
Construction of Petri net based models
for C programs

Kulwant Singh

Construction of Petri net based models
for C programs

Thesis submitted to
Indian Institute of Technology, Kharagpur

for the award of the degree

of

MASTER OF TECHNOLOGY
(2014-16)

by

Kulwant Singh

14CS60R20

under the guidance of

Prof. Dipankar Sarkar

Department of Computer Science & Engineering
Indian Institute of Technology, Kharagpur

May 2016

ii

DECLARATION

I certify that

a. the work contained in this report is original and has been done by me under
the guidance of my supervisor.

b. the work has not been submitted to any other institute for any degree or
diploma.

c. I have followed the guidelines provided by the institute in preparing the
report.

d. I have conformed to the norms and guidelines given in the Ethical Code of
Conduct of the Institute.

e. Whenever I have used materials (data, theoretical analysis, figure, and text)
from other sources, I have given due credit to them by citing them in the
text of the report and giving their details in the references.

Kulwant Singh

iii

iv

CERTIFICATE

This is to certify that the project report entitled “Construction of Petri net
based models for C programs”, submitted by Kulwant Singh (14CS60R20), of the
Department of Computer Science and Engineering, Indian Institute of Technol-
ogy, Kharagpur, India, for the award of the degree of Master of Technology, is a
record of an original research work carried out by him under my supervision and
guidance. The report fulfills all the requirements as per the regulations of this
institute. Neither this report nor any part of it has been submitted for any degree
or academic award elsewhere to the best of my knowledge .

Prof. Dipankar Sarkar
Department of CSE

IIT Kharagpur

v

vi

Acknowledgments

Though only my name appears on the cover of this dissertation, a great many
people have contributed to its completion. I owe my gratitude to all those people
who have made this dissertation possible and because of whom my graduate ex-
perience has been one that I will cherish forever.

My deepest gratitude is to my adviser, Prof. Dipankar Sarkar. His patience,
immense knowledge and support helped me finish this dissertation. I feel fortu-
nate to have him as my adviser.

Besides my adviser, I would like to thank Prof. Chittaranjan Mandal for his
guidance at various junctures.

I would also like to thank Soumyadip Bandyopadhyay, Ph.D. student under
the supervision of my adviser, for his guidance and help.

A special thanks to my family. Their support and prayers for me has sustained
me thus far. I would also like to thank all my friends who supported me during
the course of this degree.

Kulwant Singh

vii

viii

Abstract

Compilers carry out extensive optimizing transformations on the source pro-
grams exploiting the data independence of operations. Their validation is achieved
by establishing behavioural equivalence between the source and the transformed
programs. Models capturing data independence of operations by parallelism are
most suitable for the purpose. Accordingly, Petri net based models of programs
are more suitable then cfgs (Control Flow Graphs) like FSMDs (Finite State Ma-
chines with Datapaths) and CSPs (Concurrent Sequential Processes). If suitably
constructed, the Petri net based models of the source and the transformed pro-
grams often become structurally similar thereby making the task of establishing
equivalence between them easier. Experience with equivalence checking using such
a Petri net based models, called PRES+ (Petri net based Representation of Embed-
ded Systems), have been encouraging. No tools for automated construction of the
PRES+ models from high level language programs are available. In this paper we
present a tool for the automated construction of PRES+ models from C programs.

ix

x

Contents

Title Page . i

Declaration . iii

Certificate . v

Acknowledgments . vii

Abstract . ix

1 Introduction . 1
1.1 Aim of the work . 1
1.2 Organization of the thesis . 2

2 PRES+ model . 3
2.1 Definition of PRES+ net . 3
2.2 An example of PRES+ model . 3

3 Implementation . 7
3.1 Input specification . 8
3.2 Output specification . 8
3.3 Data Structures for the control flow graph 10

3.3.1 Symbol Table . 10
3.3.2 BB array (Array of basic blocks) 11
3.3.3 Basic block . 11
3.3.4 Statement . 13
3.3.5 Expression Tree . 14

3.4 Data Structures for the PRES+ model 15
3.4.1 Pres Plus . 15
3.4.2 Place . 15
3.4.3 Transition . 16
3.4.4 Subnets[MAX BBs] . 17

3.5 Construction of PRES+ for programs without loops 18
3.5.1 Construction of a PRES+ subnet 18
3.5.2 Attach PRES+ subnets . 21

3.6 Construction of PRES+ for programs containing loops 28
3.6.1 Subnets belonging to a loop body 28
3.6.2 Loops without nesting . 29
3.6.3 Inter loop parallelism . 37
3.6.4 Live variable analysis . 38

xi

3.6.5 Loops with nesting . 38
3.6.6 Reaching definition analysis 38

3.7 Construction of PRES+ for programs containing arrays 39
3.8 Handling parallelized programs . 40
3.9 Reducing the size of the overall PRES+ 40

3.9.1 Removal of identity transitions 40
3.9.2 Removal of useless computation 42

4 Experimental Results . 45
4.0.1 C Programs . 45
4.0.2 Experimentation on the benchmark FSMDs 46
4.0.3 Some example PRES+ nets 47

5 Conclusion and future work . 53
5.1 Conclusion . 53
5.2 Future Work . 53

A Algorithms . 55
A.1 Construction of PRES+ subnet for an individual basic block 55
A.2 Attaching individual subnets to obtain the overall PRES+ model . . 59

References . 71

xii

List of Figures

2.1 An example C program and the corresponding PRES+. 4
2.2 The PRES+ model for the program shown in the figure 2.1. 4

3.1 PRES+ construction block diagram 7
3.2 Illustration of the encoding of a PRES+ in a text file. 10
3.3 A C program and the corresponding cfg. 11
3.4 A C program (a) and the corresponding cfg (b). 12
3.5 Expression trees for various types of statements. 14
3.6 PRES+ for a scanf statement . 19
3.7 PRES+ of a printf statement . 19
3.8 PRES+ of an identity statement 20
3.9 PRES+ of a unary assignment statement. 20
3.10 PRES+ of binary assignment statement. The pre-places of the

transition t are attached to their ldts as post-places, if the ldts
exist. 21

3.11 A cfg to illustrate the dfs traversal for attach. 22
3.12 An example to illustrate the attaching of subnets 23
3.13 Resultant PRES+ after attaching the Normal subnets to the succes-

sors for the PRES+ shown in the figure 3.12(c). 25
3.14 The PRES+ obtained from the one shown in the figure 3.13 after

attaching the Conditional subnet to its successors. 26
3.15 PRES+ net for the program shown in the figure 3.4. 27
3.16 General structure of a Conditional subnet and its successors. . . . 27
3.17 Source code and the cfg of an example program containing a loop. . 29
3.18 The PRES+ net consisting of unattached subnets corresponding to

the program given in figure 3.17. 30
3.19 The complete PRES+ net corresponding to the program given in

figure 3.17. 31
3.20 A subgraph of a cfg belonging to a loop body and the corresponding

disconnected PRES+ net of individual subnets. 32
3.21 The attached PRES+ net corresponding to the program given in

figure 3.20. 33
3.22 The structure of a program containing a loop. 35
3.23 Illustration of the maximum transitions of a Conditional subnet

and its successors’. 37
3.24 Various types of statements and transitions for arrays 39
3.25 A C program and the corresponding cfg containing an array. 40
3.26 PRES+ corresponding the cfg shown in figure 3.25 41
3.27 Source code of a program containing parallelization constructs. . . . 41
3.28 cfg for the source code given in the figure 3.27. 42

xiii

3.29 An example PRES+ before and after removal of identity transitions. 42
3.30 An example illustrating removal of useless computation. 43

4.2 The optimized PRES+ model for the program 4.1 containing an
if-else statement. 47

4.1 The un-optimized PRES+ model for the program 4.1 containing an
if-else statement. 48

4.3 The optimized PRES+ model for the program 4.2 illustrating a for
loop. 49

4.4 The PRES+ model for the program 4.3 illustrating a while loop. . . . 51
4.5 The optimized PRES+ model for the program 4.4 illustrating inter

loop parallelism. The parallel execution of the two loops may be
noted. 52

xiv

List of Tables

4.1 Summary of simulation of the PRES+ models for some example pro-
grams in the CPN Tool. 45

4.2 Summary of PRES+ model construction for benchmark FSMDs [4]. . . 46

xv

xvi

Chapter 1

Introduction

Conversion or translation of a program to another program is a process that is
performed very often in a compiler. To verify that two programs are equivalent
the conventional method is to show that the algorithms yield identical results for
all possible inputs. Proving correctness of programs is extremely complex and un-
decidable in general. Hence, instead of proving that the compiler always produces
a target code which correctly implements the source code (compiler verification),
each individual translation (i.e. a run of the compiler) is followed by a validation
phase which verifies that the target code produced on this run correctly imple-
ments the submitted source program. Even if a compiler is verified with suitable
abstraction and (or) modularisation, every change in the compiler (even minor
revisions) requires redoing the proof; thus, compiler verification tends to stall the
compiler design and discourages improvements and revisions. This drawback is
avoided in the translation validation approach as it compares the input and the
output of the compiler for each individual run independently of how the output is
generated from the input.

A fully automatic translation validation process requires a common seman-
tic framework for the representation of the source code and the generated target
code. Models capturing data independence of operations by parallelism are most
suitable for the purpose because they become structurally similar. As a result,
the Petri net based models are more suitable then cfgs (Control Flow Graphs)
like FSMDs (Finite State Machines with Datapaths) and CSPs (Concurrent Sequen-
tial Processes). The structural similarity between the Petri net models of the
source and the transformed programs makes the task of establishing equivalence
between them easier. The work done indigenously to establish equivalence be-
tween programs using Petri net based models have been encouraging [2]. The
mechanism uses an extension of the Petri net based models called Petri net based
Representation of Embedded Systems abbreviated as PRES+. No open source tool
or mechanism is available for automated construction of PRES+ models from high
level language programs.

1.1 Aim of the work

Aim of the thesis is to develop methods for automated construction of the PRES+

models for C programs. In the thesis PRES+ model and PRES+ net are used syn-
onymously.

1

1.2 Organization of the thesis

The mechanism for construction of the PRES+ model for a C program is explained
in the chapter 3. The explanation covers the data structures used for representing
the input C programs and the PRES+ models, the mechanism for constructing PRES+

for programs without loops and arrays, enhancement of the mechanism to handle
loops and arrays and finally, the various optimizations performed on the PRES+

in that order. In chapter 4 a summary of the experimental results is provided
followed by conclusion and future work in chapter 5. The algorithms explained in
the chapter 3 are summarized in the appendix A

2

Chapter 2

PRES+ model

In this chapter first a definition of the PRES+ (Petri net based Representation of
Embedded Systems) model is provided. Next, an example of a PRES+ model is
given.

2.1 Definition of PRES+ net

A PRES+ net is an eight tuple N = < P, T, I, O, inP, outP, V, fpv >, where
the members are defined as follows. The set P is a finite non-empty set of places.
A place p is capable of holding a token having a value vp of any data type. T is a
finite non-empty set of transitions. A transition represents a function. I ⊆ P × T
is a finite non-empty set of input edges which define the flow relation from places
to transitions; a place p is said to be an input place of a transition t if (p, t) ∈ I.
The relation O ⊆ T × P is a finite non-empty set of output edges which define
the flow relation from transitions to places; a place p is said to be an output place
of a transition t if (t, p) ∈ O. A place p ∈ P is said to be an in-port if and only
if (t, p) /∈ O, for all t ∈ T . Likewise, a place p ∈ P is said to be an out-port
if and only if (p, t) /∈ I, for all t ∈ T . V is the set of variables used in the
PRES+ and fpv is a relation capturing the association of the places of the PRES+

with variables. A transition can have a guard condition associated with it s.t.

the transition is executed only if its guard condition is evaluated to True. Each
transition operates on input tokens and produces zero or more output tokens.

2.2 An example of PRES+ model

Figure 2.1(A) and (B) show a C program and the corresponding control flow graph
(cfg). The program contains one if-else statement and accordingly the cfg
contains four basic blocks. The corresponding PRES+ model is shown in the figure
2.2. The PRES+ model has two input places namely, p1 and p2. The transitions t1
and t2 are identity transitions and forward the token present in the first (zero-th)
pre-place. The condition c in the if clause is captured using guarded transitions t5
to t8. The transitions t5 and t6 represent the condition c being true and transitions
t7 and t8 correspond to the negation of the condition c being true. You may note
that the transition t8 has no post-place as it serves the purpose of removing tokens
in the places p9 and p10 when the negation of the condition c (i.e. the condition

3

Figure 2.1: An example C program and the corresponding PRES+.

Figure 2.2: The PRES+ model for the program shown in the figure 2.1.

