Functions

" BN
Function

m A program segment that carries out some specific,
well-defined task

m Example
A function to add two numbers
A function to find the largest of n numbers

m A function will carry out its intended task whenever it
Is called or invoked

Can be called multiple times

Every C program consists of one or more functions
One of these functions must be called main

Execution of the program always begins by carrying
out the instructions in main

Functions call other functions as instructions

Function Control Flow

void print_banner ()

{
}

pr iNntf (“ Fk Kk kkkkkkk|)") :

Int main ()

{

print_banner ();

print_banner ();

Int main ()

{

print_banner ()v(

wﬂﬂﬂ’l

A\ 4

print_banner (}—

}

m Calling function (caller) may pass information to the
called function (callee) as parameters/arguments

~or example, the numbers to add

m The callee may return a single value to the caller
Some functions may not return anything

Calling function (Caller)

/ Called fu nin (Callee) Parameter

Int main() X, 7

{ float cent2fahr(float data)
float cent, fahr; {
scanf(“%f”,¢); float result;

fahr = cent2fahr(cent); result = data*9/5 + 32;
printf(“%fC %fF\n”,\ return result;
cent, fahr):) \
return O;
} \

Parameter passed Returning value

Calling/Invoking the cent2fahr function

How It runs

float cent2fahr(float data)
{
float result;
printf(“data = %f\n”, data);
result = data*9/5 + 32;
return result;
printf(“result = %f\n”, result);
}
Int main()
{ float cent, fahr;
scanf(“ %f” ,¢);
printf(“Input is %f\n”, cent);
fahr = cent2fahr(cent);
printf(“ %fC = %fF\n”, cent, fahr);
return O;

Outputs

32

Input is 32.000000

data = 32.000000
32.000000C = 89.599998F

-45.6

Input is -45.599998

data = -45.599998
-45.599998C = -50.079998F

Another Example rrrmaing
{ .
int factorial (int m) e U
{ for (n=1; n<=5; n++)
intit —1 printf (“%d! = %d \n”,
" I’. em_p— . n, factorial (n));
for (i=1; i<=m; i++) et O:
temp =temp * I; !
return (temp);]
} Output
11=1
20=2
31=6
41 =24
5! = 120

Why Functions?

m Allows one to develop a program in a modular
fashion

m Divide-and-conquer approach

m Construct a program from small pieces or
components

m Use existing functions as building blocks for new
programs

m Abstraction: hide internal detalls (library functions)

" S
Defining a Function

m A function definition has two parts:
The first line, called header
The body of the function

return-value-type function-name (parameter-list)

{

declarations and statements

10

F

m The first line contains the return-value-type, the
function name, and optionally a set of comma-
separated arguments enclosed in parentheses

Each argument has an associated type
declaration

The arguments are called formal arguments or
formal parameters

m The body of the function is actually a block of
statement that defines the action to be taken by the
function

11

Return-value type

Int gcd (Int A, int B)

{

Int temp;

while ((B % A) '=0) {
temp =B % A;
B =A;
A = temp;

}

return (A)'/ Value returned

Formal parameters

_

12

Return value

m A function can return a value
Using return statement

m Like all values in C, a function return value has a type

m The return value can be assigned to a variable in the
caller

Int x, vy, z,

scanf(“%d%d”, &x, &Yy);

Z = gcd(x,y);

printf("GCD of %d and %d is %d\n”, X, vy, z);

13

Function Not Returning Any Value

m Example: A function which prints if a number is
divisible by 7 or not

void div7 (int n)
{ \ Return type is void
if (n% 7)==0)
printf (“%d is divisible by 77, n);

else
printf (“%od Is not divisible by 77, n);
return; - Optional

}

14

" J
return statement

m In a value-returning function (result type is not void), return
does two distinct things

specify the value returned by the execution of the
function

terminate that execution of the callee and transfer control
back to the caller

m A function can only return one value

The value can be any expression matching the return

type

but it might contain more than one return statement.
m In a void function

return is optional at the end of the function body.

return may also be used to terminate execution of the
function explicitly.

