
Low Power   Ajit Pal   IIT Kharagpur 1

Stream Ciphers

Debdeep Mukhopadhyay

Assistant Professor
Department of Computer Science and 

Engineering
Indian Institute of Technology Kharagpur

INDIA -721302

Objectives

• Classifications

• Feedback Based Stream Ciphers
– Linear Feedback Shift Registers
– m sequences
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Block vs Stream Ciphers

• Differences are not definitive.
• Blocks Ciphers process plaintext in large 

blocks.
• Stream Ciphers process plaintext in small 

blocks, even bits
• Pure Block ciphers are memory-less.
• Stream cipher encryption depends not 

only on the plaintext, key but also on the 
current state,

One Time Pad

• A Vernam cipher over the binary 
alphabet is defined by:

• Unconditionally secured, H(K)≥H(M)

,  for 1, 2,3,...i i ic m k i= ⊕ =
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One Time Pad

• Drawback: key as long as the 
plaintext.

• This motivates the design of stream 
ciphers where the key stream is 
generated from a small key.

• The intent is protection against 
computationally bounded adversary.

Synchronous Stream Ciphers
• Keystream is generated independently of 

the plaintext message and of the 
ciphertext.

• Encryption process:
– Updating a state variable using σi+1 = f(σi, k)
– Generating a key stream, zi = g(σi, k)
– Producing the ciphertext stream, Ci = h(zi, mi)

• E.g.: Binary Additive Stream Cipher: 
– streams are binary and h is ⊕
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General Model of a synchronous 
stream cipher

Properties of Synchronous Stream 
Ciphers

1. Synchronization Requirements: 
1. Sender and Receiver must be synchronized – using the 

same key and operating at the same state within that key
2. Insertion/Deletion may cause loss of synchronization
3. Re-synchronization may need re-initialization and/or 

special marks in the stream at regular intervals.
2. No Error Propagation: 

1. Modified digit does not affect decryption of other digits 
3. Active Attacks:

1. Insertion/Deletion/Replay cause loss of synchronization, 
thus is detected by the decryptor.

2. Due to lack of error propagation, the adversary can 
determine ciphertext and plaintext pairs.
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Self Synchronization Stream Ciphers

• A self-synchronizing or 
asynchronous stream cipher is one 
in which the key stream is generated 
as a function of:
– the key 
– a fixed number of previous ciphertext

digits.

Self Synchronization Stream Ciphers

– σi = (Ci-t, Ci-t+1, …, Ci-1) 
– zi = g(σi, k)     Ci = h(zi, mi)
– where σ0 = (C-t, C-t+1, …, C-1) is the initial 

state
– and zi is the keystream
– and ci is the cipher-stream
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General Model of a self-
synchronization stream cipher

Properties
• Self-synchronization: 

– possible with insertions/deletions (at most t digits may 
be lost)

• Limited Error Propagation:
– 1 digit modification/insertion/deletion may cause 

incorrect decryption of up to t digits.
• Active Attacks

– Modification can be detected due to incorrect 
decryption – better than synchronous stream ciphers.

– It is more difficult than for synch. stream ciphers to 
detect insertion / deletion / replay of ciphertext digits.

• Diffusion of plaintext statistics: Better
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Need for Modes of Block Ciphers

• Block Ciphers deal with blocks of data
• In real life there are two important issues:

– plaintext much larger than a typical block 
length of 128 bits

– plaintext not a multiple of the block length
• The obvious solution is the first mode, 

called the Electronic Code Book (ECB)
• These modes were first standardized in 

FIPS Publication 81 in 1980.

Example: 1 bit CFB
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Feedback Shift Registers
• They are the basic blocks of many keystream

generators.
– Linear Feedback Shift Registers (LFSRs)

– well suited for hardware implementations

– can produce sequences of large period

– good statistical properties

– can be analyzed by algebraic techniques

Linear Feedback Shift Registers
• An LFSR of length L consists of 

– L stages (or delay elements) capable of storing 1 bit 
each and 

– a clock controlling the movement of data.
• During each unit of time:

– Content of stage 0 is output
– Content of stage j is moved to stage j-1 for each j (1 to L-

1)
– New content of stage L-1 is the feedback bit computed 

as sum without carry of previous contents of a fixed 
subset of stages.
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An LFSR of length L

• Denoted as <L,C(D)>
– C(D)=1+c1D+…+cLDL is called the 

connection polynomial.
– L is the length of the LFSR 

Example

• Consider the LFSR <4,1+D+D4>
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Sequence of the LFSR

00117
00016
10005
01004
00103
10012
11001
01100
D0D1D2D3t

Sequence of the LFSR

011015
101114
010113
101012
110111
111010
11119
01118
D0D1D2D3t
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Periodicity of the LFSR sequences

• If C(D) is a connection polynomial of 
degree L
– and is irreducible over Z2, then each of 

the 2L-1 non-zero initial states of the 
LFSR produces an output sequence 
with period equal to the least positive 
integer N, such that C(D) divides 1+Dn

Periodicity of the LFSR sequences
• For some polynomials all the cycle 

lengths are equal to 2L-1.
• These polynomials are called primitive 

polynomials.
• The sequence is then called m-sequence.
• It has good statistical properties.
• Example: 1+D+D4 was also primitive and 

thus we obtained a maximum length 
LFSR.
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Reconstructing the LFSR?

• Given a sequence can we 
reconstruct the LFSR which 
generates the sequence.

Generating the sequence

• An LFSR is said to generate a 
sequence s if there is some initial 
state for which the output sequence 
of an LFSR is s. 

• A sequence of finite length n is 
denoted by sn.
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Linear Complexity

Linear Complexity of an infinite 
binary sequence s, denoted L(s) is 
defined as:
1. If s is the 0 sequence, L(s)=0
2. If no LFSR generates s, L(s)=∞
3. otherwise, L(s) is the length of the 
shortest LFSR that generates s.

Linear Complexity for a finite 
sequence

• Linear Complexity for a finite 
sequence sn, is the shortest LFSR 
that generates a sequence having sn

as its first n terms.
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Example

• Reconstruct an LFSR (of the shortest 
length) which generates the 
sequence 00111011.

Points to Ponder!

• Can you modify the LFSR with 
connection polynomial primitive to 
include the all 0 state?
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Further Reading
• D. Stinson, Cryptography: Theory 

and Practice, Chapman & Hall/CRC
• A. Menezes, P. Van Oorschot, Scott 

Vanstone, “Handbook of Applied 
Cryptography” (Available online)

Next Days Topic

• Stream Ciphers (contd.)


