Expressions

Expressions

m Variables and constants linked with operators

Arithmetic expressions

m Uses arithmetic operators

= Can evaluate to any value
Logical expressions

m Uses relational and logical operators

m Evaluates to non-0 or O (true or false) only
Assignment expression

m Uses assignment operators
m Evaluates to value depending on assignment

Arithmetic Operators

m Binary operators

Addition: +
Subtraction: —
Division: /
Multiplication: *
Modulus: %
O Unary operators
Plus: +
Minus: —

Examples

2*3 +5-10/3

-1 + 3*25/5 -7
distance / time
3.14* radius * radius
a*X*X+b*x+cC
dividend / divisor

37 % 10

Contd.

m Suppose x and y are two Integer variables,
whose values are 13 and 5 respectively

X+y |18
X—Y 3
X*y |65
Xy 2
X%y | 3

m We will see why x /vy is 2 and not 2.6 later

m All operators except % can be used with
operands of all of the data types int, float,
double, char (yes! char also! We will see what
It means later)

m % can be used only with integer operands

o
Operator Precedence

In decreasing order of priority
1. Parentheses :: ()
2. Unary minus :: -5
3. Multiplication, Division, and Modulus
4. Addition and Subtraction

For operators of the same priority, evaluation Is
from left to right as they appear

Parenthesis may be used to change the
precedence of operator evaluation

S
Examples:

Arithmetic Expressions

at+tb*c—-d/e
a*-~10+d%e-—f
a—-b+c+5
X*y*z

a+234+c*d*e

=2 a+((b*c)—-(d/e)

= a*(—10)+ (d%e) —f
2 ((a—-Db)+c)+5)

2> (x*y)*2)

=2 (a+234)+((c*d)*e)

Example: Centigrade to Fahrenhelt

#include <stdio.h> Output
: : Enter centigrade: 36.5
I{nt maln() 36.500000 C equals 97.699997 F

float cent, fahr;

printf(“Enter Centigrade: “);
scanf(“%f”,¢);

fahr = cent*(9.0/5.0) + 32;
printf(“%f C equals %f F\n", cent, fahr);

return O;

m Caution: Since floating-point values are rounded
to the maximum number of significant digits
permissible, the final value is an approximation
of the final result. This can cause strange results
sometimes in comparisons.

#include <stdio.h>

Int main()

{ Enter a no:; 23.56
float f1; No. entered is 23.559999
printf("Enter a no: "); False

scanf("%f", &f1);

printf("No. entered is %f\n", f1);
If(f1 == 23.56) printf("True\n");
else printf("False\n");

3-float-precision.c 9

m Can be handled in many cases by using double
iInstead of float (as it allows more number of
digits)

m See the same program below, just with double.
Now you get correct result

#include <stdio.h>
Int main()

{ Enter a no: 23.56

No. entered is 23.560000
True

double f1;

printf("Enter a no: ");
scanf("%lIf", &f1);

printf("No. entered is %If\n", f1);
If(f1 == 23.56) printf("True\n");
else printf("False\n");

10

Type of Value of an Arithmetic
Expression

m |f all operands of an operator are integer (int

variables or integer constants), the value Is
always integer

Example: 9/5 will be printed as 1, not 1.8

m But If at least one operand is real, the value Is
real

So 9/5.0 will be correctly printed as 1.8

11

m The type of the final value of the expression
can be found by applying these rules again
and again as the expression is evaluated
following operator precedence

12

" J
We have a problem!!

Int a=10, b=4, c;
float X;
c=alb;
X=alb;

The value of c will be 2

The value of x will be 2.0
But we want 2.5 to be stored In x

We will take care of this a little later 13

o |
Assignment Expression

Uses the assignment operator (=)
General syntax:
variable_name = expression

Left of = Is called |-value, must be a modifiable
variable

Right of = Is called r-value, can be any expression
Examples:

velocity = 20

b=15; temp=12.5

A=A+10

v=u-+f*t

S=U*t+05*f*t*t

14

" A
Contd.

m An assignment expression evaluates to a value
same as any other expression

m Value of an assignment expression is the value
assigned to the |-value

m Example: value of
a=3Is3
b=2*4—-61is 2
n = 2*u + 3*v — w Is whatever the arithmetic

expression 2*u + 3*v —w evaluates to given the
current values stored In variables u, v, w

15

Contd.

m Several variables can be assigned the same
value using multiple assignment operators

a=b=c=5;
flagl = flag2 = ‘y’;
speed = flow = 0.0;
m Easy to understand if you remember that
the assignment expression has a value

Multiple assignment operators are right-to-left
associative

16

Example

m Considera=b=c=5
Three assignment operators

Rightmost assignment expression Is ¢c=5, evaluates
to value 5

Now you havea=b =5

Rightmost assignment expression is b=5, evaluates
to value 5

Now you have a =5
Evaluates to value 5

So all three variables store 5, the final value the
assignment expression evaluates to is 5

17

" A
Types of |-value and r-value

m Usually should be the same
m If not, the type of the r-value will be internally

converted to the type of the |-value, and then
assigned to it

m Example:
double a;
a=2*3;
Type of r-value Is int and the value is 6
Type of I-value Is double, so stores 6.0