No return value should appear following return. 15

void compute _and_print_itax ()

{

float income;

scanf (“%f”, &income); Terminate function
iIf (income < 50000) { execution before
printf (*Inco reaching the end

return;

}

If (income <6000
printf (“I = %f\n”, 0.1*(income-50000));
return;

}

If (income < 150000) {
printf (“4ncome tax = %f\n”, 0.2*(income-60000)+1000);
return ;

}

printf (“Income tax = %f\n”, 0.3*(income-150000)+19000);

"
Calling a function

m Called by specifying the function name and parameters
In an instruction in the calling function

m When a function is called from some other function, the
corresponding arguments in the function call are called
actual arguments or actual parameters

The function call must include a matching actual parameter
for each formal parameter

Position of an actual parameters in the parameter list in the
call must match the position of the corresponding formal
parameter in the function definition

The formal and actual arguments must match in their data
types

17

Example

Formal parameters

VAN

Int main ()

{

double x, y, z,
char op;

Z = operate (X, Y, op);

Actual parameters

double operate (double x, double y,?har op)
{
switch (op) {
case ‘+’: return x+y+0.5;
case ‘~’ :If (x>y)
return x-y + 0.5;
return y-x+0.5;
case ‘X’ : return x*y + 0.5;
default : return -1;

}

18

m When the function is executed, the value of the actual
parameter is copied to the formal parameter

parameter passing

Int main () ¥

{ . double area (double r)
double circum; {
. | return (3.14*r*r);
areal = area(circum/2.0); 1

}

19

Another Example

[* Compute the GCD of four numbers */

Int main()

{
Int nl, n2, n3, n4, result;
scanf (“%d %d %d %d”, &nl, &n2, &n3, &n4);
result = gcd (ged (nl, n2), gcd (n3, n4));

printf (“The GCD of %d, %d, %d and %d Is %d \n”,
nl, n2, n3, n4, result);

return O;

func-gcd.c 20

JE—
Another Example

Int main()
{
int numb, flag, j=3;
scanf(“ %d” ,&numb);
while (j <=numb)
{
flag = prime());
If (flag==0)
printf(“%d is prime\n” j)
J++;
}

return O;

}

Int prime(int x)
{
Int I, test;
1=2, test =0;
while ((I <= sqrt(x)) && (test
::O))
{
If (x%I1==0) test = 1,
|++:
}

return test,

}

21

Tracking the flow of control

Int main()
{
Int numb, flag, |=3;
scanf(*%d” ,&numb);
printf(*numb = %d \n” ,numb);
while (] <= numb)
{ printf(*Main, j = %d\n" ,));

Int prime(int x)

{

int i, test;

| =2; test=0;

printf(“In function, x = %d \n” ,x);
while ((i <= sqgrt(x)) && (test == 0))
{

flag = prime(j);

printf(“ Main, flag = %d\n” flag); It (x%i == 0) test = 1,

if (flag == 0) I++;

printf(“%d is prime\n”,j); }

j++: printf(“Returning, test = %d \n” ,test);
} return test;
return O;
: }

22

The output

5
numb =5
Main, j = 3

In function, x =3
Returning, test =0
Main, flag = 0

3is prime

Main, | =4

In function, x =4

|

Returning, test =1
Main, flag = 1
Main, =5

In function, x =5
Returning, test =0
Main, flag = 0

51s prime

23

Points to note

m The identifiers used as formal parameters are “local”.
Not recognized outside the function
Names of formal and actual arguments may differ

m A value-returning function is called by including it in
an expression

A function with return type T (# void) can be used
anywhere an expression of type T can be used

24

m Returning control back to the caller
If nothing returned
mreturn;

m or, until reaches the last right brace ending the
function body

If something returned
m return expression;

25

JE—
Function Prototypes

m Usually, a function is defined before it is called
main() Is the last function in the program written

Easy for the compiler to identify function definitions
In a single scan through the file

m However, many programmers prefer a top-down
approach, where the functions are written after main()

