1) return (1);
else return (4 * fact(3));

if (3 = = 1) return (1);
else return (3 * fact(2));

if (2 = = 1) return (1);
else return (2 * fact(1)); 1

2

6

24

long int fact (int n)
{

if (n = = 1) return (1);
else return (n * fact(n-1));

}

Example: Finding max in an array

int findMax(int A[], int n)
{

int temp;
if (n==1)
{

return A[0];
}
temp = findMax(A, n-1);
if (A[n-1] > temp)

return A[n-1];
else return temp;

}

Terminating condition. Small
size problem that you know
how to solve directly without
calling any functions

Recursive call. Find the max
in the first n-1 elements
(exact same problem, just
solved on a smaller array).

Important things to remember
 Think how the whole problem (finding max of n

elements in A) can be solved if you can solve the
exact same problem on a smaller problem (finding
max of first n-1 elements of the array). But then, do
NOT think how the smaller problem will be solved,
just call the function recursively and assume it will
be solved.

 When you write a recursive function
 First write the terminating/base condition
 Then write the rest of the function
 Always double-check that you have both

18

Back to Factorial: Look at the variable
addresses (a slightly different program) !

int main()
{

int x,y;
scanf("%d",&x);
y = fact(x);
printf ("M: x= %d, y = %d\n", x,y);
return 0;

}
int fact(int data)
{ int val = 1;

printf("F: data = %d, &data = %u \n
&val = %u\n", data, &data, &val);

if (data>1) val = data*fact(data-1);
return val;

}

4

F: data = 4, &data = 3221224528

&val = 3221224516

F: data = 3, &data = 3221224480

&val = 3221224468

F: data = 2, &data = 3221224432

&val = 3221224420

F: data = 1, &data = 3221224384

&val = 3221224372

M: x= 4, y = 24

Output

19

 The memory addresses for the variable data are
different in different calls!

 They are not the same variable.
 Each function call will have its own set of variables,

even if the name of the variable is the same as it is the
same function being called

 Change made to one will not be seen by the calling
function on return

20

int main()
{

int x,y;
scanf("%d",&x);
y = fact(x);
printf ("M: x= %d, y = %d\n", x,y);
return 0;

}
int fact(int data)
{

int val = 1, count = 0;
if (data>1) val = data*fact(data-1);
count++;
printf(“count = %d, data = %d\n”,

count, data);
return val;

}

4

count = 1, data = 1

count = 1, data = 2

count = 1, data = 3

count = 1, data = 4

M: x= 4, y = 24

Output

• Count did not change
even though ++ done!

• Each call does it on its
own copy, lost on return

21

Fibonacci recurrence:
fib(n) = 1 if n = 0 or 1;

= fib(n – 2) + fib(n – 1)
otherwise;

int fib (int n){
if (n == 0 or n == 1)

return 1; [Base]
return fib(n-2) + fib(n-1) ;

[Recursive]
}

Fibonacci Numbers

22

fib (5)

fib (3) fib (4)

fib (1)

fib (2)fib (1) fib (2)

fib (0)

fib (3)

fib (1)

fib (1) fib (2)

fib (0)

fib (0) fib (1)

Fibonacci recurrence:
fib(n) = 1 if n = 0 or 1;

= fib(n – 2) + fib(n – 1)
otherwise;

int fib (int n) {
if (n == 0 || n == 1)

return 1;
return fib(n-2) + fib(n-1) ;

}

23

fib (5)

fib (3) fib (4)

fib (1)

fib (2)fib (1) fib (2)

fib (0)

fib (3)

fib (1)

fib (1) fib (2)

fib (0)

fib (0) fib (1)

1 1 1 1 1

1

11

Fibonacci recurrence:
fib(n) = 1 if n = 0 or 1;

= fib(n – 2) + fib(n – 1)
otherwise;

int fib (int n) {
if (n == 0 || n == 1)

return 1;
return fib(n-2) + fib(n-1) ;

}

fib.c

24

fib (5)

fib (3) fib (4)

fib (1)

fib (2)fib (1) fib (2)

fib (0)

fib (3)

fib (1)

fib (1) fib (2)

fib (0)

fib (0) fib (1)