4

a ≤ 10) is true. If the condition c is true, then the transition t3 is executed.
Otherwise, the transition t4 is executed. Eventually, the output is produced in the
output tokens are produced in the places p6 and p7.

In the given and the following examples in the thesis, light yellow and light
blue color is used for input and output places of the PRES+ respectively; uncolored
(white) places represent intermediate places in the PRES+. Dark black transitions
are identity transitions, forwarding the token in the the first pre-place. The tran-
sitions having an expression associated with them are represented as rectangular
boxes with the associated expression specified inside the box. The guard condition
associated with a transition is written in square brackets ([]).

5

6

Chapter 3

Implementation

The block diagram for the construction of a PRES+ net is shown in figure 3.1. The
input to the whole module is a C program and the output is the corresponding
PRES+ net in a text file; the specifications of the input and the output files are
given in the sections 3.1 and 3.2 respectively.

Figure 3.1: PRES+ construction block diagram

From a given C file first the corresponding control flow graph (cfg) is obtained
using the -fdump-tree-cfg flag of the gcc. A cfg consists of three-address code
with basic block boundaries and is written into a text (.cfg) file by the gcc. The
cfg file is first parsed using Bison and Flex to obtain a symbol table and an array
of basic blocks; the two data structures are explained in the section 3.3.

The given PRES+ construction methodology is able to construct PRES+ models
for programs containing loops and arrays. The mechanism for constructing a
subnet corresponding to a basic block is explained in section 3.5.1 followed by the
mechanism for attaching the subnets to obtain the overall PRES+ in the section

7

3.5.2. To start with, the discussion is restricted to the simple cases of basic blocks
involving only assignment and conditional statements without any loops. The
subnet construction and attach mechanism is enhanced for programs involving
loops and arrays in sections 3.6 and 3.7 respectively.

The model construction mechanism consists in constructing first the PRES+
models for all the basic blocks in isolation; accordingly, they appear as discon-
nected sub-graphs, referred to as subnets; subsequently, they are attached to each
other to obtain the entire digraph for the PRES+ model of the complete program.

3.1 Input specification

Any input C program should satisfy the following conditions:

1. Only integer variables and arrays must be used.

2. Every scanf() and printf() call must read and write exactly one integer
variable respectively and there must not be any other function calls.

3. The program must contain exactly one function i.e. main() with void as
its return type.

4. The program must not contain any goto statements (although the interme-
diate cfg may contain such statements).

3.2 Output specification

The PRES+ construction module produces the PRES+ net for a given C program in
following formats:

1. An xml file which can be used as input to the CPN Tool 1. The extension of
the file is cpn in accordance to the CPN Tool.

2. An image of the constructed PRES+ in png format. The image is produced
using the Dot tool.

3. A text file containing the PRES+ in the format represented by the grammar
given below.

Grammar:

S → PVMAP pvmap TRANS transitions

INPUT inputPlaces OUTPUT outputPlaces

;

/* Where PVMAP , TRANS , INPUT and OUTPUT are keywords

* "pvmap:", "Transitions :", "Input :" and "Output :"

* respectively.*/

pvmap → pvmap PLACE_INDEX VARIABLE SEMI_COLON

1www.cpntools.org

8

| PLACE_INDEX VARIABLE SEMI_COLON

;

/* Where PLACE_INDEX , VARIABLE and SEMI_COLON are an

* integer (id of the place), a string (name of the

* variable) and the character ‘;’ respectively.*/

transition → transition OP_CUR_BR

TRANS_INDEX SEMI_COLON

EXPR SEMI_COLON

GUARD SEMI_COLON

PRIORITY SEMI_COLON

preset SEMI_COLON

postset SEMI_COLON

CL_CUR_BR

| OP_CUR_BR

TRANS_INDEX SEMI_COLON

EXPR SEMI_COLON

GUARD SEMI_COLON

PRIORITY SEMI_COLON

preset SEMI_COLON

postset SEMI_COLON

CL_CUR_BR

;

/* OP_CUR_BR and CL_CUR_BR are ‘{’ and ‘}’ respectively

.

* TRANS_INDEX is an integer (id of the transition).

* EXPR and GUARD are the transition function and the

* guard associated to the transition respectively;

* PRIORITY is either ‘‘HIGH ’’ or ‘‘NORMAL ’’;

* needed by the model constructor for simulation in

* the CPN Tool as explained later. */

preset → preset PLACE_INDEX COMMA

| PLACE_INDEX SEMI_COLON

;

/* Where COMMA is ‘,’.*/

postset → postset PLACE_INDEX COMMA

| PLACE_INDEX SEMI_COLON

;

inputPlaces → inputPlaces PLACE_INDEX COMMA

| PLACE_INDEX SEMI_COLON

;

outputPlaces → outputPlaces PLACE_INDEX COMMA

| PLACE_INDEX SEMI_COLON

;

Grammar 3.1: Grammar for the output text file containing a PRES+ net

9

Example: 3.2.1
Figure 3.2(a) shows a text file containing the encoding for the PRES+ net

shown in the figure 3.2(b). First all the places and the associated variables
are written delimited by semicolons. Then all the transitions of the PRES+ are
given. In the end of the file, the input and output places of the PRES+ are
given. �

Figure 3.2: Illustration of the encoding of a PRES+ in a text file.

3.3 Data Structures for the control flow graph

Figure 3.3 illustrates a C program and the corresponding control flow graph (cfg)
produced by the gcc. As observed from the figure, a cfg is a collection of basic
blocks with goto statements governing the control flow from one basic block to
another basic block. All the variables used in the cfg are listed at the beginning
of the cfg, before the very first basic block.

This section explains the two data structures used to store a cfg. The first data
structure is Symbol Table; it stores all the variables declared at the beginning of
a cfg. The second data structure is an array of basic blocks; an element of
this array stores a basic block. Following is an explanation of these two data
structures.

3.3.1 Symbol Table

It has the following attributes:

1. total symbols: Total number of symbols/variables used in the cfg.

10

Figure 3.3: A C program and the corresponding cfg.

2. symbols array[MAX VARIABLES] An array of size MAX VARIABLES where each
element contains:

• var name: Name of the variable as a string.

• def: A bit vector of size MAX STATEMENTs (maximum statements in a
cfg) in which ith bit is set iff the statement with unique index (explained
in section 3.6.6) i defines the variable. This bit vector is used in live
variable analysis as explained in section 3.6.4.

• dimension: An integer to store the dimension of an array, if the symbol
represents an array. Otherwise, it is assigned −1 to indicate that the
symbol does not represent an array.

3.3.2 BB array (Array of basic blocks)

It has the following attributes:

1. total BBs: Total number of basic blocks stored in the basic blocks array.

2. BB[MAX BBs]: An array of size MAX BBs in which each element stores a basic
block. This array is of type Basic block. Description of the Basic block

data structure follows.

3.3.3 Basic block

This data structure represents the contents of a basic block and has the following
attributes:

1. type: Type of a basic block i.e. NORMAL, CONDITIONAL or LAST.

11

Figure 3.4: A C program (a) and the corresponding cfg (b).

NORMAL, CONDITIONAL and LAST are basic blocks with one, two and zero
successor(s) respectively. A basic block can have at most one if-then-else
statement and that too as the last statement. As a result a basic block
can have either zero, one or two successor(s).

Example: 3.3.1

The cfg for the program shown in figure 3.4(a) is shown in the figure
3.4(b). In the cfg the basic blocks b2 and b3 have type Conditional;
Basic blocks b4 and b5 have types Normal and Last respectively. �

2. pred count: Number of the predecessors of a basic block. For a program
having n basic blocks, the number of predecessors can be anything in the
range [0, n− 1]; the first basic block of a program has zero predecessors.

Example: 3.3.2

Figure 3.4(b) is the cfg corresponding to the program shown in the figure
3.4(a). In the cfg the basic block b5 has three (n− 1) predecessors. �

3. predecessors[MAX PREDECESSORs]: An integer array of size MAX PREDECESSORs

to store the indices of the predecessors of a basic block.

4. stm count: Number of statements in a basic block, excluding the if-else

statement in CONDITIONAL basic blocks.

5. statements[MAX STATEMENTs]: An array of type Statement and size MAX STATEMENTs

to store the statements of a basic block. The Statement data structure is
explained in the section 3.3.4.

12

6. cond: A pointer to the expression tree of the expression in the if-else

statement of a conditional basic block. Expression tress are used to store
expressions as explained in section 3.3.5.

7. visited: A boolean flag for DFS and (or) BFS, as and when needed.

8. true successor: Index of the unique successor for a NORMAL basic block
and true successor for a CONDITIONAL basic block. -1 for the LAST basic
block.

9. false successor: Index of the false successor for a CONDITIONAL basic
block and -1 for NORMAL and LAST basic blocks.

10. live in: A bit vector to store the variables live at the beginning of a
basic block. This bit vector is obtained from live variable analysis (lva) as
explained in section 3.6.4. The need for lva is established in the section
3.6.2. ith bit of this bit vector is set iff the variable at index i in the symbol
table is live at the beginning of a basic block.

11. live out: A bit vector similar to live in but stores the variables live at
the end of a basic block.

12. rd in: A bit vector to store the reaching definitions at the beginning of
a basic block. The role of the reaching definitions is explained in section
3.6.3 and the mechanism itself is explained in section 3.6.6. ith bit of this bit
vector is set iff the statement with unique index (explained in section 3.6.6)
i is a reaching definition at the beginning of a basic block.

13. rd out: A bit vector similar to rd inbut stores the reaching definition at the
end of a basic block.

3.3.4 Statement

This data structure is used to store the attributes of a statement in a basic block.
Its attributes are:

1. type: Type of a statement i.e. scanf, printf, Asngid, Asgnunary or
Asgnbinary

scanf: is a statement corresponding to a scanf() function call.

printf: is a statement corresponding to a printf() function call.

Asgnid: An assignment statement which assigns the value of a variable to
another variable without any operation, for e.g. a = b;.

Asgnunary: An assignment statement which has a literal or a unary operator
associated to a variable on its right hand side (RHS). Examples of such
statements are a = −b;, a = 10; etc.

Asgnbinary: An assignment statement with an expression involving a binary
operator on its RHS. Examples of such statements are a = b + c;,
a = b− 10; etc.

13

2. var: Index (to the Symbol Table) of the variable defined in the scanf and
the assignment statements. Index of the output variable for the printf

statements.

3. expr: Pointer to the expression tree on the RHS of an assignment state-
ment. NULL for the scanf and printf statements.

3.3.5 Expression Tree

It is a binary tree used to store the expression on the RHS of an assignment
statement. Expression trees for various statements are shown in the figure 3.5.
The attributes of a node of an expression tree are:

Figure 3.5: Expression trees for various types of statements.

1. type: Type of a node i.e. Binary operator, Unary operator, Variable

or Literal.

Binary operator: Root node of an expression tree representing a binary
operator. Left and right operands are stored in the left and the right
child respectively.

Unary operator: Root node of an expression tree representing a unary
operator. Left operand is stored in the left child and the right child is
NULL.

Variable: A node containing index (to the Symbol Table) of a variable.

Literal: A node containing value of an integer literal, since only integers
are allowed.

2. identifier: Depending on the type field, this attribute specifies an op-
erator ∈ {+,−, ∗, /,%, <,≤, >,≥,=,==} (for type Binary operator and
Unary operator), index of a variable (for type Variable) or a constant
value (for type Literal).

3. left: Pointer to the node corresponding to the left operand.

4. right: Pointer to the node corresponding to the right operand.

14

3.4 Data Structures for the PRES+ model

In this section the data structures used to represent the overall PRES+ model and
the PRES+ model corresponding to each basic block are explained.

3.4.1 Pres Plus

It is the data structure used to store the overall PRES+ net. Its various attributes
are:

1. places count: An integer to store the total number of places in the PRES+.

2. places[MAX PLACEs]: An array of type Place and size MAX PLACEs used to
store the places of the PRES+. The data type Place is explained subsequently.

3. trans count: An integer to store the total number of transitions in the
PRES+.

4. trans[MAX TRANSITIONs]: An array of type Transition and size MAX TRANSITIONs

used to store the transitions of the PRES+. The data type Transition is ex-
plained subsequently.

5. input places count: An integer to store the total number of the input
places of the PRES+.

6. input places[MAX PLACEs]: An integer array of size MAX PLACEs to store
the indices to the array places[] of the input places of the PRES+.

7. output places count: An integer to store the total number of the output
places of the PRES+.

8. output places[MAX PLACEs]: An integer array of size MAX PLACEs to store
the indices to the array places[] of the output places of the PRES+.