Must be some way to tell the compiler
Function prototypes are used for this purpose

= Only needed If function definition comes after
use

26

Function prototypes are usually written at the
beginning of a program, ahead of any functions
(including main())

Prototypes can specify parameter names or just
types (more common)

Examples:
Int gcd (int, int);
void div7 (Int number);
= Note the semicolon at the end of the line.

m The parameter name, If specifed, can be
anything; but it is a good practice to use the
same names as In the function definition

27

" S
Example:

#include <stdio.h>
Int sum(int, int);
Int main()
{
Int X, y;
scanf(*%d%d”, &x, &y);
printf(*Sum = %d\n”, sum(X, y));
}

Int sum (int a, int b)

{

return(a + b);

28

JE—
Some more points

m A function cannot be defined within another
function

All function definitions must be disjoint
m Nested function calls are allowed
A calls B, B calls C, C calls D, etc.
The function called last will be the first to return

m A function can also call itself, either directly or in a
cycle

A calls B, B calls C, C calls back A.
Called recursive call or recursion

29

Example: main calls ncr, ncr calls fact

Int ncr (int n, Int r);
Int fact (int n);

Int main()
{
Int i, m, n, sum=0;
scanf (“*%d %d”, &m, &n);
for (I=1; i<=m; 1+=2)
sum =sum + ncr (n, 1),

printf (“Result: %d \n”,
sum);,

return O;

}

Int ncr (intn, intr)

{

return (fact(n) / fact(r) /
fact(n-r));

}
Int fact (int n)
{
Int I, temp=1;
for (I=1; I<=n; I++)

temp *=1;
return (temp);

}

30

| ocal variables

m A function can define its own local variables

m The locals have meaning only within the function

Each execution of the function uses a new set of
locals

Local variables cease to exist when the function
returns

m Parameters are also local

31

| ocal variables

/* Find the area of a circle with diameter d */
double circle_area (double (T:i)

{

double radius, area; |*
radius = d/2.0;

area = 3.14*radius*radius;
return (area);

parameter

local
variables

32

"
Revisiting nCr

Int fact(int x)

{intifact=1,
for(i=2; i<=x; ++i) fact=fact*i;
return fact;

}

Int main()
{
Intn,r;
scanf(“%d%d” ,&n,&r);
printf(* n=%d, r=%d,
nCr=%d\n” ,n, r, ncr(n,r));
return O;

}

Int ncr(int x,int y)
{
Int p,q,r;
p=fact(x);
g=fact (y);
r = fact(x-y);
return p/(q*r);

The variable x in function fact and
X In function ncr are different.

The values computed from the
arguments at the point of call are
copied on to the corresponding
parameters of the called function
before it starts execution.

33

S
Scope of a variable

m Part of the program from which the value of the variable
can be used (seen)

m Scope of a variable - Within the block in which the variable
IS defined

Block = group of statements enclosed within { }

m Local variable — scope is usually the function in which it is
defined
So two local variables of two functions can have the
same name, but they are different variables
m Global variables — declared outside all functions (even
main)
scope is entire program by default, but can be hidden in
a block if local variable of same name defined

34

"
#

{

}

{

S —————

}

Int A=1;
Int main()

void myProc()

Include <stdio.h>

\

myProc();
printf ("A =%d\n", A);

Int A = 2;
If (A==2)
{
Int A =3;
printf ("A = %d\n",

}
printf ("A =%d\n", A);

Variable

Global variable SCO pPeE

Output:
A=3
A=2
A=1

Hides the global A

35

S
Parameter Passing: by Value and

by Reference

m Used when invoking functions

m Call by value
Passes the value of the argument to the function

Execution of the function does not change the

actual parameters
= All changes to a parameter done inside the function are
done on a copy of the actual parameter
m The copy is removed when the function returns to the
caller
m The value of the actual parameter in the caller is not
affected

Avoids accidental changes

36

m Call by reference
Passes the address to the original argument.
Execution of the function may affect the original
Not directly supported in C except for arrays

