
J Cryptogr Eng
DOI 10.1007/s13389-014-0082-x

New Algorithms for Batch Verification of Standard ECDSA
Signatures

Sabyasachi Karati · Abhijit Das · Dipanwita
Roychowdhury · Bhargav Bellur · Debojyoti
Bhattacharya · Aravind Iyer

Received: 1 January 2014 / Accepted: 27 June 2014

Abstract In this paper, several algorithms for batch verification of ECDSA signatures are
studied. The first of these algorithms is based upon the naive idea of taking square roots in
the underlying field. In order to improve the efficiency beyond what can be achieved by the
naive algorithm, two new algorithms are proposed which replace square-root computations
by symbolic manipulations. Experiments carried out on NIST prime curves demonstrate a
maximum speedup of above six over individual verification if all the signatures in the batch
belong to the same signer, and a maximum speedup of about two if the signatures in the
batch belong to different signers, both achieved by a fast variant of the second symbolic-
manipulation algorithm. In terms of security, all the studied algorithms are equivalent to
standard ECDSA* batch verification. These algorithms are practical only for small (6 8)
batch sizes. The algorithms are also ported to the NIST Koblitz curves defined over fields
of characteristic 2. This appears to be the first reported study on the batch verification of
standard ECDSA signatures.

Keywords Digital Signatures · Elliptic Curves · ECDSA · Batch Verification · Symbolic
Computation · Linearization

Mathematics Subject Classification (2000) 94A60 · 14H52 · 11T06 · 11T71 · 11Y16 ·
68W30

CR Subject Classification Mathematics of computing ∼ Number-theoretic computations ·
Security and privacy ∼ Digital signatures · Theory of computation ∼ Cryptographic
protocols · Computing methodologies ∼ Symbolic and algebraic algorithms · Proper nouns:
People, technologies and companies ∼ National Institute of Standards and Technology

This paper was presented in part at AfricaCrypt 2012

Sabyasachi Karati · Abhijit Das · Dipanwita Roychowdhury
Computer Science and Engineering, Indian Institute of Technology Kharagpur, India
E-mail: skarati, abhij, drc@cse.iitkgp.ernet.in

Bhargav Bellur · Debojyoti Bhattacharya · Aravind Iyer
General Motors Technical Centre India, India Science Lab, Bangalore, India
E-mail: bhargav bellur@yahoo.com, debojyoti.bhattacharya@gmail.com,
aravindiyer@facebook.com

2 Karati et al.

1 Introduction

Since the discoveries of Diffie and Hellman [7] and Rivest et al. [18], digital signatures have
been widely used to achieve source authentication and data integrity. At present, most digital
signature algorithms are based on two popular pubic-key algorithms:

– RSA signature scheme [18], the security of which is based on the difficulty of factoring
large composite integers.

– ElGamal signature scheme [8], the security of which is based on the difficulty of com-
puting discrete logarithms in certain groups, like multiplicative groups of finite fields and
groups of rational points on elliptic curves over finite fields. Two variants of this scheme
are accepted as standards: the digital signature algorithm (DSA) of NIST [16] and the
elliptic curve digital signature algorithm (ECDSA) from Johnson and Menezes [11].

To verify an ElGamal-like signature, one requires at least two finite-field exponentiations
(for DSA) or two elliptic-curve scalar multiplications (for ECDSA). Each such modular
exponentiation or scalar multiplication is a time-consuming operation.

Batch verification is used to verify multiple digital signatures in time less than total
individual verification time. The concept of batch verification is introduced by Naccache
et al. [14]. They propose an interactive DSA batch-verification protocol. In this protocol,
the signer generates t signatures through interaction with the verifier, and then the verifier
validates all these t signatures simultaneously.

Harn, in 1998, proposes an efficient scheme for the batch verification of RSA signa-
tures [9]. In this scheme (also see [10]), multiple signatures signed by the same private key
can be verified simultaneously. Harn’s scheme uses only one exponentiation for batches
of any size t. There are some weaknesses in this scheme. For example, if batch verifica-
tion fails, we cannot identify the faulty signature(s) without making individual verification.
Moreover, Harn’s scheme does not adapt to the case of signatures from multiple signers.

