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The study of perfect matchings in a graph is a classical topic in graph
theory, with many fundamental results, structural as well as algorithmic.
One of the earliest results in graph theory is Petersen’s theorem that every
3-regular bridgeless graph has a perfect matching. Tutte gave a necessary
and sufficient condition for a graph to have a perfect matching, and Edmonds
gave the first polynomial-time algorithm to check this condition. These can
be found in any standard text in graph theory.

A perfect matching is a particular case of an f -factor in a graph. Given
a function f from the vertex set of a graph to non-negative integers, an
f -factor is a spanning subgraph in which the degree of a vertex v is f(v).
A perfect matching is the case when f(v) is 1 for all vertices v, and is also
called a 1-factor. Tutte also gave a necessary and sufficient condition for a
graph to have an f -factor, for any specified function f .

Unlike perfect matchings, there can be many non-isomorphic f -factors
in a graph. While Tutte’s theorem gives a necessary and sufficient condition
for the existence of an f -factor, it says nothing about the structure of the f -
factor. In this talk, we look at some results that say more about the structure
of the f -factor, and consider some of the many unanswered questions. We
concentrate on the case of 2-factors, that is, f(v) = 2 for all vertices v.

A 2-factor in a graph is just a collection of cycles in a graph such that
every vertex is in exactly one cycle. The most well-studied case of this
problem is when we require the 2-factor to be connected. This is just the
Hamilton cycle problem. We will consider other variations here.

It follows from Petersen’s theorem that every 3-regular bridgeless graph
has a 2-factor. However, deciding whether it has a connected 2-factor, that
is, a Hamilton cycle, is an NP-complete problem. What happens if we want
a disconnected 2-factor, that is, a 2-factor that is not a Hamilton cycle? This
is unknown in general, but it was shown in [3] that K4 is the only planar
3-regular bridgeless graph that does not have a disconnected 2-factor. It is
conjectured in [5] that all 3-regular bipartite graphs with this property can
be obtained from K3,3 and the Heawood graph using a simple operation. It
is also known that there are no k-regular bipartite graphs with this property,
for k ≥ 4. Some of these results can be extended for other restrictions on
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the 2-factor, such as on the parity of the number of components [1].
Another question is to see whether conditions that imply the existence

of a Hamilton cycle also give other 2-factors. It was observed in [6] that
the visibility graph of a point set has a Hamilton cycle iff not all points are
collinear. In [4], this was generalized to show that the visibility graph of a
set of n points contains a specified 2-factor with k cycles iff there do not
exist n − k + 1 collinear points, except for one special case in which each
component of the 2-factor is a triangle, and the point set has a particular
structure.

We will also consider generalizations of other conditions for Hamiltonic-
ity, such as minimum degree conditions [2], to the case of general 2-factors.
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