3.4.2 Place

This data structure is used to represent a place in the PRES+. Its various attributes
are:

1. type: The type of a place - one of {Input port, Output port, Var,

Dummy}

Input port is a place which takes input tokens for a PRES+.

Output port is a place which provides output tokens of a PRES+.

Var is an intermediate place which provides flow of tokens between transi-
tions.

Dummy is also an intermediate place providing flow of tokens between transi-
tions. These places are used for synchronization and have no variables
associated with them.

Input port, Output port and Var, all have a variable associated with
them.

15

2. var: If the type is Input port, Output port or Var, then it is the index to
the Symbol Table of the variable associated with the place; if the place type
is Dummy, then it is −1.

3. preset count: Stores the total number of pre-transitions of a place.

4. preset[MAX PRESET PLACE]: Stores the indices of the pre-transitions of the
place to the array transitions[] of all transitions of the PRES+.

5. postset count: Stores the total number of post-transitions of a place.

6. preset[MAX POSTSET PLACE]: Stores the indices of the post-transitions of
the place to the array transitions[] of all transitions of the PRES+.

3.4.3 Transition

This data structure is used to represent a transition in the PRES+. It has the
following attributes:

1. type: Type of a transition - one of {Identity, Expression}.

Identity transitions represent the variable copy function i.e. a = b.
They forward the token associated with the first pre-place (with index
value 0). They do not have any expression associated with them.

Expression transitions perform some operation on the input tokens before
producing output and have an expression tree associated with them.
The transition corresponding to the statement a = b + c; belongs to
this category.

2. expr: Pointer to the expression tree associated with the Expression tran-
sitions. NULL for the Identity transitions.

3. guard: If the transition has a guard condition associated with it, then it is
a pointer to the expression tree representing the guard condition associated
with the transition; if the transition does not has a guard condition, then it
is NULL.

4. preset count: Stores the number of pre-places of the transition.

5. preset[MAX PRESET TRANS]: Stores the indices of the pre-places of the tran-
sition to the array places[] of all the places of the PRES+.

6. postset count: Stores the number of post-places of the transition.

7. postset[MAX POSTSET TRANS]: Stores the indices of the post-places of the
transition to the array places[] of all the places of the PRES+.

16

3.4.4 Subnets[MAX BBs]

An array to identify the PRES+ subnet corresponding to a basic block in the overall
PRES+ net. An element of the array, Subnet[i], has the following attributes and
identifies the subnet corresponding to the ith basic block in the basic blocks array.

1. places count: Number of places of the ith subnet.

2. places[MAX PLACEs]: Stores the indices of the places of the ith subnet to
the array places[] of all the places of the overall PRES+.

3. transitions count: Number of transitions of the ith subnet.

4. transitions[MAX TRANSITIONs]: Stores the indices of the transitions of the
ith subnet to the array transitions[] of all the transitions of the overall
PRES+.

5. input places[MAX PLACEs]: Stores the indices of the the local input places
of the ith subnet to the array places[] of all the places of the overall PRES+.

6. input places count: Number of the input places in the array input places[]

described above.

7. ldt[MAX VARIABLEs]: An array to store the latest defining transitions in
the ith subnet of the variables of the variables occurring in the subnet. The
entry ldt[v] is the transition in the ith subnet which provides the latest
token for the variable v. If a variable v is not defined in the ith subnet then
the ldt[v] is −1 and if v is defined twice then the ldt[v] is the transition
generating the latest token.

8. maximum transition: An integer to store the maximum transition of the ith

subnet. The role of the maximum transitions is explained in section 3.6.2.

9. maximum tr sync pl: An integer to store the index of the place to the array
places[] in the overall PRES+ used to synchronize the maximum transition
of the ith subnet with that of its predecessors. The type of this place is
Dummy.

10. maximal trans count: Stores the number of maximal transitions of a sub-
net.

11. maximal trans[MAX TRANSITIONs]: Stores the indices of the maximal tran-
sitions of the ith subnet to the array transitions[] of all the transitions of
the overall PRES+. The role of maximal transitions is explained in section
3.6.2.

12. loop: A boolean variable having a value True if the ith subnet belongs to a
loop body; False otherwise.

13. interface variables[MAX VARIABLEs]: An integer array of size MAX VARIABLEs;
it stores the indices of places to the array places[] in the overall PRES+.
Interface places are Dummy places used in successors of Conditional subnets
in loop bodies to capture the conditional execution of such subnets; they are
further explained in the section 3.6.2. An element v of this array is −1 if
there exists no interface place in the ith subnet for the variable v.

17

3.5 Construction of PRES+ for programs without

loops

In this section the construction of PRES+ models for C programs containing only
input (scanf), output (printf), assignment and if-else statements i.e., for
programs free from loops and arrays is explained. The model construction mech-
anism consists of constructing first the PRES+ models for all the basic blocks in
isolation; accordingly, they appear as disconnected sub-graphs, referred to as sub-
nets; subsequently, they are attached to each other to obtain the entire digraph
for the PRES+ model of the complete program.

3.5.1 Construction of a PRES+ subnet

This section explains the construction of a PRES+ subnet for a basic block. The
approach is to construct the respective places and transitions for each statement
of the basic block in the overall PRES+ itself. The statements of the basic block are
processed in the order of their appearance in the basic block and the constructed
places and transitions are then attached to the PRES+ subnet corresponding to the
preceding statements of the basic block but not to the overall PRES+ net.

Construction of the PRES+ for a basic block consists of constructing the PRES+

subnet for each statement in it followed by its attachment to the already con-
structed PRES+ subnet constructed for the preceding statements in the basic block.
The given procedure repeated for all the statements of a basic block in the order
of their occurrence constructs the PRES+ subnet for a basic block.

Note that although processed sequentially, the step of attaching the newly
created PRES+ subnet ensures that sequentiality is incorporated only for read after
write (RAW) dependencies; thus, even for a sequence of assignment statements the
corresponding subnet may have disconnected components depicting parallelism
(due to dependence) among the components and sequentiality only inside each
component. The inputs and outputs of this module are:

Inputs:

1. bba: A pointer to the array of basic blocks. Recall that BB Array is a
structure containing the array of basic blocks along with a count of the total
number of basic blocks in the cfg (control flow graph).

2. st: A pointer to the symbol table.

3. PP: A pointer to the structure Pres Plus representing the overall PRES+.

4. Subnets[]: A pointer to the subnets array.

5. k: Index of the present basic block for which the PRES+ subnet should be
constructed to the basic blocks array.

Outputs:

1. The overall PRES+ net PP is modified to contain the PRES+ subnet corre-
sponding to the given basic block.

18

2. The kth element of the Subnets[] array is modified to identify the subnet
corresponding to the kth basic block in the overall PRES+ net PP.

Construction of the PRES+ subnet for each statement depends on the type of
the statement and is explained below.

Figure 3.6: PRES+ for a
scanf statement Figure 3.7: PRES+ of a printf statement

scanf statement

For a scanf statement reading a variable v two places p and p′ are constructed and
assigned the types Input port and Dummy respectively. The place p is assigned
v as the associated variable and added to the input places array of the overall
PRES+ PP; the place p′ is added to the input places array of the kth subnet
(Subnets[k]). The purpose of the Dummy place p′ is to provide synchronization if
the scanf statement belongs to an if-then-else clause.

An identity transition t is constructed and attached to the places p and p′

as a post-transition in that order; t is set as the latest defining transition (ldt)
of the variable v in Subnets[k]. The places p and p′ are added to the places

array of the Subnets[k]; the transition t is added to the transitions array of
Subnets[k]. The PRES+ for a scanf statement is illustrated in figure 3.6. It
may be noted that output places of any transition are constructed only when the
corresponding value produced by the transition is used subsequently.

printf statement

For a printf statement printing a variable v a place p is constructed, assigned
the type Output port and v as the associated variable. The place p is added to
the output places array of the overall PRES+ PP. If in Subnets[k] an ldt exists
for the printed variable then p is attached to the ldt as a post-place, as shown in
figure 3.7(A); otherwise p is added to the input places array of the Subnets[k]

as shown in figure 3.7(B).

Asgnid statement

These are statements of type vl = vr, i.e. the value of one variable is assigned
to another variable without any operation. If an ldt exists for vr in Subnets[k],
the variable on the right hand side, then the ldt[vr] is set as the ldt for vl also
where vl is the variable on the LHS, as shown in figure 3.8(A).

Otherwise, an ldt does not exist for vr in Subnets[k]. A place p and an
identity transition t are constructed. The variable vr is variable associated

19

Figure 3.8: PRES+ of an identity statement

with the place p. The place p is attached to t as a pre-place and added to the
input places array of Subnets[k]. The transition t is marked as the ldt for
both vr and vl in Subnets[k], as shown in figure 3.8(B).

Asgnunary statement

Figure 3.9: PRES+ of a unary assignment statement.

The type Asgnunary stands for unary assignment statements. Such statements
are assignment statements with a literal or a unary operator on the RHS; e.g. a =

10 and a = -b. Literals 10, etc. are captured as unary constant functions because
of the requirement that every transition has at least one pre-place.

A transition t of type Expression is constructed. The expression tree stored in
the corresponding statement is assigned to the transition t and t is set as the ldt

for vl, the variable on the LHS. If vr is a literal, a Dummy place p is constructed. p is
joined to t as a pre-place and added to the input places array of the Subnets[k],
as shown in figure 3.9(A).

Otherwise, vr is a variable with an associated unary operator on the RHS. A
place p is constructed for the variable and attached to the transition t as a pre-
place. If an ldt exists for vr in Subnets[k], then p is attached to the ldt as a
pre-place, as shown in figure 3.9(B); Otherwise, the place p is added to the input
places array of the Subnets[k], as shown in figure 3.9(C).

Asgnbinary statement

This type stands for binary assignment statements. Such statements are assign-
ment statements with a binary operator and two operands on RHS, e.g. a = c

20

Figure 3.10: PRES+ of binary assignment statement. The pre-places of the tran-
sition t are attached to their ldts as post-places, if the ldts exist.

- b and a = 10 + 30. The operands can be any combination of variables and
literals. If both the operands are literals, a dummy place p is constructed and
added to the input places array of the Subnets[k]. The construction of the
transition for the statement is explained subsequently.

Otherwise, at least one of the operands on the RHS is a variable. Places are
constructed for the operands which are variables and the ones having an ldt in
Subnets[k] are joined to the ldt as post-places; the remaining places (not having
an ldt in Subnets[k]) are added to the input places array of the Subnets[k].

A transition t of type Expression is constructed with the expression tree
stored in the statement as the expression of t. The places constructed for the
statement are joined to t as pre-places and the transition t is set as the ldt for
the variable vl, the variable on the LHS, as shown in figure 3.10.

if-else statement

The if-else statement of a Conditional basic block is always the last statement
of the basic block and is processed while attaching the corresponding subnet to
the two successors. Therefore, the procedure for handling if-else statements is
explained along with the explanation of the methodology for attaching subnets.

The mechanism is summarized in the algorithm 1 (page 56).

3.5.2 Attach PRES+ subnets

In this section the procedure of attaching the individual subnets corresponding
to the basic blocks to obtain an overall PRES+ net is explained. To attach the
subnets, a depth first traversal (dfs traversal) is performed on the cfg and the
subnets are attached to their successors while backtracking, as illustrated in the
following example.

Example: 3.5.1
With respect to the cfg shown in the figure 3.11, the dfs traversal for

attach begins with the subnet N1 which, being a Conditional subnet, has
two successors namely, N2 and N3; the true successor N2 is traversed first
from which its unique successor N4 is visited. Since N4 does not have any

21

Figure 3.11: A cfg to illustrate the dfs traversal for attach.

successor, the traversal backtracks to N2 whereupon the latter is attached to
its successor N4. Let this attached subnet be referred to as N2 · N4 where
the · (dot) operation captures the predecessor-successor relationship of the
subnets involved in the attachment step. After the attachment, the traversal
backtracks from N2 to N1. The attached subnet N2 ·N4 is not attached to N1

immediately because another successor N3 of N1 has not yet been traversed;
the dfs then visits N3, the untraversed successor of N1. From the subnet N3, the
dfs visits its unique successor N4 but backtracks immediately as N4 has already
been traversed. Now N3 is attached to N2 · N4 and the traversal backtracks
to N1. It may be noted that while attaching N3 to N2 · N4, the subnet N3

virtually gets attached to its successor N4 and not to N2; this fact is reflected
in depicting the attached subnet as (N2|N3) ·N4 underlining the feature that
N4 is the successor to both N2 and N3 and there is no predecessor-successor
relation between N2 and N3. At the subnet N1, since both of its successors
have been traversed, N1 is attached to them (depicted as N1 · (N2|N3) · N4)
and the dfs traversal terminates. �

Recall that a basic block (and its corresponding subnet) can have either zero,
one or two successors and are accordingly assigned one of the three types namely,
Last, Normal and Conditional; the attachment procedure of a subnet to its
successors is described under these three categories of the subnets. In the following
sections, the attributes of a basic block such as type, successor, predecessor, etc.,
and those of its subnet are used synonymously.