1 1 1 1 1

1

11

1 2 2

211111

3

3

5

8

1 1

Fibonacci recurrence:
fib(n) = 1 if n = 0 or 1;

= fib(n – 2) + fib(n – 1)
otherwise;

int fib (int n) {
if (n==0 || n==1)

return 1;
return fib(n-2) + fib(n-1) ;

}

25

int sumSquares (int m, int n)
{

int middle ;
if (m == n) return(m*m);
else
{

middle = (m+n)/2;
return (sumSquares(m,middle)

+ sumSquares(middle+1,n));
}

}

Example: Sum of Squares

26

Annotated Call Tree

sumSquares(5,10)sumSquares(5,10)

sumSquares(5,7) sumSquares(5,10)sumSquares(8,10)

sumSquares(5,6) sumSquares(7,7) sumSquares(8,9) sumSquares(10,10)

sumSquares(5,5) sumSquares(6,6) sumSquares(8,8) sumSquares(9,9)

355

110

61 49

245

145 100

25 36 64 81

25 36 49 64 81 100

Example: Printing the digits of an Integer in
Reverse
 Print the last digit, then print the remaining number

in reverse
 Ex: If integer is 743, then reversed is print 3 first,

then print the reverse of 74

27

void printReversed(int i)
{

if (i < 10) {
printf(“%d\n”, i); return;

}
else {

printf(“%d”, i%10);
printReversed(i/10);

}
}

28

Counting Zeros in a Positive Integer
 Check last digit from right
 If it is 0, number of zeros = 1 + number of zeroes

in remaining part of the number
 If it is non-0, number of zeros = number of zeroes

in remaining part of the number

int zeros(int number)
{

if(number<10) return 0;
if (number%10 == 0)

return(1+zeros(number/10));
else

return(zeros(number/10));
}

29

Example: Binary Search
 Searching for an element k in a sorted array A with n

elements
 Idea:

 Choose the middle element A[n/2]
 If k == A[n/2], we are done
 If k < A[n/2], search for k between A[0] and A[n/2 -1]
 If k > A[n/2], search for k between A[n/2 + 1] and A[n-1]
 Repeat until either k is found, or no more elements to

search
 Requires less number of comparisons than linear

search in the worst case (log2n instead of n)

30

int binsearch(int A[], int low, int high, int k)
{

int mid;
printf(“low = %d, high = %d\n”, low, high);
if (low > high)

return 0;
mid = (low + high)/2;
printf(“mid = %d, A[%d] = %d\n\n”, mid, mid, A[mid]);
if (A[mid] == k)

return 1;
else {

if (A[mid] > k)
return (binsearch(A, low, mid-1, k));

else
return(binsearch(A, mid+1, high, k));

}
}

31

int main()
{

int A[25], n, k, i, found;

scanf(“%d”, &n);
for (i=0; i<n; i++) scanf(“%d”, &A[i]);
scanf(“%d”, &k);
found = binsearch(A, 0, n-1, k);
if (found == 1)

printf(“%d is present in the array\n”, k);
else

printf(“%d is not present in the array\n”, k);
}

32

8
9 11 14 17 19 20 23 27
21
low = 0, high = 7
mid = 3, A[3] = 17

low = 4, high = 7
mid = 5, A[5] = 20

low = 6, high = 7
mid = 6, A[6] = 23

low = 6, high = 5
21 is not present in the array

8
9 11 14 17 19 20 23 27
14
low = 0, high = 7
mid = 3, A[3] = 17

low = 0, high = 2
mid = 1, A[1] = 11

low = 2, high = 2
mid = 2, A[2] = 14

14 is present in the array

Output

33

Static Variables

 Declared using the static keyword
 Static variables stay in existence rather than

coming and going everytime the function is called
 Example: Counting number of 0’s in an array

int main() {

int A[] = {1, 0, 0, 4, 5, 0};
cntZero(A, 10, 1);
return 0;

}

34

void cntZero(int A[], int n, int print)
{

int i;
static int count = 0;
printf("Called with: n=%d, count = %d\n", n, count);
printf("&n=%p, &count = %p\n\n", &n, &count);
if (n == 1) {

if (A[0] == 0) count++;
return;