These protocols are not directly applicable to ECDSA signatures. ECDSA requires
smaller key and signature sizes than DSA and RSA, so there has been a growing interest
in ECDSA. ECDSA*, a modification of ECDSA introduced by Antipa et al. [1], permits an
easy adaptation of Naccache et al’s batch-verification protocol for DSA. Cheon and Yi [4]
study batch verification of ECDSA* signatures, and report speedup factors of up to 7 for
same signer and 4 for different signers. However, ECDSA* is not a standard, and is thus
unacceptable, particularly in applications where interoperability is of important concern.
More importantly, ECDSA* increases the signature size compared to ECDSA without any
increase in the security. Consequently, batch verification of original ECDSA signatures turns
out to be a practically important open research problem. To the best of our knowledge, no
significant result in this area has ever been reported in the literature.

In this paper, we propose three algorithms to verify standard ECDSA signatures in
batches. Our algorithms apply to all cases of ECDSA signatures sharing the same curve pa-
rameters, although we obtain good speedup figures when all the signatures in the batch come
from the same signer. Our algorithms are effective only for small batch sizes (like t 6 8).
The first algorithm we introduce (henceforth denoted as Algorithm N) is based upon a naive
approach of taking square roots in the underlying field. As the field size increases, square-
root computations become quite costly. We modify Algorithm N by replacing square-root
calculations by symbolic manipulations. We propose two ECDSA batch-verification algo-
rithms, called S1 and S2, using symbolic manipulations. Algorithm S1 is not very practical,
but is discussed in this paper, for it provides the theoretical and practical foundations for
arriving at Algorithm S2. For a wide range of field and batch sizes, Algorithm S2 convinc-

New Algorithms for Batch Verification of Standard ECDSA Signatures 3

ingly outperforms the naive Algorithm N. Both S1 and S2 are probabilistic algorithms in the
Monte Carlo sense, that is, they may occasionally fail to verify correct signatures. We ana-
lytically establish that for randomly generated signatures, the failure probability is extremely
low.

An application of our batch-verification algorithms is in secure vehicle-to-vehicle (V2V)
communications in vehicular ad hoc networks (VANETs) (see [6] for a survey). Since sig-
nature generation and verification are time-consuming operations, and since vehicles have
to verify signatures repeatedly, any algorithm that speeds up the authentication process is of
great help in V2V communications. In a busy street where a vehicle needs to authenticate
messages from multiple vehicles in real time, individual verification may result in practical
bottlenecks. In this situation, it is also expected that multiple messages from the same vehi-
cle get accumulated for being verified. This is precisely the case when our batch-verification
algorithms produce the maximum benefits. Like other batch-verification schemes, this per-
formance gain comes at a cost, namely, we forfeit the ability to identify individual faulty
signatures. Our algorithm (like any batch-verification algorithm) turns out to be useful only
when most signatures are authentic.

The rest of this paper is organized as follows. In Section 2, we identify the problems
associated with ECDSA batch verification. In this process, we introduce the ECDSA and
ECDSA* signature schemes, and set up the notations which we use throughout the paper. We
also introduce the naive batch-verification algorithm N in this section. Section 3 elaborates
our new algorithm S1 based upon symbolic manipulations. Section 4 presents an analytic
study of Algorithm S1. We furnish details about the running time, the cases of failure, and
the security of Algorithm S1. Some of the calculations are omitted in the main text and
supplied in the appendix. The running time estimates for Algorithm S1 indicate that this
algorithm is expected to perform poorly unless the batch size t is very small. In Section 5,
we improve upon this algorithm to arrive at Algorithm S2. Analytic results for Algorithm S2
are provided in Section 6. A heuristic capable of significantly speeding up Algorithms S1
and S2 is presented in Section 7. In Section 8, we list our experimental results, and compare
the performances of the three algorithms N, S1 and S2. We also study the performances of
three faster variants N′, S1′ and S2′ of these algorithms. Since randomization of the batch-
verfication process eliminates many attacks, we deal with the effects of randomization on
our algorithms in Section 9. Although we have concentrated only upon the NIST curves
over prime fields [15], our algorithms readily apply to other curves with cofactor 1. The
curves over binary fields defined in the same standard are not immediately suited to our
algorithms, since these curves correspond to cofactor values larger than 1. As mentioned in
[1], cofactor values larger than 1 can be easily handled by appending only a few bits of extra
information to standard ECDSA signatures. Assuming that these extra bits of information
are available, we port our algorithms to the Koblitz curves over binary fields, defined in
the NIST standard. The necessary modifications and the associated experimental results
are presented in Section 10. Section 11 concludes this paper after highlighting some future
research directions.