During the dfs traversal for attaching subnets, no processing is done when the
subnets of type Last are visited since the attachment step attaches a subnet with
its successors and such subnets have no successors. For the other two types of
subnets, the corresponding steps for attaching the successors are explained in the
following subsections where the attachment steps are explained using the example
given below.

Example: 3.5.2
Figures 3.12(a), (b) and (c) show the source program, the control flow

graph of the basic blocks and the PRES+ subnets corresponding to the indi-
vidual basic blocks, respectively. There is one Conditional subnet N2, two
Normal subnets, N3 and N4 and one Last subnet N5. In the following sections,

22

Figure 3.12: An example to illustrate the attaching of subnets

first the attachment of the subnet N3 and N4 to their unique successor N5 and
then the attachment of the subnet N2 to its successors are explained. �

Attaching Normal subnet

To attach a Normal subnet Nnorm to its unique successor Nsucc, each input place
pin of Nsucc is attached to the subnet Nnorm based on the type of the place pin as
described below.

pin is an Input port

Recall (from section 3.5.1) that the places of the type Input port are constructed
only for scanf statements and they take input tokens for the PRES+. Such places
are never added to the local input places array of a subnet; hence, this case does
not arise.

23

pin is of type Var or is an Output port

Let v be the variable associated with the place pin. If there exists an ldt (latest
defining transition) for v in the subnet Nnorm, then pin is attached as a post-place
to the transition. Otherwise, the place pin is added to the input places array of
the subnet Nnorm.

pin is of type Dummy

As mentioned while discussing the construction methodology given in the section
3.5.1, Dummy places are constructed as pre-places for transitions corresponding to
constant functions. Such transitions have no data dependence on any other transi-
tion though they may have a control dependence. However, in the present context,
since the place pin is being attached to a Normal subnet, there is no conditional
control dependence. Hence, the place pin is added to the input places array of
the subnet Nnorm.

Example: 3.5.3
In continuation of the example 3.5.2, the present example illustrates the

attachment procedure of the Normal subnets N3 and N4 to their unique succes-
sor N5; the resultant PRES+ is shown in the figure 3.13. To attach the Normal

subnet N3 to its unique successor N5, the input places p7 and p8 of N5 are
considered. The variable a associated with the place p7 has an ldt t3 in the
subnet N3; hence, p7 is attached as a post-place to t3. Similarly, the place p8

has b as the associated variable which does not have any ldt in N3; as a result
the place p8 is added to the input places array of the subnet N3.

The subnet N4 is attached to its unique successor N5 using a similar
method. The input places p7 and p8 of N5 are attached as post-places to
their common ldt t4. �

Attaching Conditional subnet

To attach a Conditional subnet Ncond to its two successors — the true successor
Nt and the false successor Nf — each input place pin of the two successors needs
to be attached to the subnet Ncond. The steps needed for the purpose are first
described using two examples and then a generalized procedure is given.

Example: 3.5.4
In continuation of the example 3.5.2, the present example illustrates the

attachment of the Conditional subnet N2 to its two successors N3 and N4; the
resultant PRES+ obtained after attachment is shown in figure 3.14. In order to
attach the conditional subnet N2 to its successors, the input places of the suc-
cessors are attached to N2 and are processed based on the variable associated
with them. In the concerned example, the set V of variables associated with
the input places of the two successors consists of the variables a and b. To
attach the successors N3 and N4 to N2, each variable in the set V is processed
one by one.

Considering the variable a first, two identity transitions t5 and t6 are con-

24

Figure 3.13: Resultant PRES+ after attaching the Normal subnets to the successors
for the PRES+ shown in the figure 3.12(c).

structed. Recall that in section 3.5.1, the conditional expression c associated
with the if clause in the subnet N2 (or more precisely, in the corresponding
basic block b2) was ignored. The conditional expression c and its negation ¬c
are assigned to the transitions t5 and t6 as the guards, respectively. The input
place p3 of the true successor N3 and p5 of the false successor N4 having a as
the associated variable are attached as post-places to the transitions t5 and
t6, respectively. A place p9 for the variable a is attached to the transitions t5
and t6 as a common pre-place and as a post-place to the corresponding ldt t1
of the variable a in the subnet N2. Since both transition function and guard
condition of the transitions t5 and t6 use only the variable a, no other pre-place
needs to be constructed for the transitions.

For the other variable b in the set V , transitions t7 and t8 are constructed
in a similar fashion as for the variable a. The input places p4 and p8 of the
true successor and p6 of the false successor having b as the associated variable
are attached as post-places to the transitions t7 and t8, respectively. A place

25

Figure 3.14: The PRES+ obtained from the one shown in the figure 3.13 after
attaching the Conditional subnet to its successors.

p10 is constructed for the variable b and attached to the transitions t7 and t8
as a common pre-place. Another place p11 with a as the associated variable is
constructed because the guard conditions of t7 and t8 use the variable and it
is not used in the transition functions of t7 and t8. The place p11 is attached
as a common pre-place to the transitions t7 and t8. The places p10 and p11 are
attached as post-places to their respective ldts t2 and t1 in the subnet N2. �

In the context of the figure 3.14, a question arises — why is it necessary to
create new identity transitions instead of adding a guard condition to the minimal
transitions of the two successors subnets N3 and N4 i.e., the transitions which
do not have any dependence on the transitions of N3 and N4. The necessity is
illustrated using the following example.

Example: 3.5.5
A C program and the corresponding control flow graph are shown in figure

3.4(a) and (b) respectively. Notice the two Conditional predecessors b2 and
b3 of the basic block b5.

In the PRES+ net for the program shown figure 3.15 notice the transition t3
belonging to the subnet (N5) which is a successor of two Conditional subnets
N2 and N3 and a Normal subnet N4. The transition t3 cannot be assigned

26

Figure 3.15: PRES+ net for the program shown in the figure 3.4.

a guard because it will be executed always; the only factor that needs to be
governed is the transition which shall provide token to the pre-place p3 of the
transition t3. To properly route the token to the place p3, guarded transitions
t4 and t6 are constructed and the three pre-transitions of p3 reflect the three
possible paths to reach the subnet N5 in the control flow graph. �

The method for attaching Conditional subnets

Figure 3.16: General structure of a Conditional subnet and its successors.

27

The attachment of the input places of the true (Nt) and the false (Nf) successors
of a Conditional subnet Ncond is governed by the variables associated with the
input places of Nt and Nf. Let v be the variable associated with some input places
of Nt (or Nf). Let P t

v and P f
v be the set of the input places of the subnets Nt and

Nf respectively with v as the associated variable, as shown in figure 3.16.

If either of the sets P t
v or P f

v is non-empty, then two identity transitions tt and
tf are constructed with c and ¬c as the guard condition respectively, where c is
the condition in the if clause of the Conditional subnet (corresponding basic
block) Ncond. All the places in the sets P t

v and P f
v are attached as post-places to

the transitions tt and tf, respectively.

A place p is constructed with v as the associated variable and attached as a
common pre-place to the transitions tt and tf. If an ldt exists for v in Ncond, then p
is attached as a post-place to the ldt ; otherwise, p is added to the input places

array of the subnet Ncond.

For each variable v′ used in the condition c other than the variable v, a place
p′ is constructed and attached as a common pre-place to the transitions tt and tf.
The place p′ is attached to Ncond in a manner similar to the attachment of the
place p.

Dummy input places of the successors:
The attachment procedure of the Dummy input places of Nt and Nf is similar to
that of the places with v as the associated variable with the difference being that
the place p (as shown in figure 3.16) is not constructed. Places are constructed
and processed for the variables used in the guard condition as described above.

3.6 Construction of PRES+ for programs contain-

ing loops

This section explains the enhancement of the model construction mechanism to
handle programs containing loops. The mechanism for detecting the subnets be-
longing to a loop body is explained first, followed by the steps for programs con-
taining loops without nesting. Next, the mechanism to extract parallelism between
a loop and the segments preceding and following it is explained; finally, the mech-
anism to handle programs containing nested loops is presented.

3.6.1 Subnets belonging to a loop body

To detect if a subnet belongs to a loop body or not a boolean variable called loop
is used. It maintained for each subnet and is initialized to false indicating that a
subnet does not belong to any loop. The value of this variable is modified while
backtracking in the dfs traversal as described below.

First for the subnets from which back edges emanate the variable loop is set as
true. For a Normal subnet Nn, if its successor belongs to a loop, then the subnet
Nn’s loop variable is also set to true. In case of a Conditional subnet which is not
a loop header if the successors belong to a loop, then the subnet itself also belongs

28

to a loop. For a loop header subnet, it belongs to a loop if its false successor has
its loop variable set to true.

3.6.2 Loops without nesting

Let Nl be the subnet corresponding to a non-nested loop body, Nh be the subnet
corresponding to the loop header and Ne be the subnet corresponding to the basic
block which is reached through the loop exit; thus, Nl and Ne are the two suc-
cessors of the conditional subnet Nh. The loop structures captured by the present
mechanism can be represented by the regular expression Nh(Nl)

∗Ne encompassing
for and while loops; do-while loops (with structures represented by the regular
expression NlNh(Nl)

∗Ne) are not encompassed.

Corresponding to a loop, a PRES+ subnet is constructed for the entire loop body
and attached to the rest of the PRES+. Thus, it may be noted that while construct-
ing Nl it is ensured that transitions having no dependence among themselves are
executed in parallel. The subnet for a non-nested loop body is obtained using the
same mechanism described for programs containing no loops because a non-nested
loop body is essentially a sub-program without any loop. For loops, another impor-
tant property is also to be ensured namely, prevention of simultaneous execution
of different loop iterations. This property guides the steps for attaching various
subnets to construct Nl and also while attaching Nl to Nh. First, the enhance-
ment necessary in the construction of Nl corresponding to a loop body (over the
process used for segments outside any loop); it also underlines the enhancement
needed in attaching Nl to Nh (over the process of attaching any conditional subnet
to its successors) and is illustrated using the following example; the generalized
procedure along with the rationale for various steps is then described.

Figure 3.17: Source code and the cfg of an example program containing a loop.

29

Figure 3.18: The PRES+ net consisting of unattached subnets corresponding to the
program given in figure 3.17.

Example: 3.6.1
Figure 3.17(A) and (B) show a C program containing a loop and the cor-

responding cfg, respectively. The PRES+ consisting of the unattached subnets
for the basic blocks and the overall PRES+ are shown in the figures 3.18 and
3.19, respectively.

Initially, all the subnets are marked as Not visited and the dfs traversal
for attaching the subnets begins with the subnet N2. The subnets N2, N4 and
N3 are traversed in that order and are marked as Visiting. When the dfs
traversal visits N4 again as a child of N3, the dfs backtracks because N4 is in
Visiting state and a loop (a back edge) is detected designating N4 as the
loop header and N3 as the loop body.

The subnet N3 is not only the true successor of the conditional subnet N4

but also is a loop body; hence, the construction cannot be considered to be
complete and ready for attachment with N4 and itself, unless it is ensured that
the ith firing instance of all its transitions (corresponding to the ith iteration)
precedes the (i + 1)th firing instance of any of its transition. To ensure such
strict sequentiality between two iterations of N3 the end of a loop iteration
is captured by a notion of maximum transition of the loop body. The loop
body, however, consists of multiple independent execution paths leading to
maximal transitions, a maximum transition, therefore, needs to be specially
constructed. In the concerned figure (3.19) the transition t4 is introduced as a
maximum transition and all the maximal transitions (t2 and t3) of the subnet
N3 are attached to t4 via Dummy places (p11 and p13). A Dummy place p18 is also
constructed for synchronizing the maximum transition of the subnet N4 with
its predecessor N3.

With the execution of the maximum transition, an iteration of loop body
completes and the next iteration can be started. To start an iteration of
a loop tokens need to be provided in the input places of the loop header,
which do not exist right now because the loop header gets its input places

30

Figure 3.19: The complete PRES+ net corresponding to the program given in figure
3.17.

after its attachment to its true and false successors. To resolve this issue,
live variables (defined in section 3.6.4) at the end of the subnet N3 are used.
Identity transitions namely t10, t11 and t12, are constructed for the variables
live at the end of the subnet N3 (or equivalently, at the beginning of the loop
header) namely, s, x and i, such that each transition defines a variable, as
shown in the figure. For the purpose of simulation using the CPN Tool, the
newly constructed identity transitions are assigned higher priority over of the
transitions in the rest of the PRES+ because the CPN Tool does not ensure that
all enabled transitions are fired simultaneously; by assigning the transitions a
higher priority, it is ensured that they are all fired prior to all their successor
transitions.