18

= S
This can cause strange problems

Int a;
a=2%3.2;
m Type of r-value Is float/double and the value Is
6.4
m Type of |-value is int, so internally converted to 6
m S0 a stores 6, not the correct result
m But an int cannot store fractional part anyway
m S0 just badly written program
m Be careful about the types on both sides

19

" J
More Assignment Operators

m+= -= *= [= Op=

m Operators for special type of assignments
mat+t=Dhb isthesameasa=a+b

m Same for -=, *=, /=, and %=

m Exact same rules apply for multiple assignment
operators

20

" A
Contd.

m Suppose x and y are two integer variables,
whose values are 5 and 10 respectively.

X+=y Stores 15 In X
Evaluates to 15
X—=Y Stores -5 In X
Evaluates to -5
X*=y Stores 50 In X
Evaluates to 50
X[=y Stores 0 In X
Evaluatesto O

Logical Expressions

m Uses relational and logical operators in
addition

m Informally, specifies a condition which can be
true or false

m Evaluates to value O If the condition Is false

m Evaluates to some non-zero value If the
condition Is true

Not necessarily to 1

22

" J
Relational Operators

m Used to compare two quantities.

<

IS less than

IS greater than

IS less than or equal to

IS greater than or equal to
IS equal to

IS not equal to

23

" J
Logical Expressions

(count <= 100)

((math+phys+chem)/3 >= 60)

((sex =="M’) && (age >=21))

((marks >= 80) && (marks < 90))
((balance > 5000) | | (no_of trans > 25))
(! (grade =="A))

Examples
10 > 20 IS false, so value is O
25 <355 IS true, so value Is non-zero
12> (7 +5) Is false, so value i1s O
321=21 IS true, so value Is non-zero

m \When arithmetic expressions are used on either side
of a relational operator, the arithmetic expressions will
be evaluated first and then the results compared

a+b>c-d isthesameas (a+b)>(c—-d)

m Note: The value corresponding to true can be any
non-zero value, not necessarily 1

Wil print 1 in most cases, but should not assume it will

25

=
Logical Operators

Logical AND (&&)
m Evaluates to true If both the operands are non-

Zero
Logical OR (||)
m Result is true If at least one of the operands Is
non-zero
X Y X && Y X||lY
0 0 false false
0 non-0 false true
non-0 0 false true
non-0 non-0 true true

26

Contd

m Unary negation operator (!)
Single operand
Value is O If operand is non-zero
Value is 1 if operand is O

27

=
Example

m (4>3)&& (100 !=200)

4 > 3 is true, so value 1

100 = 200 is true so value 1

Both operands true for &&, so final value 1
m (!110) && (10 + 20 = 200)

10 is non-0, so value '1101is O

10 + 20 != 200 is true so value 1

Both operands false for &&, so final value 0
m (110) || (10 + 20 = 200)

Same as above, but at least one value non-0, so
final value 1

28

ma=38&&(b=4)
b =4 is an assignment expression, evaluates to 4
&& has higher precedence than =

3 && (b = 4) evaluates to true as both operands of &&
are non-0, so final value of the logical expression is
true

a =3 && (b =4) Is an assighment expression,
evaluates to 1 (true)
m Note that changing to b = 0 would have made
the final value O

29

JE—
Example: Use of Logical Expressions

void main () {
Int i, J;
scanf(“%d%d”,&l,&]);
printf (“%d AND %d = %d, %d OR %d=%d\n”,
L) 1&&], 1), 1))

Output

30
3ANDO0=0,30R0=1

30

More on Arithmetic Expressions

" J
Recall the earlier problem

Int a=10, b=4, c;
float X;
c=alb;
X=alb;

The value of c will be 2
The value of x will be 2.0
But we want 2.5 to be stored In x

32

Solution: Typecasting

m Changing the type of a variable during its use

m General form
(type_name) variable name

m Example
X = ((float) a)/ b;

Now X will store 2.5 (type of a Is considered to be
float for this operation only, now it is a mixed-
mode expression, so real values are generated)

33

m Not everything can be typecast to anything

float/double should not be typecast to int (as an int
cannot store everything a float/double can store)

Int should not be typecast to char (same reason)

m General rule: make sure the final type can
store any value of the initial type

34

Example: Finding Average of 2

Integers

Wrong program

Int a, b;

float avg;
scanf(*%d%d”, &a, &b);
avg = (a + b)/2;
printf(“%f\n”, avQ);

Int a, b;

float avg;
scanf(*%d%d”, &a, &b);
avg = ((float) (a + b))/2;
printf(“%f\n”, avQ);

T

Correct programs

average-1.c

Int a, b;

float avg;
scanf(*%d%d”, &a, &b);
avg = (a + b)/2.0;
printf(“%f\n”, avQ);

average-2.c 35

JE—
More Operators: Increment (++)
and Decrement (--)

m Both of these are unary operators; they
operate on a single operand

m The Increment operator causes its operand
to be increased by 1

Example: a++, ++count

m The decrement operator causes its operand
to be decreased by 1.

