
1

Conditional Statements

2

Statements in a C program
 Parts of C program that tell the computer what to do
 Different types

 Declaration statements
 Declares variables etc.

 Assignment statement
 Assignment expression, followed by a ;

 Control statements
 For branching and looping, like if-else, for, while, do-

while (to be seen later)
 Input/Output

 Read/print, like printf/scanf

3

Example

int a, b, larger;
scanf(“%d %d”, &a, &b);
larger = b;
if (a > b)

larger = a;
printf(“Larger number is %d\n”, larger);

Declaration statement

Assignment
statementControl

statement Input/Output
statement

4

 Compound statements
A sequence of statements enclosed within { and }
We will also call it block of statements informally
Each statement in a block can be an assignment

statement, control statement, input/output
statement, or another compound statement

There may be only one statement inside a block
also

5

Example

int n;
scanf(“%d”, &n);
while(1) {

if (n > 0) break;
scanf(“%d”, &n);

}

Compound statement

6

Conditional Statements
 Allow different sets of instructions to be

executed depending on truth or falsity of a
logical condition

 Also called Branching
 How do we specify conditions?
 Using expressions

 non-zero value means condition is true
 value 0 means condition is false

 Usually logical expressions, but can be any
expression
 The value of the expression will be used

7

Branching: if Statement

if (expression)
statement;

if (expression) {
Block of statements;

}

8

Branching: if Statement

if (expression)
statement;

if (expression) {
Block of statements;

}

The condition to be tested is any expression enclosed in
parentheses. The expression is evaluated, and if its value is
non-zero, the statement/block of statements is executed.

9

true

false

marks >= 40

print “Passed”
print “Good luck”

10

true

false

marks >= 40

print “Passed”
print “Good luck”

A decision can
be made on any
expression.

zero - false

nonzero - true

11

true

false

marks >= 40

print “Passed”
print “Good luck”

A decision can
be made on any
expression.

zero - false
nonzero - true

if (marks >= 40) {
printf(“Passed \n”);
printf(“Good luck\n”);

}
printf (“End\n”) ;

12

Branching: if-else Statement

if (expression) {
Block of
statements;

}
else {

Block of
statements;

}

if (expression) {
Block of statements;

}
else if (expression) {

Block of statements;
}
else {

Block of statements;
}

13

Grade Computation
int main() {

int marks;
scanf(“%d”, &marks);
if (marks >= 80)

printf (”A”) ;
else if (marks >= 70)

printf (”B”) ;
else if (marks >= 60)

printf (”C”) ;
else printf (”Failed”);
return 0;

}

if (marks >= 80)
printf (”A”) ;

else {
if (marks >= 70)

printf (”B”) ;
else {

if (marks >= 60)
printf (”C”) ;

else printf (”Failed”);
}

}

14

int main () {
int marks;
scanf (“%d”, &marks) ;
if (marks>= 80) {

printf (“A: ”) ;
printf (“Good Job!”) ;

}
else if (marks >= 70) printf (“B ”) ;
else if (marks >= 60) printf (“C ”) ;
else {

printf (“Failed: ”) ;
printf (“Study hard!”) ;

}
return 0;

}

50
Failed: Study hard!

90
A: Good Job!

65
C

Outputs for different inputs

15

Find the larger of two numbers

START

STOP

READ X, Y

OUTPUT Y

IS
X>Y?

OUTPUT X

STOP

YES NO

16

Find the larger of two numbers

START

STOP

READ X, Y

OUTPUT Y

IS
X>Y?

OUTPUT X

STOP

YES NO

int main () {
int x, y;
scanf (“%d%d”, &x, &y);
if (x > y)

printf (“%d\n”, x);
else

printf (“%d\n”, y);
return 0;

}

17

Largest of three numbers
START

READ X, Y, Z

IS
Max > Z?

IS
X > Y?

Max = X Max = Y

OUTPUT Max OUTPUT Z

STOP STOP

YES

YES

NO

NO

18

START

READ X, Y, Z

IS
Max > Z?

IS
X > Y?