2 A Naive Approach

Throughout the rest of this paper, we plan to simultaneously verify t ECDSA signatures
(r1, s1), (r2, s2), . . . , (rt, st) on messages M1,M2, . . . ,Mt. We start with a description of
the ECDSA signature scheme from [11].

4 Karati et al.

2.1 ECDSA Domain Parameters

ECDSA is based upon some parameters common to all entities participating in a network.

q = Order of the prime field Fq .

E = An elliptic curve y2 = x3 + ax+ b defined over the prime field Fq .

P = A random non-zero base point in E(Fq).
n = The order of P , typically a prime.

h = The cofactor
|E(Fq)|

n
.

2.2 Assumptions

For the time being, we assume that h = 1, that is, E(Fq) is a cyclic group, and P is a
generator of E(Fq). This is indeed the case for certain elliptic curves standardized by NIST.
By Hasse’s theorem, we have |n − q − 1| 6 2

√
q. If n > q, an element of Zn has a

unique representation in Zq . On the other hand, if n < q, an element of Zn has at most two
representations in Zq . The density of elements of Zn having two representations in Zq is
6 2/

√
q which is close to zero for large values of q.

In an ECDSA signature (M, r, s), the values r and s are known modulo n. However, r
corresponds to an elliptic-curve point and should be known modulo q. If r corresponds to
a random point on E, it uniquely identifies an element of Fq with probability close to 1.
In view of this, we ignore the effect of issues associated with the ambiguous representation
stated above, in the rest of this article.

Note that the ambiguities arising out of h > 1 and/or q > n can be practically solved
by appending only a few extra bits to standard ECDSA signatures [1,4]. Consequently, our
assumptions are neither too restrictive nor too impractical.

2.3 The ECDSA Algorithm

Algorithm 1 computes the public key Q and the private key d of a signer. The ECDSA
signature (r, s) on a message M is generated by Algorithm 2. Algorithm 3 verifies the
ECDSA signature (r, s) on a message M .

Algorithm 1 ECDSA Key-pair Generation
INPUT: Domain Parameters.
OUTPUT: Public key Q, private key d.

1. The private key = d ∈R [1, n− 1].
2. The public key = Q = dP ∈ E(Fq).

New Algorithms for Batch Verification of Standard ECDSA Signatures 5

Algorithm 2 ECDSA Signature Generation
INPUT: Domain Parameters, message M and signer’s private key d.
OUTPUT: ECDSA signature (r, s).

1. k = A randomly chosen element in the range [1, n− 1] (the session key).
2. R = kP .
3. r = x(R) (the x-coordinate of R) reduced modulo n.
4. s = k−1(H(M) + dr) (mod n), where H is a cryptographic hash function like SHA-1 of [17].

Algorithm 3 ECDSA Signature Verification
INPUT: Domain Parameters, message M , signature (r, s) and signer’s public key Q.
OUTPUT: Accept/Reject.

1. w = s−1 (mod n).
2. u = H(M)w (mod n).
3. v = rw (mod n).
4. R = uP + vQ ∈ E(Fq). (1)
5. Accept the signature if and only if x(R) = r (mod n).