31

Figure 3.20: A subgraph of a cfg belonging to a loop body and the corresponding
disconnected PRES+ net of individual subnets.

For each of the transitions t10, t11 and t12, a pre-place associated with
the respective live variable and a Dummy place are constructed. The first set
of pre-places (associated with the live variables) are the post-places of the
corresponding ldts in N3; the second set of Dummy pre-places are post-places
of the maximum transition t4. These transitions thus get attached to N3

and become the new set of maximal transitions providing values for the next
iteration of Nl or the loop exit subnet Ne. Accordingly, the transitions t10, t11
and t12 are set as the ldts of the respective live variables.

After the above mentioned enhancement of N3, the dfs traversal backtracks
from N3 to its predecessor N4; the attachment of the subnet N4 to its successor
N3, however, is deferred as the the subnet N4 has an un-traversed successor
N5; the dfs traversal then visits N5. Since the subnet N5 is of type Last, the
dfs backtracks right away to the loop header subnet N4 again.

Having both its successors N3 and N5 traversed, the subnet N4 is now at-
tached to its successors using the procedure described for attaching a Conditional
subnet to its successors for programs without loops. In course of attachment
of N3 to N4, three new transitions are constructed for N3 namely, t5, t6 and t7.
Among these, t5 has an empty post-set because the variable s is not live at the
beginning of N3 and hence is attached to the maximum transition t4 via the
Dummy place p11. A maximum transition t13 is also constructed for the loop
header N3. Transitions t14 and t15 are constructed for attaching the maximum
transitions of the subnets as shown in the figure. Since the loop header N3

32

itself does not belong to a loop body, the maximum transition synchronization
place p23 is added to the input places array of the subnet.

Recall that the subnet N4 has so far remained empty. The construction of
the input places in the subnet N4 comes from general attachment procedure of
a conditional subnet with its successors. Now that the loop header subnet N4

has been attached to its successors, it is attached to the loop body N3 from
which back edges lead to the loop header subnet N4. For this purpose, the
procedure for attaching a Normal subnet to its successors with a modification
that the Dummy input places of N4 are attached as post-places to the maximum
transition of N3 is invoked on the subnet N3 is invoked on the subnet N3.

The dfs traversal then backtracks to the subnet N2 which is then attached
to its successor N4 following the usual procedure for attaching a Normal subnet
to its successor completing the construction of the overall PRES+. �

Figure 3.21: The attached PRES+ net corresponding to the program given in figure
3.20.

Example: 3.6.2
This example illustrates the need for interface variables and places. In the

figure 3.20(a) a part of a cfg is shown. Assume that the cfg shown in the figure

33

to be the body of some loop. Live variables at beginning and at the end of
each basic block are also mentioned in the figure. The figure 3.20(b) shows the
individual subnets corresponding to basic blocks of the cfg. The overall PRES+
obtained after attaching the subnets is shown in the figure 3.21. In the overall
PRES+ subnet boundaries are not necessary but are shown just for clarity. The
transition t7 in the subnet N5 would not have been constructed if only live
variables (or the input places of the successors) are used for constructing the
guarded id transitions. This would have halted the firing of the transition t5
when the control would have to the subnet N5 from N3 (the condition c2 being
false).

Hence, it is necessary to consider all variables which are live at end of
some predecessor of a subnet belonging to a loop body while constructing the
guarded identity transitions for synchronization of such a subnet. �

Procedure for attaching the PRES+ models of programs containing non-
nested loops:

The main issue for the loop is preventing simultaneous execution of different loop
iterations. In this section, some properties/characteristics over the subnets of the
loop body from which back edges lead to the loop header are stated first because
they are used in the mechanism. The attachment mechanism is presented next.
Let Nbe be the set of subnets of the loop body from which back edges exist to the
loop header subnet Nh. The following characteristics of the members of the loop
body are used in enhancing the algorithm for handling loops:

1. The members of Nbe from which back edges emanate are Normal subnets.

2. The control flows via exactly one subnet in the set Nbe in an iteration of the
loop.

The general structure of a program containing a loop is shown in figure 3.22
and is refereed to in the following explanation. After constructing the individual
subnets for all the basic blocks, the dfs traversal for attaching the subnets is
initiated from the first subnet in the cfg. When the dfs traversal reaches the
loop header subnet Nh, it is marked as Visiting; the dfs traversal visits the true
successor of Nh which is the first subnet in the loop body. The traversal eventually
reaches some subnet Nj from which another traversal step leads to Nh with status
“Visiting” implying that Nj is the last subnet in an execution path through the
loop. The backtracking begins at this point; with an invocation of appropriate
routines for attaching the subnets encountered during backtracking depending on
their types. All the subnets in the loop body are either Normal or Conditional,
hence, the corresponding routines presented for programs without loops to attach
the two types of subnets to their successor(s) are enhanced to prevent simultaneous
execution of two different loop iterations. The specific enhancement steps are
described in the following sections.

Attachment of Normal subnets belonging to a loop body:
The Normal subnets belonging to a loop body are further divided into two subcat-
egories. The first category Nbe comprises subnets which are in the set Nb having

34

Figure 3.22: The structure of a program containing a loop.

back edges leading to the loop header and the second category comprises the rest
of the Normal subnets belonging to the loop body. The mechanism for each type
is described below.

a. Subnets belonging to Nbe

For a subnet Nj ∈ Nbe, the following operations are performed. A maximum
transition tj, max of Nj is constructed and is attached to each maximal transition
t′ of the subnet Nj via a Dummy place pd as a post-place of t′ and a pre-place of
tj, max. The attaching procedure while backtracking is such that tj, max becomes
the last transition in the loop body for all the execution path segments of the loop
iterations which pass via the subnet Nj; hence the transition tj, max can be used as
a control point to mark the completion of an iteration of the loop body.

Since a new iteration of the loop begins when the input places of the loop header
get tokens, after the execution of the maximum transition tj, max, tokens may be
put into the input places of the loop header. But since the loop header has not
yet been attached to its successors, its list of input places is not yet available. To
resolve this issue, live variable analysis is used. The variables associated with the
input places of the loop header are essentially the variables live at the beginning
of the loop header (or equivalently, live at the end of the subnet Nj).

Hence, an identity transition tv is constructed for each variable v live at the
end of the subnet Nj. For each of these transitions a pre-place pv associated with
the respective live variable v and a Dummy pre-place pd are constructed. The first
set of pre-places (associated with live variables) are attached to the respective
ldts or added to the input places array of the subnet Nj, if the respective ldt
does not exist; the second set of Dummy pre-places are post-places of the maximum
transition tj, max of the subnet Nj. These newly constructed identity transitions are

35

now attached to Nj and become the new set of maximal transitions in Nj providing
values for the next iteration of Nl or the loop exit subnet Ne. Thus, these maximal
transitions are set as the ldts of the respective live variables.

A Dummy place is constructed and attached as a pre-place to the maximum
transition tj, max; the place is maintained as a synchronization place for the maxi-
mum transition tj, max and will be referred as maximum trans sync place of the jth

subnet. With these steps the processing of the subnet Nj concludes. You may note
that the subnet Nj is not yet attached to its successor subnet, the loop header.

b. Normal subnets not belonging to Nbe:
For a subnet Ni in this category, first the procedure for attaching a Normal

subnet to its unique successor used for programs without loops is invoked and
then a maximum transition tm for the subnet is constructed. The maximum trans
sync place of the Ni’s successor is attached as a post-place to the transition tm. A
Dummy place is constructed as the maximum trans sync place of Ni and attached
as a pre-place to the transition tm.

For the unique successor Nu of the subnet Ni the following steps are also per-
formed if there exists at-least one Conditional subnet of the subnet Nu. The
necessity for these steps is established in the example 3.6.2. A set called interface
variables Vintr is constructed by taking union of the live variables at the end of
the predecessors of the unique successor. An array of size MAX VARIABLEs called
interface places is maintained for each subnet. The ith index of the array stores
an index of a place to the array places[] in the overall PRES+ and has an initial
value of −1. For each variable v in the set Vintr, if the index v of the interface
places array is −1, then a new Dummy place pintr is constructed, stored at index v of
the array and attached as a pre-place to the maximum transition of the successor.
Otherwise, the place at the index v of the interface places array is set as pintr. The
place pintr is attached as a post-place to the maximum transition of the subnet
Nn.

Attachment of the Conditional subnets belonging to the loop body:
As stated earlier a Conditional subnet belonging to a loop body cannot have

a back edge from itself to the loop header. For a subnet Nc in this category a
maximum transition tm, c is constructed. and attached to the maximum trans
sync places of the two successors via guarded identity transitions as shown in the
figure 3.23. A maximum trans sync place is also constructed for the subnet Nc

and will be used while attaching Nc to its predecessors.
Afterwards, the set interface variables Vintr is constructed by taking union of

the live variables at the end of the predecessors of the two successors Nc. Let c
be the condition in the if-else statement of the subnet Nc (or the corresponding
basic block more precisely). For each variable v in the set Vintr two transitions tv
and t′v are constructed with c and ¬c as the guards, respectively. The transitions
tv and t′v are attached as pre-transitions to the input places of the two successors
of Nc having v as the associated variable. Pre-places to the transitions tv and t′v
are constructed in the same way as mentioned for the Conditional subnets not
belonging to a loop body. For each successor Nt and Nf, if the index v of the
interface places array is −1, then a new Dummy place pintr is constructed and is
stored at index v of the array. Otherwise, the index v is set as pintr. The place

36

Figure 3.23: Illustration of the maximum transitions of a Conditional subnet
and its successors’.

pintr of each successor is attached as a post-place to the respective transition tv or
t′v. If newly constructed, the place pintr is attached as a pre-place to the maximum
transition of the subnet it (pintr) belongs to.

Attachment of the loop header:
Let Nh be the loop header subnet of a loop. First, the method for attaching a

Conditional subnet belonging to a loop body to its successors is invoked on the
loop header. Latter the method for attaching a Normal subnet to its successor for a
program not containing any loop is invoked on each of the subnet Nj having a back
edge to the loop header with one additional step i.e. attaching the maximum
trans sync place as a post-place to the maximum trans of Nj. Each input place of
the loop header is successfully attached to a transition in the predecessor because
there exists a defining transition for each variable live at end of the predecessor
subnet belonging to the loop body. The Dummy input places of the loop header
are attached as post-places to the maximum transition of the the subnet Nj. The
maximum trans sync place is added to the input places array of the subnet Nh,
only if the subnet Nh does not belong to an outer loop’s loop body, detected from
the loop variable of its false successor.

3.6.3 Inter loop parallelism

If two loops have no data dependence between themselves, then the PRES+ model
should support their parallel executions, although they appear one after another in
the C program. This is achieved over more general situations as described below.
Let a basic block bi, which itself is not necessarily a loop, follow some loop in
the C program. If a transition belonging to the subnet Ni corresponding to the
basic block bi has no pre-place which gets a token generated in the loop body,
then it must be allowed to fire independent of the loop exit condition. Hence,
if a transition has no pre-place which gets a token from the loop body, then the

37

transition must be allowed to fire independently of the loop condition (imposed by
the guarded transitions at the beginning of the false successor of a loop). Reaching
definition analysis is used to check whether the variable v associated with an input
place pin of Ni is defined in the loop body or not. If the variable v is not defined
in the loop body, then it is either attached to the respective ldt in the loop header
or is added to the input places array of the loop header. This modification in
the attach-step of the successors for a loop header is sufficient to incorporate the
inter-loop parallelism, wherever possible.

3.6.4 Live variable analysis

Definition:
Recall from the section 3.6.2 (page 36) that live variable analysis is also

used in the attach mechanism. Following is an explanation of the live variable
analysis.

A variable v is said to be live at a point p in the cfg iff there exists a path
in the cfg originating from the point p along which the current value of the
variable v is used. �

Live variable analysis is another standard data-flow analysis technique de-
scribed in [1]. It provides the live variables at the beginning and at the end of
each basic block in form of bit vectors of lengths equal to the number of variables
in the program associated with these points and are called Livein and Liveout,
respectively. The ith bit of the bit vectors is decoded as follows:
The variable with the index i in the Symbol Table is a live variable at the point,
if and only if the bit is 1.

3.6.5 Loops with nesting

The dfs traversal for attaching subnets ensures that the PRES+ subnet for the
innermost loop is constructed first. The mechanism described in previous sections
is able to attach the subnet corresponding to an inner loop to the outer loop by
considering the inner loop as a single subnet.