Max = X Max = Y

OUTPUT Max OUTPUT Z

STOP STOP

YES

YES

NO

NO

19

START

READ X, Y, Z

IS
Max > Z?

IS
X > Y?

Max = X Max = Y

OUTPUT Max OUTPUT Z

STOP STOP

YES

YES

NO

NO

int main () {
int x, y, z, max;
scanf (“%d%d%d”,&x,&y,&z);
if (x > y)

max = x;
else max = y;
if (max > z)

printf (“%d”, max) ;
else printf (“%d”,z);
return 0;

}

20

Another version
int main() {

int a,b,c;
scanf (“%d%d%d”, &a, &b, &c);
if ((a >= b) && (a >= c))

printf (“\n The largest number is: %d”, a);
if ((b >= a) && (b >= c))

printf (“\n The largest number is: %d”, b);
if ((c >= a) && (c >= b))

printf (“\n The largest number is: %d”, c);
return 0;

}

21

Confusing Equality (==) and
Assignment (=) Operators
 Dangerous error
Does not ordinarily cause syntax errors
Any expression that produces a value can be used

in control structures
Nonzero values are true, zero values are false

 Example:
if (payCode = 4)

printf("You get a bonus!\n");

WRONG! Will always print the line

22

Nesting of if-else Structures

 It is possible to nest if-else statements, one
within another

 All “if” statements may not be having the
“else” part
Confusion??

 Rule to be remembered
 An “else” clause is associated with the closest

preceding unmatched “if”

23

Dangling else problem
if (exp1) if (exp2) stmta else stmtb

if (exp1) {
if (exp2)

stmta
else

stmtb
}

OR

if (exp1) {
if (exp2)

stmta
}
else

stmtb

?

Which one is the correct interpretation?
Give braces explicitly in your programs to match
the else with the correct if to remove any ambiguity

24

More Examples

if e1 s1
else if e2 s2

if e1 s1
else if e2 s2
else s3

if e1 if e2 s1
else s2
else s3

?

25

Answers
if e1 s1 if e1 s1
else if e2 s2 else { if e2 s2 }

if e1 s1 if e1 s1
else if e2 s2 else { if e2 s2
else s3 else s3 }

if e1 if e2 s1 if e1 { if e2 s1
else s2 else s2 }
else s3 else s3

While programming, it is always good to explicitly give
the { and } to avoid any mistakes

Example

int main()
{

int x;
scanf(“%d”, &x);
if (x >= 0)

if (x <= 100)
printf(“ABC\n”);

else
printf(“XYZ\n”);

return 0;
}

26

Print “ABC” if a number is
between 0 and 100, or “XYZ”
if it is –ve. Do not print
anything in other cases.

Example

int main()
{

int x;
scanf(“%d”, &x);
if (x >= 0)

if (x <= 100)
printf(“ABC\n”);

else
printf(“XYZ\n”);

return 0;
}

27

Not what we want, should
have printed XYZ

Print “ABC” if a number is
between 0 and 100, or “XYZ”
if it is –ve. Do not print
anything in other cases.

150
XYZ

Outputs for different inputs

-20

Not what we want, should
not have printed anything

int main()
{

int x;
scanf(“%d”, &x);
if (x >= 0)
{

if (x <= 100)
printf(“ABC\n”);

}
else

printf(“XYZ\n”);
return 0;

}
28

Correct Program

150
Outputs for different inputs

-20
XYZ

29

The Conditional Operator ?:

 This makes use of an expression that is either
non-0 or 0. An appropriate value is selected,
depending on the value of the expression

 Example: instead of writing
if (balance > 5000)

interest = balance * 0.2;
else interest = balance * 0.1;

We can just write
interest = (balance > 5000) ? balance * 0.2 :

balance * 0.1;

30

More Examples
 if (((a >10) && (b < 5))

x = a + b;
else x = 0;

x = ((a > 10) && (b < 5)) ? a + b : 0

 if (marks >= 60)
printf(“Passed \n”);

else printf(“Failed \n”);

(marks >= 60) ? printf(“Passed \n”) : printf(“Failed
\n”);