2.4 A Naive Algorithm for ECDSA Batch Verification

For t signed messages (Mi, ri, si), i = 1, 2, . . . , t, we have

t∑
i=1

Ri =

(
t∑
i=1

ui

)
P +

t∑
i=1

viQi. (2)

If all the signatures belong to the same signer, we have Q1 = Q2 = · · · = Qt = Q (say),
and the last equation simplifies to:

t∑
i=1

Ri =

(
t∑
i=1

ui

)
P +

(
t∑
i=1

vi

)
Q. (3)

The basic idea is to compute the two sides of Eqn (2) or Eqn (3), and check for the equality.
Use of these equations reduces the number of scalar multiplications from 2t to [2, t + 1],
where 2 corresponds to the case where all the signatures belong to same signer, and t + 1
corresponds to the case where the t signers are distinct from one another. However, only the
x-coordinates of Ri are known from the signatures. In general, there are two y-coordinates
corresponding to a given x-coordinate, but computing these y-coordinates requires taking
square roots modulo q, a time-consuming operation. Moreover, there is nothing immedi-
ately available in the signatures to remove the resulting ambiguity in these two values of y.
Finally, computing allRi using Eqn (1) misses the basic idea of batch verification, since after
this expensive computation, there is only an insignificant amount of effort left to complete
individual verifications of all the t signatures.

ECDSA*, a modification of ECDSA introduced by Antipa et al. [1], adapts readily to
the above batch-verification idea. Nonetheless, a naive algorithm for the batch verification
of original ECDSA signatures can be conceived of, as illustrated in Algorithm 4. Of course,
this is an obvious way of solving the ECDSA batch-verification problem, but we have not
found any previous mention of this algorithm in the literature. There are (usually) 2t choices
of the square roots yi of r3i + ari + b for all i = 1, 2, . . . , t. If any of these combinations
of square roots satisfies Eqn (2), we accept the batch of signatures. Step 6 turns out to be a

6 Karati et al.

costly operation. Moreover, Step 7 needs to check (at most) m = 2t possible conditions for
batch verification, and is also quite costly unless t is small.

Algorithm 4 ECDSA Batch-verification Algorithm N
INPUT: Domain Parameters, messages M1,M2, . . . ,Mt, corresponding signatures (r1, s1), (r2, s2),
. . . , (rt, st) and public keys Q1, Q2, . . . , Qt of the signers.
OUTPUT: Accept/Reject all the signatures

1. Compute wi = s−1
i (mod n) for all i = 1, 2, . . . , t.

2. Compute ui = H(Mi)wi (mod n) for all i = 1, 2, . . . , t.
3. Compute vi = riwi (mod n) for all i = 1, 2, . . . , t.
4. Compute R′ = (

∑t

i=1
ui)P +

∑t

i=1
viQi ∈ E(Fq).

Club together the points Qi from same signers during the computation of R′. For example, if all the
signatures belong to the same signer, compute R′ as (

∑t

i=1
ui)P + (

∑t

i=1
vi)Q.

5. For each i = 1, 2, . . . , t, if r3i + ari + b is neither zero nor a quadratic residue modulo q, reject the
i-th signature, and remove it from the batch.

6. For i = 1, 2, . . . , t, compute the square roots of r3i + ari + b modulo q.
7. For each square root yi of r3i + ari + b for all i = 1, 2, . . . , t, do the following:

If R′ =
∑t

i=1
(ri, yi), accept all the signatures.

8. Reject all the signatures.

We highlight here that using a single extra bit of information in an ECDSA signature,
one can unambiguously identify the correct square root of r3i + ari + b, and thereby avoid
the Θ(2t) overhead associated with Algorithm N. In that case, Step 7 of Algorithm 4 needs
to be updated appropriately. This updated (and efficient) version of the naive algorithm will
henceforth be denoted by Algorithm N′. Despite this updating, there is apparently nothing
present in ECDSA signatures, that provides a support for quickly computing the correct
square root. The basic aim of this paper is to develop algorithms to reduce the overhead
associated with square-root calculations. In effect, we are converting ECDSA signatures to
ECDSA* signatures. In that sense, this paper is not competing with but complementary to
the earlier works of [1,4] on ECDSA*.

2.5 ECDSA*

The ECDSA* signature (R, s) on a message M is computed by Algorithm 5. Algorithm 6
verifies the ECDSA* signature (R, s) on a message M .

Algorithm 5 ECDSA* Signature Generation
INPUT: Domain Parameters, message M and signer’s private key d.
OUTPUT: ECDSA signature (R, s).

1. k = A randomly chosen element in the range [1, n− 1] (the session key).
2. R = kP .
3. r = x(R) (the x-coordinate of R) reduced modulo n.
4. s = k−1(H(M) + dr) (mod n) (where H is a hash function).