3.6.6 Reaching definition analysis

Definition:
A definition d defining a variable v is said to be a reaching definition at a

point p in the cfg if there exists an execution path from d to p along which
the variable v is not redefined. �

Reaching definition analysis is a standard data flow analysis technique de-
scribed in [1]. It provides the reaching definitions at the beginning and at the
end of each basic block in the form of bit vectors of length equal to the number
of statements in the program associated with these points and are called RDin and
RDout, respectively. The ith bit of such a bit vector is decoded as follows:
The statement with unique index i is a reaching definition, at the point if and
only if the bit is 1.

38

Unique index of a statement:

The unique index of a statement is computed as:

Sui ← bbi ∗ MAX BB STATEMENTs + Sri (3.1)

Where:

Sui is the unique index of the statement Sri of the basic block bbi and

MAX BB STATEMENTs is the maximum number of statements in a basic blocks.

With this the discussion on the attach mechanism concludes and the algorithm 5
(page 61) summarizes the attach mechanism.

3.7 Construction of PRES+ for programs contain-

ing arrays

Figure 3.24: Various types of statements and transitions for arrays

In this section the enhancement of the PRES+ construction mechanism for han-
dling arrays is explained. Figure 3.24 shows three different types of statements
involving arrays that occur in a cfg. Note that only two new type of transitions
are introduced namely, write array transition for an array assignment or a scanf
statement reading an array element and read arr transition for an assignment
statement involving an array reference at the right hand side. A read arr transi-
tion has two pre-places, one holds tokens with values of the elements of an entire
array and the other assumes the index values; it has a post-place which holds a
token with the value of the indexed array element, as shown in the figure 3.24(A).
For a statement writing a value to an array an write arr transition is produced. It
has three input places, the first one holding tokens with the array element values
as its value, the second one with array index, and the third one containing the
value to be written at the ith index of the array and produces the array as output as
shown in the figure 3.24(B). For a statement reading the value of an array element
from input a write arr statement is constructed as shown in figure 3.24(C). The

39

place with the array itself as the associated variable is used to get the input token
and is highlighted as an input place. Note that each array in its entirety is treated
as a variable and are stored in the symbol table but with a range associated to
them. In the symbol table an new attribute is introduced for each symbol i.e.
range. It is the size of an array for arrays and −1 for the variables of type int.

Figure 3.25: A C program and the corresponding cfg containing an array.

3.8 Handling parallelized programs

C programs containing parallelization directives make no difference to the cfg gen-
erated by the gcc. The cfg is essentially the same cfg had there been no par-
allelization directives. Hence, the model construction mechanism is also able to
construct PRES+ models for C programs containing parallelization directives. An
example parallelized program and the corresponding cfg are shown in figures 3.27
and 3.28 respectively.

3.9 Reducing the size of the overall PRES+

To reduce the size of the overall PRES+, the following optimizations are performed.

3.9.1 Removal of identity transitions

Let tid be an identity transition having a pre-place ppre and post-places ppost, 1,
ppost, 2, . . . , ppost, j. Let tpre, 1, tpre, 2, . . . , tpre, i be the pre-transitions of the place
ppre. The id-transition tid and its pre-place ppre are removed; for each, 1 ≤ k ≤ i,
the transition tpre, k is made tho have all the places ppost, 1, ppost, 2, . . . , ppost, j as
its post-places. This step is pictorially depicted in the figure 3.29.

40

Figure 3.26: PRES+ corresponding the cfg shown in figure 3.25

Figure 3.27: Source code of a program containing parallelization constructs.

41

Figure 3.28: cfg for the source code given in the figure 3.27.

Figure 3.29: An example PRES+ before and after removal of identity transitions.

3.9.2 Removal of useless computation

Recall that the place for the variable defined by a transition is constructed only
when the the variable is used in some transition. In this optimization step, the un-
guarded transitions having an empty post-set are removed from the PRES+ along
with their set of the pre-places because this represents computation where values
are never used. The process is repeated for the transitions for which the post-places
set is reduced to empty because of the optimization until no more transitions are

42

Figure 3.30: An example illustrating removal of useless computation.

removed from the PRES+. The guarded transitions cannot be removed even if they
have empty sets of post-places because they perform the task of removing useless
tokens from the PRES+ as explained earlier. The optimization step is illustrated
using the following example.

Example: 3.9.1
The figure 3.30(A) shows a part of a PRES+ net. In the PRES+ net, the

transition t4 has an empty post-set and hence, it is removed from the PRES+

as shown in figure 3.30 (B). As a result, the transition t3 gets an empty post-
set. In this round the transition t3 is removed from the PRES+ to obtain the
PRES+ as shown in figure 3.30(C) and the process shall continues until no more
transitions can be removed. �

43

44

Chapter 4

Experimental Results

Program C code Original PRES+ Optimized PRES+

Lines Places Transitions Places Transitions

Factorial 9 39 23 37 21
Fibonacci 30 77 53 73 49

GCD 23 82 51 72 41
Perfect Number 19 89 55 85 51

Primality
Testing

18 67 42 64 39

Prime Factors 30 132 76 130 74
Sum natural

numbers
11 45 29 42 26

Triple loop 18 134 70 130 66
Square Root 18 74 43 69 38

Table 4.1: Summary of simulation of the PRES+ models for some example programs
in the CPN Tool.

This section provides outputs of the PRES+ construction module for some exam-
ple programs. The results for some C programs tested using CPN Tool simulation
are provided first. Next, the results obtained over the benchmark FSMDs are pro-
vided. Finally, PRES+ models for some C are shown.

4.0.1 C Programs

Table 4.1 summarizes the testing for various examples. Following is a description
of each test case. “Factorial”, “Fibonacci” and “GCD” are standard programs
each producing a single integer as output. “Perfect Number” and “Primality
Testing” produce the token value 1 at the output place if the input number is
perfect/prime respectively. “Prime Factors” uses the property of the CPN Tool

to gather multiple tokens in a place; it produces a token for each prime factor
in the output place. Although the tool always ensures that no place gets more
than one token but an output place inside a loop can get multiple tokens as in the
concerned example. “Sum Natural Number” is the standard program to calculate
the sum of first n natural numbers. “Triple Loop” is an extension of the “Sum

45

Natural Number” program; the one loop of the latter is enclosed in two loops each
iterating from 0 to n. Though it does not compute anything useful, it was used as
a test case for nested loops. The last program “Square root” calculates the integer
square root of a number. A python script was written to convert a PRES+ model
to the input (xml) format of the CPN.

4.0.2 Experimentation on the benchmark FSMDs

The table 4.2 summarizes the results obtained from execution of the benchmark
FSMDs[4] over PRES+ construction module. The FSMDs were first converted to the
corresponding C programs using Bison and Flex. They could not be simulated in
the CPN Tool because of their size.

Program FSMD Original PRES+ Optimized PRES+

States Places Transitions Places Transitions

barcode.org 32 2268 1237 2262 1231
barcode.schd 24 3470 1950 3459 1939

dct.org 8 97 72 75 50
dct.schd 16 96 71 75 50

DHRC.org 60 2055 1050 2044 1039
DHRC.schd 57 2502 1378 2491 1367
diffeq.org 15 84 47 81 44
diffeq.schd 9 93 52 84 43

ewf.org 31 89 57 75 43
ewf.schd 23 84 52 71 39

gcdLCM.org 9 172 98 168 94
gcdLCM.schd 6 375 227 371 223

gcd.org 8 158 90 156 88
gcd.schd 5 272 170 270 168

ieee754.org 55 2119 1167 2113 1161
ieee754.schd 44 2969 1727 2956 1714
lruLCM.org 32 1162 635 1157 630
lruLCM.schd 32 1185 651 1180 646

lru.org 33 1158 633 1153 628
lru.schd 32 1177 647 1172 642

modn.org 6 168 93 166 91
modn.schd 9 164 91 163 90
perfect.org 6 74 44 74 44
perfect.schd 4 82 50 81 49
prawn.org 122 1620 1686 1586 1652
prawn.schd 122 1628 1693 1594 1659

qrs.org 50 1053 826 1018 791
qrs.schd 24 1004 775 981 752
tlc.org 13 164 172 161 169
tlc.schd 7 363 382 360 379

Table 4.2: Summary of PRES+ model construction for benchmark FSMDs [4].

46

4.0.3 Some example PRES+ nets

A program without loops.

#include <stdio.h>

void main ()

{

/* Simple if -else example.*/

int a, b, c, d;

scanf ("%d", &c);

a = b = 0;

if (c > 0)

a = c + 10;

else

b = c - 10;

d = a + b;

printf ("%d", d);

}

Program 4.1: A simple C program containing only one if-else statement.

Figure 4.2: The optimized PRES+ model for the program 4.1 containing an if-else

statement.

47

Figure 4.1: The un-optimized PRES+ model for the program 4.1 containing an
if-else statement.

48

For loop

#include <stdio.h>

void main ()

{

/* Simple For example: Sum of First n OR 9 natural

numbers.*/

int s, x, i, n;

scanf ("%d", &n);

s = x = 0;

for (i = 0; i < n; i++)

{

x += i;

s = x;

}

printf ("%d", s);

}

Program 4.2: A C program containing only one for loop.

Figure 4.3: The optimized PRES+ model for the program 4.2 illustrating a for loop.

49

While loop

#include <stdio.h>

void main ()

{

/* Simple while Loop example: Calculates Fibonacci

. */

int f1 , f2 , n, s, i;

i = f1 = f2 = 1;

scanf ("%d", &n);

s = 0;

while (i < n)

{

i++;

s = f1 + f2;

f1 = f2;

f2 = s;

}

printf ("%d", s);

}

Program 4.3: A C program containing one while loop.

50

Figure 4.4: The PRES+ model for the program 4.3 illustrating a while loop.

51

Initialization of different arrays.

#include <stdio.h>

void main ()

{

int a1[10], a2[20], i, j;

for (i = 0; i < 10; i++)

a1[i] = 0;

printf ("%d", i);

for (j = 0; j < 20; j++)

a2[j] = 0;

}

Program 4.4: A C program containing initialization of two arrays in different loops.

Figure 4.5: The optimized PRES+ model for the program 4.4 illustrating inter loop
parallelism. The parallel execution of the two loops may be noted.

52

Chapter 5

Conclusion and future work

5.1 Conclusion

The model construction mechanism consists of constructing first the PRES+ mod-
els for all the basic blocks in isolation; accordingly, they appear as disconnected
sub-graphs, referred to as subnets; subsequently, they are attached to each other
to obtain the entire digraph for the PRES+ model of the complete program. The
data structures used to store the control flow graph (cfg) of the input program,
generated by the gcc and those used to represent a PRES+ model are provided
first, followed by the mechanism to construct PRES+ subnets for individual basic
blocks and attachment of the basic blocks to obtain the overall PRES+ model. The
description of the implementation has been organized to proceed from simpler pro-
gram constructs to more complex ones. Thus, the model construction mechanism
for programs containing only input, output, assignment and if-else statements
is explained first. The mechanism is then enhanced to construct models for pro-
grams containing loops, arrays and parallelization constructs. Thereafter, some
optimizations are provided on the PRES+ model. In the optimizations, data trans-
fer (identity) transitions and useless computation have been removed. Finally,
experimental results are provided.

5.2 Future Work

The method presented in this work handles only integer variables; the mechanism
can be extended to handle other data types also. Also, the mechanism needs to
be enhanced to handle exit control loops. Another concern is that the size of the
constructed PRES+ model is huge even after optimizations. An enhancement of the
PRES+ model with a reduction in size is provided in [3]. The given method can be
enhanced to produce this smaller PRES+ model. However, the existing analysis and
simulation tool (CPN Tool) reported in the work, available as a free software, will
also have to be updated to use such smaller sized representations of the models.

53

54

Appendix A

Algorithms

The various algorithms described in the implementation are summarized below.

A.1 Construction of PRES+ subnet for an individ-

ual basic block

55

Algorithm 1: const pp one bb (bba[], st, PP, Subnets[], k)

Inputs :

1. bba[]: Pointer to the array of basic blocks.
2. st: Pointer to the symbol table.
3. PP: Pointer to the overall PRES+ net.
4. Subnets[]: Pointer to the array used to identify the PRES+ corresponding

to a basic block in the overall PRES+ net.
5. k : Index of the basic block for which a PRES+ subnet is to be constructed.

Outputs:
1. PP: Pointer to the overall PRES+ net modified to contain the PRES+ subnet

for the kth subnet.
2. Subnets[]: Pointer to the Subnets[] array with its kth element modified

to contain the indices to the arrays places[] and transitions[] of the
overall PRES+ of the places and the transitions belonging to the kth subnet.