31

The switch Statement

 An alternative to writing lots of if-else in
some special cases

 This causes a particular group of
statements to be chosen from several
available groups based on equality tests
only

 Uses switch statement and case labels

32

 Syntax
switch (expression) {

case const-expr-1: S-1
case const-expr-2: S-2

:
case const-expr-m: S-m
default: S

}
 expression is any integer-valued expression
 const-expr-1, const-expr-2,…are any constant integer-valued

expressions
 Values must be distinct

 S-1, S-2, …,S-m, S are statements/compound statements
 Default is optional, and can come anywhere (not necessarily at

the end as shown)

33

Behavior of switch
 expression is first evaluated
 It is then compared with const-expr-1, const-

expr-2,…for equality in order
 If it matches any one, all statements from that

point till the end of the switch are executed
(including statements for default, if present)
Use break statements if you do not want this (see

example)
 Statements corresponding to default, if

present, are executed if no other expression
matches

34

Exampleint main()
{

int x;
scanf(“%d”, &x);
switch (x) {

case 1: printf(“One\n”);
case 2: printf(“Two\n”);

default: printf(“Not one or two\n”);
};

}
If x = 1 is entered, this will print

One
Two
Not one or two

Not what we want
switch-1.c

35

Correct Program
int main()
{

int x;
scanf(“%d”, &x);
switch (x) {

case 1: printf(“One\n”);
break;

case 2: printf(“Two\n”);
break;

default: printf(“Not one or two\n”);
};

} If x = 1 is entered, this will print

One
switch-2.c

36

Rounding a Digit
switch (digit) {

case 0:
case 1:
case 2:
case 3:
case 4: result = 0; printf (“Round down\n”); break;
case 5:
case 6:
case 7:
case 8:
case 9: result = 10; printf(“Round up\n”); break;

}

Since there isn’t a break statement
here, the control passes to the next
statement without checking
the next condition.

It will come here if digit is any of 0 to 4.
Round to 0, then break as done.

37

The break Statement

 Used to exit from a switch or terminate from
a loop

 With respect to “switch”, the “break”
statement causes a transfer of control out of
the entire “switch” statement, to the first
statement following the “switch” statement

 Can be used with other statements also
…(will show later)

38

More on Data Types

39

More Data Types in C
 Some of the basic data types can be augmented by

using certain data type qualifiers:
 short
 long
 signed
 unsigned

 Typical examples:
 short int (usually 2 bytes)
 long int (usually 4 bytes)
 unsigned int (usually 4 bytes, but no way to store + or

-)

size qualifier

sign qualifier

40

Integer data
type #Bits Minimum value Maximum value

char 8 -27 = -128 27-1 = 127
short int 16 -215 = -32768 215-1 = 32767
int 32 -231 = -2147483648 231-1 = 2147483647
long int 32 -231 = -2147483648 231-1 = 2147483647

long long int 64 -263= -
9223372036854775808

263-1 =
9223372036854775807

unsigned char 8 0 28-1 = 255
unsigned short int 16 0 216-1 = 65535
unsigned int 32 0 232-1 = 4294967295
unsigned long int 32 0 232-1 = 4294967295

unsigned long long int 64 0 264-1 =
18446744073709551615

Some typical sizes (some of these can vary
depending on type of machine)

41

More on the char type
 Is actually stored as an integer internally
 Each character has an integer code associated with it

(ASCII code value)
 Internally, storing a character means storing its integer

code
 All operators allowed on int are also allowed on char
 32 + ‘a’ will evaluate to 32 + 97 (the integer ascii

code of the character ‘a’) = 129
Same for other operators

 Can switch on chars constants in switch, as they are
integer constants

42

Another example

Will print 302 (99*3 + 5)
(ASCII code of ‘c’ = 99)

int a;
a = ‘c’ * 3 + 5;
printf(“%d”, a);

char c = ‘A’;
printf(“%c = %d”, c, c);

Will print A = 65
(ASCII code of ‘A’ = 65)

Assigning char to int is fine. But other way round is
dangerous, as size of int is larger

43

ASCII Code
 Each character is assigned a unique integer value (code)

between 32 and 127
 The code of a character is represented by an 8-bit unit.