}
if (A[n-1] == 0) count++;
cntZero(A, n-1, 0);
if (print == 1)

printf("n=%d, No. of zeros = %d\n", n, count);
return;

}

35

Called with: n=6, count= 0
&n=0x7ffe074392c4, &count= 0x40401c
Called with: n=5, count= 1
&n=0x7ffe074392a4, &count= 0x40401c
Called with: n=4, count= 1
&n=0x7ffe07439284, &count= 0x40401c
Called with: n=3, count= 1
&n=0x7ffe07439264, &count= 0x40401c
Called with: n=2, count= 2
&n=0x7ffe07439244, &count= 0x40401c
Called with: n=1, count= 3
&n=0x7ffe07439224, &count= 0x40401cn=6,

No. of zeros = 3

Output

36

Another Example
int Fib (int, int);

int main()
{

int n;
scanf("%d", &n);
if (n == 0 || n ==1)

printf("F(%d) = %d \n", n, 1);
else

printf("F(%d) = %d \n", n,
Fib(n,2));
return 0;

}

int Fib(int n, int i)
{

static int m1, m2;
int res, temp;
if (i==2) {m1 =1; m2=1;}
if (n == i) res = m1+ m2;
else
{ temp = m1;

m1 = m1+m2;
m2 = temp;

res = Fib(n, i+1);
}

return res;
}

37

Static Variables: See the addresses!

5
F: m1=1, m2=1, n=5, i=2
F: &m1=134518656, &m2=134518660
F: &res=3221224516, &temp=3221224512
F: m1=2, m2=1, n=5, i=3
F: &m1=134518656, &m2=134518660
F: &res=3221224468, &temp=3221224464
F: m1=3, m2=2, n=5, i=4
F: &m1=134518656, &m2=134518660
F: &res=3221224420, &temp=3221224416
F: m1=5, m2=3, n=5, i=5
F: &m1=134518656, &m2=134518660
F: &res=3221224372, &temp=3221224368
F(5) = 8

int Fib(int n, int i)
{
static int m1, m2;
int res, temp;
if (i==2) {m1 =1; m2=1;}
printf("F: m1=%d, m2=%d, n=%d,

i=%d\n", m1,m2,n,i);
printf("F: &m1=%u, &m2=%u\n",

&m1,&m2);
printf("F: &res=%u, &temp=%u\n",

&res,&temp);
if (n == i) res = m1+ m2;
else { temp = m1; m1 = m1+m2;

m2 = temp;
res = Fib(n, i+1); }

return res;
}

Output

Common Errors in Writing Recursive
Functions

 Non-terminating Recursive Function (Infinite recursion)
 No base case

 The base case is never reached

int badFactorial(int x) {
return x * badFactorial(x-1);

}

int anotherBadFactorial(int x) {
if(x == 0)

return 1;
else

return x*(x-1)*anotherBadFactorial(x-2);
// When x is odd, base case never reached!!

}

int badSum2(int x)
{

if(x==1) return 1;
return(badSum2(x--));

}

Common Errors in Writing Recursive Functions
 Mixing up loops and recursion

 In general, if you have recursive function calls within a
loop, think carefully if you need it. Most recursive
functions you will see in this course will not need this

int anotherBadFactorial(int x) {
int i, fact = 0;
if (x == 0)

return 1;
else {

for (i=x; i>0; i=i-1) {
fact = fact + x*anotherBadFactorial(x-1);

}
return fact;

}
}

40

Recursion vs. Iteration
 Repetition

 Iteration: explicit loop
 Recursion: repeated function calls

 Termination
 Iteration: loop condition fails
 Recursion: base case recognized

 Both can have infinite loops
 Balance

 Choice between performance (iteration) and good
software engineering (recursion).

41

 Every recursive program can also be written without
recursion

 Recursion is used for programming convenience,
not for performance enhancement

 Sometimes, if the function being computed has a
nice recursive form, then a recursive code may be
more readable

42

How are function calls implemented?