1 foreach statement s in the kth basic block do
/* For each statement of the given basic block in the order of appearance in the

basic block:*/

2 switch s.type do
3 case scanf:

4 v ← s.var // The variable read by the scanf statement.

5 pv ← const new place (PP, Subnets, k, v) /* Constructs a place

for v.*/

6 pd ← const new place(PP, Subnets, k, −1) /* Constructs a

Dummy place.*/

7 t← const new trans (PP, Subnets, k, NULL) /* Constructs an id

trans.*/

8 attach as pre place (PP, pv, t) // Attaches pv to t as a pre-place.

9 attach as pre place (PP, pd, t)
10 add to local input places array (Subnets, k, pd) /* Add pd to the

input places array of the kth subnet.*/

11 add to global input places array (PP, pv) /* Add pv to the input

places array of the overall PRES+.*/

12 Subnets[k].ldt[v] ← t // Set t as the ldt for v.

13 case printf:

14 v ← s.var // The variable printed by the statement.

15 pv ← const new place (PP, Subnets, k, v)
16 add to global output places array (PP, pv) /* Adds the place pv to

the output places array of the overall PRES+.*/

17 if Subnets[k].ldt[v] 6= −1 then
18 attach as pre place (PP, pv, t)
19 else
20 add to local input places array (Subnets, k, pv)
21 end

22 contd . . .

78 endsw

79 end

56

Algorithm 2: const pp one bb () contd. . .

23 case Asgnid:
24 vl ← s.var // Variable defined by the statement s.

25 vr ← get first operand (s.expr) /* The rhs operand is obtained from the

expression tree associated to the statement s.*/

26 if Subnets[k].ldt[v] 6= −1 then
/* An ldt exists for the variable vr.*/

27 Subnets[k].ldt[vl] = Subnets[k].ldt[vr] /* Set the ldt for the

variable vr as the ldt for vl.*/

28 else
/* An ldt does not exist for the variable vr.*/

29 t← const new trans (PP, Subnets, k, NULL) // Construct an identity

transition.

30 p← const new place (PP, Subnets, k, vr)
31 add to local input places array (Subnets, k, p)
32 attach as pre place (PP, p, t)

/* Set t as the ldt for both the variables vl and vr.*/

33 Subnets[k].ldt[vl] = t
34 Subnets[k].ldt[vr] = t

35 end

36 case Asgnunary:
37 t← const new trans (PP, Subnets, k, s.expr) /* Construct a new

expression transition for the statement s.*/

38 vl ← s.var
39 vr ← get first operand (s.expr) /* The rhs operand, −1 if operand is a literal;

index to the symbol table otherwise.*/

40 p← const new place (PP, Subnets, k, vr) /* p is a Dummy place, if

vr == −1; a Var place otherwise with vr as the associated variable.*/

41 attach as pre place (PP, p, t)
42 if vr = −1 ∨ Subnets[k].ldt[vl] = −1 then

/* Either vr is a literal or there exists no ldt for vr in the kth subnet.*/

43 add to local input places array (Subnets, k, p)

44 else
/* vr is a variable and there exists an ldt for vr.*/

45 attach as post place (PP, p, Subnets[k].ldt[vl])

46 end
47 Subnets[k].ldt[vl] = t // Set t as the ldt for vl.

48 contd . . .

57

Algorithm 3: const pp one bb () contd. . .

49 case Asgnbinary:
50 vl ← s.var
51 o1 ← get first operand (s.expr)
52 o2 ← get second operand (s.expr)
53 t← const new trans (PP, Subnets, k, s.expr) Subnets[k].ldt[vl]

= t // Set t as the ldt for vl.

54 if o1 = −1 ∧ o2 = −1 then
55 p← const new place (PP, Subnets, k, −1)
56 attach as pre place (PP, p, t)
57 add to local input places array (Subnets, k, p)

58 end
59 if o1 6= −1 then

/* First operand is a variable.*/

60 p1 ← const new place (PP, Subnets, k, o1)
61 attach as pre place (PP, p1, t)
62 if Subnets[k].ldt[o1] = −1 then
63 add to local input places array (Subnets, k, p1)
64 else
65 attach as post place (PP, p1, Subnets[k].ldt[o1])
66 end

67 end
68 if o1 6= −1 then

/* Second operand is a variable.*/

69 p1 ← const new place (PP, Subnets, k, o2)
70 attach as pre place (PP, p2, t)
71 if Subnets[k].ldt[o2] = −1 then
72 add to local input places array (Subnets, k, p2)
73 else
74 attach as post place (PP, p2, Subnets[k].ldt[o2])
75 end

76 end

77 end

58

A.2 Attaching individual subnets to obtain the

overall PRES+ model

Algorithm 4: dfs attach subnets wrapper (bba[], pp, Subnets[], st)

Inputs :

1. bba[]: The array of basic blocks (cfg).

2. pp: The disconnected PRES+ net consisting of individual subnets for all the
basic blocks.

3. Subnet[]: An array of type Subnet containing various attributes like
places, transitions, input places, input transitions etc. of the individual
subnets.

4. st: The symbol table.

Outputs: The overall PRES+ net in the variable pp itself as a value-return
argument.

/* Functionality: The function performs various initialization and invokes the depth first

traversal for attaching disconnected subnets of the overall PRES+. */

1 foreach subnet N in the Subnets[] array do
2 N.loop ← False // Initializes all the subnets as non loop body subnets.

3 N.visited ← Not Visited // Mark each subnet as not visited.

4 N.maximal trans count ← 0 // Initialize maximal trans count to zero.

5 N .maximum trans ← −1 // Initialize the maximum trans.

6 N .mt sync pl ← −1 // Initialize the maximum trans sync place.

7 foreach transition t belonging to the subnet N do
8 if t does not have a succeeding transition in the subnet N then

/* The transition t is a maximal transition of the subnet.*/

9 k ← N.maximal trans count

10 N.maximal trans[k] ← t // Add t to the maximal trans array.

11 N.maximal trans count + = 1

12 end

13 end
14 for i← 0 to MAX VARIABLEs do
15 N .interface place[i] ← −1 // Initialize interface place for var i.

16 end

17 end
18 dfs attach subnets (bba[], PP, Subnets[], 0, st) /* Invoke the dfs traversal

from the very first subnet.*/

59

Algorithm 5: dfs attach subnets (bba[], PP, Subnets[], i, st)

Inputs : The argument i holds the index of the current subnet. Other
input arguments have same meaning as explained in the
algorithm 4.

Outputs: This function does not return anything but modifies the value
return arguments.

/* Functionality: This function traverses the control flow graph in depth first manner.

While backtracking the current subnet is attached to its successor(s). Subnets[i] is

referred as N in the following algorithm. */

1 if N.status 6= Not Visited then
2 return;
3 end
4 N.status ← Visiting

// Contd. . .

60

Algorithm 6: dfs attach subnets () Contd. . .

/* Based on type of the subnet N , various operations are performed on a subnet.*/

5 if N is a Conditional subnet then
/* Invoke the dfs traversal for the two successors.*/

6 dfs attach subnets (bba[], PP, Subnets[], N.true succ, st)
7 dfs attach subnets (bba[], PP, Subnets[], N.false succ, st)
8 if N .true succ < N then

/* N is a loop header.*/

9 const maximum trans (PP, Subnets[], i) /* Constructs a new

maximum transition in the subnet N .*/

10 attach successors (PP, Subnets[], i) /* Attaches the N to its two

successors.*/

11 foreach predecessor Npred of N do
12 if Npred.status = VISITED then

/* The edge Npred→N forms a back edge.*/

13 attach successors (PP, Subnets[], Npred)

14 end

15 end

16 else if N .true succ.loop = True then
/* N is a Conditional subnet belonging to a loop body.*/

17 const maximum trans (PP, Subnets[], i)
18 attach successors (PP, Subnets[], i)

19 else
/* N is a Conditional subnet not belonging to any loop.*/

20 attach successors (PP, Subnets[], i)

21 end

22 else if N is a Normal subnet then
23 Ntrue succ ← N.true succ

24 switch Ntrue succ.status do
25 case VISITING:

/* N → Ntrue succ is a back edge.*/

26 const maximum trans (PP, Subnets[], i)
27 const defining trans (bba[], Subnets[], PP, i) /* Constructs

defining transitions for all the variables live at the end of the subnet N .*/

28 otherwise
29 dfs attach subnets (bba[], PP, Subnets[], N.true succ,

st)
30 attach successors(PP, Subnets[], i)

31 end

32 endsw

33 else
/* N is the last subnet, Do nothing.*/

34 end
35 bba[N].status ← VISITED

61

Algorithm 7: const maximum trans(PP, Subnets[], i)

Inputs : The input parameters have their usual meaning as in preceding
algorithms.

Outputs: Return type of this function is void.
/* This function constructs the maximum transition for the ith subnet. The construction

is reflected in the PRES+ PP and the Subnets[] array. Subnets[i] is referred as N in

the following algorithm. */

1 t← const new trans (PP, Subnets[], i, NULL) /* Constructs an id trans.*/

2 N.maximum trans ← t /* Set t as the maximum transition for the subnet.*/

3 foreach maximal transition t′ in the Subnets[i] do
/* Maximal transitions of a subnet are stored in the array maximal trans[] .*/

4 p← const new place(PP, Subnets[], i, −1) /* Constructs a Dummy

place.*/

5 attach as pre place (PP, p, t) // Attaches p to t as a pre-place.

6 attach as post place (PP, p, t′) // Attaches p to t as a post-place.

7 end

Algorithm 8: const defining trans(PP, Subnets[], i)

Inputs : The input parameters have their usual meaning as in the
preceding algorithms.

Outputs: The return type of this function is void.
/* This function constructs the defining transitions for the variables live at the end of

the ith subnet. The overall PRES+ PP and the Subnet[] array are modified as value

return arguments. Subnets[i] is referred as N in the following text. */

1 tm ← N.maximum trans // The maximum transition of the subnet.

2 foreach variable v live at the end of the ith subnet do
3 p← const new place(PP, Subnets[], i, v) /* Constructs a place for the

variable v.*/

4 t← const new trans (PP, Subnets[], i, NULL) /* Constructs an id

trans.*/

5 attach as pre place (PP, p, t) // Attaches p to t as a pre-place.

6 if N.ldt[v] 6= −1 then
/* An ldt exists for the variable v.*/

7 t′ ← N.ldt[v]
8 attach as post place (PP, p, t′)

9 else
/* An ldt does not exist for the variable v.*/

10 add to local input places array (Subnets[], i, p)

11 end
/* Attach t to the maximum transition of N as a succeeding transition.*/

12 p← const new place(PP, Subnets[], i, −1) /* Constructs a Dummy

place.*/

13 attach as pre place (PP, p, t) // Attaches p to t as a pre-place.

14 attach as post place (PP, p, tm) // Attaches p to tm as a post-place.

15 end

62

Algorithm 9: attach successors (PP, Subnets[], i)

Inputs : The input parameters have their usual meaning as in the
preceding algorithms.

Outputs: The overall PRES+ PP is modified to reflect the attachment of the
ith subnet with its successors.

/* In this function Subnets[i] and N are used synonymously. */

1 Nt ← N .true succ // True successor of N .

2 if N is a Normal subnet then
3 if Nt.loop = True then

/* The subnet Nt belongs to a loop body.*/

4 attach succ normal loop subnet (PP, Subnets[], i)

/* Attach the maximum trans of N to that of its successor’s.*/

5 t← N .maximum trans p← Nt.mt sync pl // Maximum trans sync

place of the succ.

6 attach as post place (PP, p, t)

7 else
/* The subnet Nt does not belong to any loop body.*/

8 attach succ normal non loop subnet (PP, Subnets[], i)

9 end

10 else if N is a Conditional subnet then
11 if Nt < i then

/* N is a loop header.*/

12 attach succ loop header (PP, Subnets[], i)
13 attach maximum trans (PP, Subnets[], i) /* Attaches a maximum

transition to its successors’ maximum trans.*/

14 else if Nt.loop = True then
/* N is a Conditional subnet belonging to a loop body.*/

15 attach succ conditional loop subnet (PP, Subnets[], i)
16 attach maximum trans (PP, Subnets[], i)

17 else
/* N is a conditional subnet not belonging to any loop.*/

18 attach succ conditional non loop subnet (PP, Subnets[], i)

19 end

20 else
/* N is the Last subnet, do nothing.*/

21 end

63

Algorithm 10: attach maximum trans (PP, Subnets[], i)

Inputs : The input parameters have their usual meaning as in the
preceding algorithms.