Since an 8-bit unit can hold a total of 28=256 values and
the computer character set is much smaller than that,
some values of this 8-bit unit do not correspond to visible
characters

 But never try to remember exact ASCII codes while
programming. Use the facts that
 C stores characters as integers
 Ascii codes of some important characters are contiguous

(digits, lowercase alphabets, uppercase alphabets)

44

Decimal Hex Binary Character Decimal Hex Binary Character

32 20 00100000 SPACE 80 50 01010000 P

33 21 00100001 ! 81 51 01010001 Q

34 22 00100010 " 82 52 01010010 R

35 23 00100011 # 83 53 01010011 S

36 24 00100100 $ 84 54 01010100 T

37 25 00100101 % 85 55 01010101 U

38 26 00100110 & 86 56 01010110 V

39 27 00100111 ' 87 57 01010111 W

40 28 00101000 (88 58 01011000 X

41 29 00101001) 89 59 01011001 Y

42 2a 00101010 * 90 5a 01011010 Z

43 2b 00101011 + 91 5b 01011011 [

44 2c 00101100 , 92 5c 01011100 \

45 2d 00101101 - 93 5d 01011101]

46 2e 00101110 . 94 5e 01011110 ^

47 2f 00101111 / 95 5f 01011111 _

48 30 00110000 0 96 60 01100000 `

49 31 00110001 1 97 61 01100001 a

50 32 00110010 2 98 62 01100010 b

45

51 33 00110011 3 99 63 01100011 c

52 34 00110100 4 100 64 01100100 d

53 35 00110101 5 101 65 01100101 e

54 36 00110110 6 102 66 01100110 f

55 37 00110111 7 103 67 01100111 g

56 38 00111000 8 104 68 01101000 h

57 39 00111001 9 105 69 01101001 i

58 3a 00111010 : 106 6a 01101010 j

59 3b 00111011 ; 107 6b 01101011 k

60 3c 00111100 < 108 6c 01101100 l

61 3d 00111101 = 109 6d 01101101 m

62 3e 00111110 > 110 6e 01101110 n

63 3f 00111111 ? 111 6f 01101111 o

64 40 01000000 @ 112 70 01110000 p

65 41 01000001 A 113 71 01110001 q

66 42 01000010 B 114 72 01110010 r

67 43 01000011 C 115 73 01110011 s

68 44 01000100 D 116 74 01110100 t

69 45 01000101 E 117 75 01110101 u

70 46 01000110 F 118 76 01110110 v

46

71 47 01000111 G 119 77 01110111 w

72 48 01001000 H 120 78 01111000 x

73 49 01001001 I 121 79 01111001 y

74 4a 01001010 J 122 7a 01111010 z

75 4b 01001011 K 123 7b 01111011 {

76 4c 01001100 L 124 7c 01111100 |

77 4d 01001101 M 125 7d 01111101 }

78 4e 01001110 N 126 7e 01111110 ~

79 4f 01001111 O 127 7f 01111111 DELETE

Example: checking if a character is a
lowercase alphabet
int main()
{

char c1;
scanf(“%c”, &c1);
/* the ascii code of c1 must lie between the

ascii codes of ‘a’ and ‘z’ */
if (c1 >= ‘a’ && c1<= ‘z’)

printf(“%c is a lowercase alphabet\n”, c1);
else printf(“%c is not a lowercase alphabet\n”, c1);
return 0;

}

47

Example: converting a character from
lowercase to uppercase
int main()
{

char c1;
scanf(“%c”, &c1);
/* convert to uppercase if lowercase, else leave as it is */
if (c1 >= ‘a’ && c1<= ‘z’)
/* since ascii codes of uppercase letters are contiguous, the

uppercase version of c1 will be as far away from the ascii code
of ‘A’ as it is from the ascii code of ‘a’ */

c1 = ‘A’ + (c1 – ‘a’);
printf((“The letter is %c\n”, c1);
return 0;

}
48

49

Switching with char type
char letter;
scanf(“%c”, &letter);
switch (letter) {

case 'A':
printf ("First letter \n");
break;

case 'Z':
printf ("Last letter \n");
break;

default :
printf ("Middle letter \n");