 The following applies in general, with minor variations
that are implementation dependent
The system maintains a stack in memory

 Stack is a last-in first-out structure
 Two operations on stack, push and pop

Whenever there is a function call, the activation
record gets pushed into the stack
 Activation record consists of the return address

in the calling program, the return value from the
function, and the local variables inside the
function

43

int main()
{

……..
x = gcd (a, b);
……..

}

int gcd (int x, int y)
{

……..
……..
return (result);

}

Return Addr
Return Value

Local
Variables

Before call After call After return

ST
A

C
K

Activation
record

44

int main()
{

……..
x = ncr (a, b);
……..

}

int ncr (int n, int r)
{

return (fact(n)/
fact(r)/fact(n-r));

}

LV1, RV1, RA1

Before call Call fact ncr returns

int fact (int n)
{

………
return (result);

}

3 times

LV1, RV1, RA1

fact returns

LV1, RV1, RA1

LV2, RV2, RA2

Call ncr

3 times

45

What happens for recursive calls?
 What we have seen ….
Space for activation record is allocated on the

stack when a function call is made
Space allocated for activation record is de-

allocated on the stack when the function returns
 In recursion, a function calls itself
Several function calls going on, with none of the

function calls returning back
 Space for activation records allocated on the stack

continuously
 Large stack space required

46

 Space for activation records are de-allocated, when
the termination condition of recursion is reached

 We shall illustrate the process by an example of
computing factorial
 Activation record looks like:

Return Addr
Return Value

Local
Variables

47

Example:: main() calls fact(3)

int fact (int n)
{

if (n = = 0)
return (1);

else
return (n * fact(n-1));

}

int main()
{

int n;
n = 3;
printf (“%d \n”, fact(n));
return 0;

}

48

TRACE OF THE STACK DURING EXECUTION

fact
returns
to main

RA .. main
-

n = 3

RA .. main
-

n = 3
RA .. fact

-
n = 2

RA .. main
-

n = 3
RA .. fact

-
n = 2

RA .. fact
-

n = 1

RA .. main
-

n = 3
RA .. fact

-
n = 2

RA .. fact
-

n = 1
RA .. fact

1
n = 0

RA .. main
-

n = 3
RA .. fact

-
n = 2

RA .. fact
1*1 = 1
n = 1

RA .. main
-

n = 3
RA .. fact
2*1 = 2
n = 2

RA .. main
3*2 = 6
n = 3

main
calls
fact

49

Do Yourself
 Trace the activation records for the following

version of Fibonacci sequence
int f (int n)
{

int a, b;
if (n < 2) return (n);
else {

a = f(n-1);
b = f(n-2);
return (a+b);

}
}

void main() {
printf(“Fib(4) is: %d \n”, f(4));

}

Return Addr
(either main,

or X, or Y)

Return Value

Local
Variables
(n, a, b)

X

Y

main

Additional Example

50

51

Towers of Hanoi Problem

5
4
3
2
1

LEFT CENTER RIGHT

52

 Initially all the disks are stacked on the LEFT pole
 Required to transfer all the disks to the RIGHT pole

 Only one disk can be moved at a time.
 A larger disk cannot be placed on a smaller disk

 CENTER pole is used for temporary storage of disks

53

 Recursive statement of the general problem of n
disks
 Step 1:

 Move the top (n-1) disks from LEFT to CENTER
 Step 2:

 Move the largest disk from LEFT to RIGHT
 Step 3:

 Move the (n-1) disks from CENTER to RIGHT

54

Tower of Hanoi

A B C

55

Tower of Hanoi

A B C

56

Tower of Hanoi

A B C

57

Tower of Hanoi

A B C

58

Towers of Hanoi function
void towers (int n, char from, char to, char aux)
{
/* Base Condition */
if (n==1) {

printf (“Disk 1 : %c  &c \n”, from, to) ;
return ;

}
/* Recursive Condition */

towers (n-1, from, aux, to) ;
…………………….
…………………….

}

59

Towers of Hanoi function

void towers (int n, char from, char to, char aux)
{
/* Base Condition */
if (n==1) {

printf (“Disk 1 : %c  &c \n”, from, to) ;
return ;

}
/* Recursive Condition */

towers (n-1, from, aux, to) ;
printf (“Disk %d : %c  %c\n”, n, from, to) ;
…………………….