Outputs: The overall PRES+ PP and the Subnets[] array are modified to
reflect the attachment of the maximum transition of the ith

subnet to its successors’ maximum transitions.

/* The two successors of the subnet N .*/

1 Nt ← N .true succ
2 Nf ← N .false succ
44 const guarded id trans (PP, Subnets[], i , v, &tt, &tf) /* Constructs

guarded id trans for the given variable in the two successors.*/

5 p← const new place (PP, Subnets, Nf , -1) // A new Dummy place.

6 attach as post place (PP, p, N .maximum trans)
7 attach as pre place (PP, p, tt)
8 attach as pre place (PP, p, tf)

/* Attach the newly constructed transitions tt and tf to the respective maximum

transition sync places.*/

9 attach as post place (PP, Nt.mt sync pl, tt)
10 if Nf .mt sync pl 6= −1 then

/* There exists a maximum trans sync place in the false successor. It may not exist

if N is a loop header.*/

11 attach as post place (PP, Nf .mt sync pl, tf)

12 end

Algorithm 11: attach succ normal non loop subnet (PP, Subnets[], i)

Inputs : The input parameters have their usual meaning as in the
preceding algorithms.

Outputs: The overall PRES+ PP and the Subnets[] array are modified to
reflect the attachment of a Normal subnet not belonging to a
loop to the successor of the subnet.

1 Nt ← N .true succ // True successor of N .

2 foreach input place p of Nt do
3 if p.type = Dummy ∨N .ldt[v] = −1 then
4 add to local input places array (Subnets, i, p)
5 else
6 v ← p.var // The variable associated with the place p.

7 attach as post place (PP, p, N .ldt[v])

8 end

9 end

64

Algorithm 12: attach succ normal loop subnet (PP, Subnets[], i)

Inputs : The input parameters have their usual meaning as in the
preceding algorithms.

Outputs: The overall PRES+ PP and the Subnets[] array are modified to
reflect the attachment of a Normal subnet not belonging to a
loop to the successor of the subnet.

1 Nt ← N .true succ // True successor of N .

2 attach succ normal non loop subnet (PP, Subnets[], i)
44 iv ← get interface vars (bba[], Subnets[], i) /* Returns an array

containing the union of the live variables at the end of the predecessors of the subnet

N .*/

5 tm ← Nt.maximum trans // Maximum trans of the true succ.

6 foreach variable v in the array iv do
7 if Nt.interface places[v] = −1 then
99 p← const new place (PP, Subnets, i, -1) // A new Dummy place.

10 Nt.interface places[v] ← p
11 attach as pre place (PP, p, tm) // Attaches p to tm as a pre-place.

12 end

13 end

Algorithm 13: attach succ cond non loop subnet (PP, Subnets[], i)

Inputs : The input parameters have their usual meaning as in the
preceding algorithms.

Outputs: The overall PRES+ PP and the Subnets[] array are modified to
reflect the attachment of a Conditional subnet, not belonging
to any loop, to the two successors of the subnet.

/* The two successors of the subnet N .*/

1 Nt ← N .true succ
2 Nf ← N .false succ
3 c← N .cond // Contrition associated with the subnet N .

4 foreach variable v live at the end of the subnet N do
66 const guarded id trans (PP, Subnets[], i , v, &tt, &tf) /* Constructs

guarded id trans for the given variable in the two successors.*/

7 foreach input place p of Nt having v as the associated variable do
8 attach as post place (PP, p, tt)
9 end

10 foreach input place p of Nf having v as the associated variable do
11 attach as post place (PP, p, tf)
12 end

13 end

65

Algorithm 14: attach succ cond loop subnet (PP, Subnets[], i)

Inputs : The input parameters have their usual meaning as in the
preceding algorithms.

Outputs: The overall PRES+ PP and the Subnets[] array are modified to
reflect the attachment of a Conditional subnet, belonging to a
loop, to the two successors of the subnet.

/* The two successors of the subnet N .*/

1 Nt ← N .true succ
2 Nf ← N .false succ
3 ivt ← get interface vars (bba[], Subnets[], Nt) /* Returns an array

containing the union of the live variables at the end of the predecessors of the subnet

N .*/

4 ivf ← get interface vars (bba[], Subnets[], Nf)
5 iv ← ivt ∪ ivf // Take union of the two arrays.

6 c← N .cond // Condition associated with the subnet N .

7 foreach variable v in the array iv do
99 const guarded id trans (PP, Subnets[], i , v, &tt, &tf) /* Constructs

guarded id trans for the given variable in the two successors.*/

10 foreach input place p of Nt having v as the associated variable do
1212 attach as post place (PP, p, tt)

13 end
14 foreach input place p of Nf having v as the associated variable do
1616 attach as post place (PP, p, tf)

17 end
18 if Nt.interface places[v] = −1 then
2020 p← const new place (PP, Subnets, Nt, -1) /* A new Dummy place.*/

21 Nt.interface places[v] ← p
22 attach as pre place (PP, p, Nt.maximum trans) /* Attaches p to tm as a

pre-place.*/

23 else
24 p← Nt.interface places[v]
25 end
26 attach as post place (PP, p, tt)
27 if Nf .interface places[v] = −1 then
2929 p← const new place (PP, Subnets, Nf , -1)
30 Nf .interface places[v] ← p
31 attach as pre place (PP, p, Nf .maximum trans)

32 else
33 p← Nf .interface places[v]
34 end
35 attach as post place (PP, p, tf)

36 end

66

Algorithm 15: attach succ loop header (PP, Subnets[], i)

Inputs : The input parameters have their usual meaning as in the
preceding algorithms.

Outputs: The overall PRES+ PP and the Subnets[] array are modified to
reflect the attachment of a loop header to its two successors.

/* The two successors of the subnet N .*/

1 Nt ← N .true succ
2 Nf ← N .false succ
3 ivt ← get interface vars (bba[], Subnets[], Nt) /* Returns an array

containing the union of the live variables at the end of the predecessors of the subnet

N .*/

4 ivf ← get interface vars (bba[], Subnets[], Nf)
5 iv ← ivt ∪ ivf // Take union of the two arrays.

6 c← N .cond // Condition associated with the subnet N .

7 foreach variable v in the array iv do
99 const guarded id trans (PP, Subnets[], i , v, &tt, &tf) /* Constructs

guarded id trans for the given variable in the two successors.*/

10 foreach input place p of Nt having v as the associated variable do
1212 attach as post place (PP, p, tt)

13 end
14 foreach input place p of Nf having v as the associated variable do
15 if is var defined in loop (bba[], i, v) = True then
1717 attach as post place (PP, p, tf)

18 else
19 add to local input places array (Subnets, i, p)
20 end

21 end
22 if Nt.interface places[v] = −1 then
2424 p← const new place (PP, Subnets, Nt, -1) /* A new Dummy place.*/

25 Nt.interface places[v] ← p
26 attach as pre place (PP, p, Nt.maximum trans) /* Attaches p to tm as a

pre-place.*/

27 else
28 p← Nt.interface places[v]
29 end
30 attach as post place (PP, p, tt)
31 if Nf .interface places[v] = −1 then
3333 p← const new place (PP, Subnets, Nf , -1)
34 Nf .interface places[v] ← p
35 attach as pre place (PP, p, Nf .maximum trans)

36 else
37 p← Nf .interface places[v]
38 end
39 attach as post place (PP, p, tf)

40 end

67

Algorithm 16: get interface vars (bba[], Subnets[], i)

Inputs : The input parameters have their usual meaning as in the
preceding algorithms.

Outputs: Returns an array containing the interface variables for the ith

subnet.

1 iv ← φ // Initialize to an empty array

2 if ∃ a Conditional processor of N then
3 foreach processor pr of N do
4 iv ← iv ∪ pr.live out /* Union with the live vars at end of each

predecessor.*/

5 end

6 else
7 iv ← N .live in // Live vars at the beginning of N .

8 end
9 return iv;

Algorithm 17: is var defined in loop (bba[], i, v)

Inputs : The input parameters have their usual meaning as in the
preceding algorithms.

Outputs: Returns True if the given variable is defined in the given subnet;
False otherwise.

/* The two successors of the subnet N .*/

1 Nt ← N .true succ
2 Nf ← N .false succ
3 foreach definition d of the variable v in the reaching definitions-in set of

the basic block (subnet) Nf do
4 b← d mod MAX BB STATEMENTs /* b contains the index of the subnet basic

block to which the definition d belongs.*/

5 if Nt ≤ b ≤ i then
6 return True;
7 end

8 end
9 return False;

68

Algorithm 18: const guarded id trans (PP, Subnets[], i , v, &tt, &tf)

Inputs : The input parameters have their usual meaning as in the
preceding algorithms.

Outputs: This function constructs guarded identity transitions for the
variable v in the two successors of the ith subnet. The overall
PRES+ PP and the Subnets[] array are modified accordingly.

1 Nt ← Ni.true successor // The true successor of Ni.

2 Nf ← Ni.false successor // The false successor of Ni.

44 t← const new trans (PP, Subnets, i, NULL)
66 t′ ← const new trans (PP, Subnets, i, NULL)
88 t.guard← Ni.cond /* Set the condition c in the if clause of the Conditional subnet

Ni as the guard of the transition t*/

9 t′.guard← ¬Ni.cond /* Set the negation of the condition c*/

10 if v 6= −1 then
/* v does not represent a Dummy variable.*/

11 p← const new place(PP, Subnets, i, v)
12 attach as pre place (PP, p, t)
13 attach as pre place (PP, p, t′)
14 if Ni.ldt[v] 6= −1 then
15 attach as post place (PP, p, Ni.ldt[v])
16 else
17 add to local input places array (Subnets, i, p)
18 end

19 end
20 V ← Φ // An empty set of variables.

21 V ← {v′ s.t. v′ is a variable used in the condition c }
22 foreach variable x in the set V \{v} do
23 p← const new place(PP, Subnets, i, x)
24 attach as pre place (PP, p, t)
25 attach as pre place (PP, p, t′)
26 if Ni.ldt[x] 6= −1 then
27 attach as post place (PP, p, Ni.ldt[x])
28 else
29 add to local input places array (Subnets, i, p)
30 end

31 end
32 *tt ← t
33 *tf ← t′

69

70

Bibliography

[1] Alfred Aho, Jeffrey Ullman, Monica S. Lam, and Ravi Sethi. Compilers: Prin-
ciples, Techniques, and Tools. Addison Wesley, 2006.

[2] Soumyadip Bandyopadhyay, Dipankar Sarkar, and Chittaranjan A. Mandal.
An efficient path based equivalence checking for petri net based models of pro-
grams. In Santonu Sarkar, Ashish Sureka, Domenico Cotroneo, Nishant Sinha,
Vibha Singhal Sinha, Radhika Venkatasubramanyam, Padmaja Joshi, R. D.
Naik, Pushpendra Singh, and JayPrakash Lalchandani, editors, Proceedings of
the 9th India Software Engineering Conference, Goa, India, February 18-20,
2016, pages 70–79. ACM, 2016.

[3] Luis Alejandro Cortes, Luis Alej, Ro Corts, Petru Eles, and Zebo Peng. A petri
net based model for heterogeneous embedded systems. In in Proc. NORCHIP
Conference, pages 248–255, 1999.

[4] C. Karfa, D. Sarkar, C. Mandal, and P. Kumar. An equivalence-checking
method for scheduling verification in high-level synthesis. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 27(3):556–569,
March 2008.

71

	Title Page
	Declaration
	Certificate
	Acknowledgments
	Abstract
	Introduction
	Aim of the work
	Organization of the thesis

	PRES+ model
	Definition of PRES+ net
	An example of PRES+ model

	Implementation
	Input specification
	Output specification
	Data Structures for the control flow graph
	Symbol Table
	BB_array (Array of basic blocks)
	Basic_block
	Statement
	Expression Tree

	Data Structures for the PRES+ model
	Pres_Plus
	Place
	Transition
	Subnets[MAX_BBs]

	Construction of PRES+ for programs without loops
	Construction of a PRES+ subnet
	Attach PRES+ subnets

	Construction of PRES+ for programs containing loops
	Subnets belonging to a loop body
	Loops without nesting
	Inter loop parallelism
	Live variable analysis
	Loops with nesting
	Reaching definition analysis

	Construction of PRES+ for programs containing arrays
	Handling parallelized programs
	Reducing the size of the overall PRES+
	Removal of identity transitions
	Removal of useless computation

	Experimental Results
	C Programs
	Experimentation on the benchmark FSMDs
	Some example PRES+ nets

	Conclusion and future work
	Conclusion
	Future Work

	Algorithms
	Construction of PRES+ subnet for an individual basic block
	Attaching individual subnets to obtain the overall PRES+ model

	References