}

50

Switching with char type
char letter;
scanf(“%c”, &letter);
switch (letter) {

case 'A':
printf ("First letter \n");
break;

case 'Z':
printf ("Last letter \n");
break;

default :
printf ("Middle letter \n");

}

Will print this statement
for all letters other than
A or Z

51

Another Example
switch (choice = getchar()) {

case ‘r’ :
case ‘R’: printf(“Red”);

break;
case ‘b’ :
case ‘B’ : printf(“Blue”);

break;
case ‘g’ :
case ‘G’: printf(“Green”);

break;
default: printf(“Black”);

}

52

Another Example
switch (choice = getchar()) {

case ‘r’ :
case ‘R’: printf(“Red”);

break;
case ‘b’ :
case ‘B’ : printf(“Blue”);

break;
case ‘g’ :
case ‘G’: printf(“Green”);

break;
default: printf(“Black”);

}

Since there isn’t a break statement
here, the control passes to the next
statement (printf) without checking
the next condition.

53

int main () {
int operand1, operand2;
int result = 0;
char operation ;
/* Get the input values */
printf (“Enter operand1 :”);
scanf(“%d”,&operand1) ;
printf (“Enter operation :”);
scanf (“\n%c”,&operation);
printf (“Enter operand 2 :”);
scanf (“%d”, &operand2);
switch (operation) {
case ‘+’ :

result=operand1+operand2;
break;

case ‘-’ :
result=operand1-operand2;
break;

case ‘*’ :
result=operand1*operand2;
break;

case ‘/’ :
if (operand2 !=0)

result=operand1/operand2;
else

printf(“Divide by 0 error”);
break;

default:
printf(“Invalid operation\n”);
return;

}
printf (“The answer is %d\n”,result);
return 0;

}

Evaluating expressions

Practice Problems
1. Read in 3 integers and print a message if any one of them is equal to the sum of the

other two.
2. Read in the coordinates of two points and print the equation of the line joining them in

y = mx +c form.
3. Read in the coordinates of 3 points in 2-d plane and check if they are collinear. Print

a suitable message.
4. Read in the coordinates of a point, and the center and radius of a circle. Check and

print if the point is inside or outside the circle.
5. Read in the coefficients a, b, c of the quadratic equation ax2 + bx + c = 0, and print its

roots nicely (for imaginary roots, print in x + iy form)
6. Suppose the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are mapped to the lowercase letters a, b,

c, d, e, f, g, h, i, j respectively. Read in a single digit integer as a character (using %c
in scanf) and print its corresponding lowercase letter. Do this both using switch and
without using switch (two programs). Do not use any ascii code value directly.

7. Suppose that you have to print the grades of a student, with >= 90 marks getting EX,
80-89 getting A, 70-79 getting B, 60-69 getting C, 50-59 getting D, 35-49 getting P
and <30 getting F. Read in the marks of a student and print his/her grade.

54

	Conditional Statements
	Statements in a C program
	Example
	Slide Number 4
	Example
	Conditional Statements
	Branching: if Statement
	Branching: if Statement
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Branching: if-else Statement
	Grade Computation
	Slide Number 14
	 Find the larger of two numbers
	 Find the larger of two numbers
	Largest of three numbers
	Slide Number 18
	Slide Number 19
	Another version
	Confusing Equality (==) and Assignment (=) Operators
	Nesting of if-else Structures
	Dangling else problem
	More Examples
	Answers
	Example
	Example
	Slide Number 28
	The Conditional Operator ?:
	More Examples
	The switch Statement
	Slide Number 32
	Behavior of switch
	Example
	Correct Program
	Rounding a Digit
	The break Statement
	More on Data Types
	More Data Types in C
	Some typical sizes (some of these can vary depending on type of machine)
	More on the char type
	Another example
	ASCII Code
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Example: checking if a character is a lowercase alphabet
	Example: converting a character from lowercase to uppercase
	Switching with char type
	Switching with char type
	Another Example
	Another Example
	Slide Number 53
	Practice Problems