}

60

Towers of Hanoi function
void towers (int n, char from, char to, char aux)
{
/* Base Condition */
if (n==1) {

printf (“Disk 1 : %c  %c \n”, from, to) ;
return ;

}
/* Recursive Condition */

towers (n-1, from, aux, to) ;
printf (“Disk %d : %c  %c\n”, n, from, to) ;
towers (n-1, aux, to, from) ;

}

61

TOH runs
void towers(int n, char from, char to, char aux)
{ if (n==1)
{ printf ("Disk 1 : %c -> %c \n", from, to) ;

return ;
}
towers (n-1, from, aux, to) ;
printf ("Disk %d : %c -> %c\n", n, from, to) ;
towers (n-1, aux, to, from) ;

}
int main()
{ int n;

scanf("%d", &n);
towers(n,'A',‘C',‘B');
return 0;

}

3
Disk 1 : A -> C
Disk 2 : A -> B
Disk 1 : C -> B
Disk 3 : A -> C
Disk 1 : B -> A
Disk 2 : B -> C
Disk 1 : A -> C

Output

62

More TOH runs
void towers(int n, char from, char to, char aux)
{ if (n==1)
{ printf ("Disk 1 : %c -> %c \n", from, to) ;

return ;
}
towers (n-1, from, aux, to) ;
printf ("Disk %d : %c -> %c\n", n, from, to) ;
towers (n-1, aux, to, from) ;

}
int main()
{ int n;

scanf("%d", &n);
towers(n,'A',‘C',‘B');
return 0;

}

4
Disk 1 : A -> B
Disk 2 : A -> C
Disk 1 : B -> C
Disk 3 : A -> B
Disk 1 : C -> A
Disk 2 : C -> B
Disk 1 : A -> B
Disk 4 : A -> C
Disk 1 : B -> C
Disk 2 : B -> A
Disk 1 : C -> A
Disk 3 : B -> C
Disk 1 : A -> B
Disk 2 : A -> C
Disk 1 : B -> C

Output

63

Practice Problems
1. Write a recursive function to search for an element in an

array
2. Write a recursive function to count the digits of a positive

integer (do also for sum of digits)
3. Write a recursive function to reverse a null-terminated

string
4. Write a recursive function to convert a decimal number to

binary
5. Write a recursive function to check if a string is a

palindrome or not
6. Write a recursive function to copy one array to another

Note:
• For each of the above, write the main functions to call the

recursive function also
• Practice problems are just for practicing recursion, recursion is

not necessarily the most efficient way of doing them

	Recursion
	Recursion
	Slide Number 3
	Slide Number 4
	Factorial
	Factorial Execution
	Factorial Execution
	Factorial Execution
	Factorial Execution
	Factorial Execution
	Factorial Execution
	Factorial Execution
	Factorial Execution
	Factorial Execution
	Factorial Execution
	Example: Finding max in an array
	Important things to remember
	Back to Factorial: Look at the variable addresses (a slightly different program) !
	Slide Number 19
	Slide Number 20
	Fibonacci Numbers
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Example: Sum of Squares
	Annotated Call Tree
	Example: Printing the digits of an Integer in Reverse
	Counting Zeros in a Positive Integer
	Example: Binary Search
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Static Variables
	Slide Number 34
	Slide Number 35
	Another Example
	Static Variables: See the addresses!
	Common Errors in Writing Recursive Functions
	Common Errors in Writing Recursive Functions
	Recursion vs. Iteration
	Slide Number 41
	How are function calls implemented?
	Slide Number 43
	Slide Number 44
	What happens for recursive calls?
	Slide Number 46
	Example:: main() calls fact(3)
	Slide Number 48
	Do Yourself
	Additional Example
	Towers of Hanoi Problem
	Slide Number 52
	Slide Number 53
	Tower of Hanoi
	Tower of Hanoi
	Tower of Hanoi
	Tower of Hanoi
	Towers of Hanoi function
	Towers of Hanoi function
	Towers of Hanoi function
	TOH runs
	More TOH runs
	Practice Problems