37

S
Parameter passing & return: 1

{

}
{

}

Int main()

Int a=10, b;

printf (“Initially a = %d\n”, a);

b = change (a);

printf (*a = %d, b =%d\n”, a, b);
return 0O;

Int change (int x)

printf (“Before x = %d\n” X);
X=x1/2;

printf (“After x = %d\n”, X);
return (x);

Output

Initially a = 10
Before x = 10
After x =5
a=10,b=5

38

Earameter passing & return: 2

{

}
{

}

Int main()

Int x=10, b;

printf (“M: Initially x = %d\n”, X);

b = change (X);

printf (“M: x =%d, b = %d\n”, X, b);
return 0;

Int change (int x)

printf (“F: Before x = %d\n” x);
X=X/2;

printf (“F: After x = %d\n”, Xx);
return (x);

Output

M: Initially x = 10
F: Before x = 10
F: Afterx =5
M:x=10,b=5

39

S
Parameter passing & return: 3

{

}
{

}

Int main()

Int x=10, b;

printf (“M: Initially x = %d\n”, X);

X = change (X);

printf (“M: x =%d, b = %d\n”, X, X),
return 0;

Int change (int x)

printf (“F: Before x = %d\n” x);
X=x1/2;

printf (“F: After x = %d\n”, x);
return (x);

Output

M: Initially x = 10
F: Before x = 10
F: Afterx =5
M:x=5b=5

40

"
Parameter passing & return: 4

Int main() Output

{
int x=10, y=5; M1l: x=10,y=5
printf (“M1: x = %d, y = %d\n”, X, y); F1: x=10,y=5
interchange (x, y); |
printf (“M2: x = %d, y = %d\n”, X, V); F2: x=5,y=10
return O; M2 X = 10 y — 5

}]

void interchange (int x, inty)

{int temp; How do we write an
printf ("F1: x=9%d, y = %d\n”, x, y); interchange function?
temp= Xx; X =y; y = temp; .
printf (“F2: x=%d, y = %d\n”, X, y); (WIII See Iater)

} 41

"
Passing Arrays to Function

m Array element can be passed to functions as ordinary
arguments

m IsSFactor (X][i], X[0])
m Sin (X[5])

42

Passing Entire Array to a Function

m An array name can be used as an argument to a
function

Permits the entire array to be passed to the function

The way It is passed differs from that for ordinary
variables

m Rules:

The array name must appear by itself as argument,
without brackets or subscripts

The corresponding formal argument is written in the
same manner

m Declared by writing the array name with a pair of
empty brackets

43

Whole Array as Parameters

const int ASIZE = 5;

float average (int B[])

{ T

Int 1, total=0;

Only Array Name/address passed.
[] mentioned to indicate that

~

for (i=0: i<ASIZE; i++)

IS an array.

total = total + BJi];
return ((float) total / (float) AS

}

int main () {
Int X[ASIZE] ; float x_avg;
x = {10, 20, 30, 40, 50},
X_avg = average (X) ;

IZE):

Called only with actual array name

return O: t

44

JE—
Contd.

We don’t need to
write the array size.
It works with arrays
of any size.

Int main()

{
Int n;
float list[100], avg;

avg = average (n, list);
}
float average (int a, float x[])
{

sum = sum + X[i];

}

45

S
Arrays used as Output Parameters

void VectorSum (int a[], int b[], int vsum[], int length) {
Int i;
for (I=0; i<length; i=i+1)
vsum[i] = a[i] + bJ[i] ;
}
void PrintVector (int a[], int length) {
Int 1;
for (I=0; i<length; i++) printf (“%d “, a[i]);
}

int main () {
int X[3] ={1,2,3}, y[3] = {4,5,6}, z[3];
VectorSum (X, Y, z, 3) ;
PrintVector (z, 3) ;
return O;

}

The Actual Mechanism

m \WWhen an array Is passed to a function, the values
of the array elements are not passed to the
function

The array name is Interpreted as the address of
the first array element

The formal argument therefore becomes a
pointer to the first array element

When an array element is accessed inside the
function, the address Is calculated using the
formula stated before

Changes made inside the function are thus also
reflected in the calling program

47

Contd.

m Passing parameters in this way is called

call-
@ Norma
call-
m Basica

oy-reference
ly parameters are passed in C using
oy-value

ly what it means?