Batch verification of ECDSA* signatures is a straightforward adaptation of the proce-
dure of [14]. One needs to check whether Eqn (2) (or Eqn (3)) holds. Since the entire points

New Algorithms for Batch Verification of Standard ECDSA Signatures 7

Algorithm 6 ECDSA* Signature Verification
INPUT: Domain Parameters, message M , signature (R, s) and signer’s public key Q.
OUTPUT: Accept/Reject.

1. w = s−1 (mod n).
2. u = H(M)w (mod n).
3. v = rw (mod n), where r = x(R).
4. R′ = uP + vQ ∈ E(Fq).
5. Accept the signature if and only if R′ = R.

Ri are present in the signatures, the left side of this equation can be computed efficiently and
unambiguously. But ECDSA* is still not accepted as a standard and results in increased sig-
nature sizes, so an algorithm that efficiently performs batch verification in presence of only
the partial information ri (only the x-coordinates of Ri) turns out to be practically useful.

3 A New Batch-verification Algorithm for ECDSA

In this section, we present a new algorithm to convert Eqn (2) or Eqn (3) to a form which
eliminates the problems associated with the lack of knowledge of the y-coordinates of Ri.
We compute the right side of Eqn (2) or Eqn (3) as efficiently as possible. The left side
is not computed explicitly, but symbolically in the unknown values y1, y2, . . . , yt (the y-
coordinates of R1, R2, . . . , Rt). By solving a system of linear equations over Fq , we obtain
enough information to verify the t signatures simultaneously. This new algorithm, called
Algorithm S1, turns out to be faster than Algorithm N for small batch sizes (typically for
t 6 4) and for large underlying fields.

3.1 Symbolic Computation of R =

t∑
i=1

Ri

Let Ri = (xi, yi). The x-coordinates xi = x(Ri) are available from the signatures, namely,
xi = ri or xi = ri + n. The second case pertains to the condition n < q and has a very low
probability. So we plan to ignore this case, and take xi = x(Ri) = ri. It is indeed easy to
detect when the reduced x-coordinate ri has two representatives in Fq , and if so, we repeat
Algorithm S1 for both these values.

Although the y-coordinate yi = y(Ri) is unknown to us, we know the value

y2i = r3i + ari + b (mod q) (4)

for all i = 1, 2, . . . , t, since Ri = (ri, yi) is a point on the curve E.
Let P1 = (h1, k1) and P2 = (h2, k2) be two non-zero points on E with P1 6= ±P2. The

sum P1 + P2 is another point (h, k) on E computed as follows:

λ = (k2 − k1)/(h2 − h1), (5)

h = λ2 − h1 − h2, (6)

k = λ(h1 − h)− k1. (7)

8 Karati et al.

Applying this formula repeatedly lets us have the following representation of the point R =∑t
i=1Ri:

R =

(
gx(y1, y2, . . . , yt)

hx(y1, y2, . . . , yt)
,
gy(y1, y2, . . . , yt)

hy(y1, y2, . . . , yt)

)
, (8)

where gx, gy, hx, hy are polynomials in Fq[y1, y2, . . . , yt]. In view of Eqn (4), we may as-
sume that these polynomials have yi-degrees 6 1 for all i = 1, 2, . . . , t. This implies that
the denominator hx(y) is of the form u(y2, y3, . . . , yt)y1 + v(y2, y3, . . . , yt). Multiplying
both gx and hx by u(y2, y3, . . . , yt)y1 − v(y2, y3, . . . , yt) and making use of Eqn (4), we
can eliminate y1 from the denominator. Repeating this successively for y2, y3, . . . , yt allows
us to represent the point R as a pair of polynomial expressions:

R = (Rx(y1, y2, . . . , yt), Ry(y1, y2, . . . , yt)) (9)

with the polynomials Rx and Ry linear individually with respect to all yi. It is useful to
clear the denominator after every symbolic addition instead of only once after the entire
sum R =

∑t
i=1Ri is computed symbolically. A pseudocode for the symbolic-addition

procedure is supplied as Algorithm 8 which uses Algorithm 7 for clearing the denominator
of rational functions.