Example: I--, --distance

36

o
Pre-increment versus post-

Increment

m Operator written before the operand (++i, --i))

Called pre-increment operator (also sometimes
called prefix ++ and prefix --)

Operand will be altered in value before it is utilized
In the program
m Operator written after the operand (i++, I--)

Called post-increment operator (also sometimes
called postfix ++ and postfix --)

Operand will be altered in value after it is utilized In
the program

37

o
Examples

Initial values :: a=10: b = 20:

X =50 + ++a; a=11,x=61

X =50+ a++; Xx=00,a=11

X = at+ + --b; b=19,x=29,a=11
X = at++ — ++3; ?7?

Called side effects (while calculating some values,
something else gets changed)

38

=
Operator Class Operators Associativity
Unary postfix++, --| Left to Right
Unary Eref:x :;’ | Right to Left
Precedence Binary * | % Left to Right
among different Binary + — Left to Right
operators (there
are many other Binary < <= > >=| Left to Right
operators in C,
some of which we Binary == |I= Left to Right
will see later . .
) Binary && Left to Right
Binary | Left to Right
= 4= —=

Assignment

*= [=

0h=

Right to Left

39

JE
Doing More Complex Mathematical

Operations

m C provides some mathematical functions to use

perform common mathematical calculations

Must include a special header file

#include <math.h>

m Example

printf ("%f", sqrt(900.0));

m Calls function sqrt, which returns the square root
of its argument

m Return values of math functions are of type double
m Arguments may be constants, variables, or expressions
m Similar to functions you have seen in school maths

40

" J
Math Library Functions

double acos(double x) — Compute arc cosine of x.

double asin(double x) — Compute arc sine of x.

double atan(double x) — Compute arc tangent of x.

double atan2(double y, double x) — Compute arc tangent of y/x.
double cos(double x) — Compute cosine of angle in radians.
double cosh(double x) — Compute the hyperbolic cosine of x.
double sin(double x) — Compute sine of angle in radians.
double sinh(double x) — Compute the hyperbolic sine of x.
double tan(double x) — Compute tangent of angle in radians.

double tanh(double x) — Compute the hyperbolic tangent of x.

41

=
Math Library Functions

double ceil(double x) — Get smallest integral value that exceeds x.
double floor(double x) — Get largest integral value less than x.
double exp(double x) — Compute exponential of x.

double fabs (double x) — Compute absolute value of x.

double log(double x) — Compute log to the base e of x.

double log10 (double x) — Compute log to the base 10 of x.

double pow (double x, double y) — Compute x raised to the powery.
double sqrt(double x) — Compute the square root of x.

42

=
Computing distance between two points

#include <stdio.h> Outpbut

#include <math.h> Enter coordinates of first point: 3 4
int main() Enter coordinates of second point: 2 7
{ Distance = 3.162278

Int X1, y1, X2, y2;

double dist;

printf(“Enter coordinates of first point: “);
scanf(“%d%d”, &x1, &yl);

printf(“Enter coordinates of second point: “);
scanf(“%d%d”, &x2, &y2);

dist = sgrt(pow(x1 — x2, 2) + pow(yl —y2, 2));
printf(“Distance = %If\n”, dist);

return O;

} 3-Distance-bet-Points.c 43

" A
Practice Problems

1. Read in three integers and print their average
2. Read in four integers a, b, ¢, d. Compute and print the value of the
expression
a+b/c/d*10*5-b+20*d/c
Explain to yourself the value printed based on precedence of operators
taught
Repeat by putting parenthesis around different parts (you choose) and
first do by hand what should be printed, and then run the program to
verify if you got it right
Repeat similar thing for the expression a&&b||c&&d>a||c<=b
3. Read in the coordinates (real numbers) of three points in 2-d plane, and
print the area of the triangle formed by them

4. Read in the principal amount P, interest rate |, and number of years N, and
print the compound interest (compounded annually) earned by P after N

years

44

	Expressions
	Expressions
	Arithmetic Operators
	Contd.
	Slide Number 5
	Operator Precedence
	Examples: �Arithmetic Expressions
	Example: Centigrade to Fahrenheit
	Slide Number 9
	Slide Number 10
	Type of Value of an Arithmetic Expression
	Slide Number 12
	We have a problem!!
	Assignment Expression
	Contd.
	Contd.
	Example
	Types of l-value and r-value
	This can cause strange problems
	More Assignment Operators
	Contd.
	Logical Expressions
	Relational Operators
	Logical Expressions
	Examples
	Logical Operators
	Contd
	Example
	Slide Number 29
	Example: Use of Logical Expressions
	More on Arithmetic Expressions
	Recall the earlier problem
	Solution: Typecasting
	Slide Number 34
	Example: Finding Average of 2 Integers
	More Operators: Increment (++) and Decrement (--)
	Pre-increment versus post-increment
	Examples
	Precedence among different operators (there are many other operators in C, some of which we will see later)
	Doing More Complex Mathematical Operations
	Math Library Functions
	Math Library Functions
	Computing distance between two points
	Practice Problems