If a function changes the values of array elements,
then these changes will be made to the original
array that is passed to the function

This does not apply when an individual element is
passed on as argument

48

Library Functions

Library Functions

m Set of functions already written for you, and bundled
In a “library”

m Example: printf, scanf, getchar,

m C library provides a large number of functions for
many things

m Already seen math library functions earlier

m Will look at string library functions

50

S
String Library Functions

m String library functions
perform common operations on null terminated
strings
Must include a special header file
#include <string.h>
m Example
printf ("%f", strlen(C));
m C Is a null-terminated string

m Calls function strlen, which returns the
number of characters in C (not counting the
\O’ character)

51

S
Common string library functions

m strlen —returns the length of a string
m Strcmp — compares two strings (lexicographic)

Returns O if the two strings are equal, < O if first string Is
less than the second string, > O if the first string is greater
than the second string

Commonly used for sorting strings
m strcat — concatenates two strings
m Strcpy — copy one string to another

we will need some basic knowledge of pointers to
understand how to use strcat and strcpy

m Many others, but these are the ones you will know In this
course

52

int main() Exam ple

{
char A[20], B[20];

Int n, m, val;
scanf(“%s%s”, A, B);
n = strlen(A);
m = strlen(B);
printf(“The lengths of the strings are %d and %d\n”, n, m);
val = strcmp(A, b);
If (val == 0)

printf(“The strings are the same\n”);
else if (val < 0)

printf(“%s is smaller than %s\n”, A, B);
else

printf(“%s is smaller than %s\n”, A, B);

53

Outputs

program program

The lengths of the strings are 7 and 7

The strings are the same

arobinda abhijit
The lengths of the strings are 8 and 7
arobinda is larger than abhijit

lit-kgp lit-mandi

The lengths of the strings are 7 and 9
lit-kgp Is smaller than iit-mandi

arobinda Arobinda
The lengths of the strings are 8 and 8
arobinda is larger than Arobinda

54

" B
Practice Problems

m NO separate problems needed. Look at everything
that you did so far, such as finding sum, finding
average, counting something, checking if something
IS true or false (“ Is there an element in array A such
that....) etc. in which the final answer is one thing only
(like sum, count, O or 1,...). Then for each of them,
rather than doing it inside main (as you have done so
far), write it as a function with appropriate
parameters, and call from main() to find and print.

Normally, read and print everything from main(). Do
not read or print anything inside the function. This will
give you better practice. However, you can write
simple functions for printing an array.

55

	Functions
	Function
	Slide Number 3
	Function Control Flow
	Slide Number 5
	Slide Number 6
	How it runs
	Slide Number 8
	Why Functions?
	Defining a Function
	Slide Number 11
	Slide Number 12
	Return value
	Function Not Returning Any Value
	return statement
	Slide Number 16
	Slide Number 17
	Example
	Slide Number 19
	Slide Number 20
	Another Example
	Tracking the flow of control
	The output
	Points to note
	Slide Number 25
	Function Prototypes
	Slide Number 27
	Example:
	Some more points
	Example: main calls ncr, ncr calls fact
	Local variables
	Local variables
	 Revisiting nCr
	Scope of a variable
	Variable Scope
	Parameter Passing: by Value and by Reference
	Slide Number 37
	Parameter passing & return: 1
	Parameter passing & return: 2
	Parameter passing & return: 3
	Parameter passing & return: 4
	Passing Arrays to Function
	Passing Entire Array to a Function
	Whole Array as Parameters
	Contd.
	Arrays used as Output Parameters
	The Actual Mechanism
	Contd.
	Library Functions
	Library Functions
	String Library Functions
	Common string library functions
	Example
	Slide Number 54
	Practice Problems