Algorithm 7 Denominator Clearing in a Rational Function
INPUT: Rational function f/g with f, g ∈ Fq [yj , yj+1, . . . , yk], and x-coordinates rj , rj+1, . . . , rk .

OUTPUT: A polynomial in Fq [yj , yj+1, . . . , yk] equal to f/g.

STEPS

For i = j, j + 1, . . . , k, repeat the following steps:

1. Express g = uyi + v with u, v ∈ Fq [yi+1, yi+2, . . . , yk].
2. If u = 0 (that is, if yi does not appear in g), go to the top of the loop.
3. Set g = u2 × (r3i + ari + b)− v2.
4. For i′ = i+ 1, i+ 2, . . . , k, substitute y2

i′ by r3
i′ + ari′ + b in g.

5. Set f = f × (uyi − v).
6. For i′ = j, j + 1, . . . , k, substitute y2

i′ by r3
i′ + ari′ + b in f .

Output f/g. (After the above loop, f ∈ Fq [yj , yj+1, . . . , yk], and g ∈ Fq .)

In Appendix A, we establish that Rx is a polynomial with each non-zero term having
even total degree, whereas Ry is a polynomial with each non-zero term having odd total
degree.

From the right side of Eqn (2) or Eqn (3), we compute the x- and y-coordinates of R as

R = (α, β)

for some α, β ∈ Fq . This gives us two multivariate equations to start with:

Rx(y1, y2, . . . , yt) = α, (10)

Ry(y1, y2, . . . , yt) = β. (11)

New Algorithms for Batch Verification of Standard ECDSA Signatures 9

Algorithm 8 Symbolic Addition of Elliptic-curve Points
INPUT: x-coordinates rj , rj+1, . . . , rk ∈ Fq .

OUTPUT: Symbolic sum (Rx, Ry) =
∑k

i=j
(ri, yi) with Rx, Ry ∈ Fq [yj , yj+1, . . . , yk], (ri, yi) ∈

E(Fq).
STEPS

1. If j = k, return (rj , yj).
2. Set τ = b(j + k)/2c.
3. Recursively compute (R

(1)
x , R

(1)
y) =

∑τ

i=j
Ri.

4. Recursively compute (R
(2)
x , R

(2)
y) =

∑k

i=τ+1
Ri.

5. Compute λ = (R
(2)
y −R(1)

y)/(R
(2)
x −R(1)

x) as a rational function in yj , yj+1, . . . , yk .
6. Apply denominator clearing (Algorithm 7) on λ.
7. Set Rx = λ2 −R(1)

x −R(2)
x .

8. For i = j, j + 1, . . . , k, substitute y2i by r3i + ari + b in Rx.

9. Set Ry = λ× (R
(1)
x − x)−R(1)

y .
10. For i = j, j + 1, . . . , k, substitute y2i by r3i + ari + b in Ry .

3.2 Solving the Multivariate Equations

We treat Eqns (10) and (11) as linear equations in the monomials yi, yiyj , yiyjyk, and so
on. Rx contains non-zero terms involving only the even-degree monomials, that is, yiyj ,
yiyjykyl, and so on. Throughout the rest of this paper, we denote m = 2t. There are exactly
µ = 2t−1 − 1 = m

2 − 1 such monomials. We name these monomials as z1, z2, . . . , zµ, and
take out the constant term from Rx to rewrite Eqn (10) as

ρ1,1z1 + ρ1,2z2 + · · ·+ ρ1,µzµ = α1. (12)

If we square both sides of this equation, and use Eqn (4) to eliminate all squares of variables,
we obtain another linear equation:

ρ2,1z1 + ρ2,2z2 + · · ·+ ρ2,µzµ = α2. (13)

By repeated squaring, we generate a total of µ linear equations in z1, z2, . . . , zµ. We then
solve the resulting system and obtain the values of z1, z2, . . . , zµ.

If the system is not of full rank, we make use of Eqn (11) as follows. Each non-zero
term in Ry has odd degree. However, the equation R2

y = β2 (along with the substitution
given by Eqn (4)) leads to a linear equation in the even-degree monomials z1, z2, . . . , zµ
only. Repeated squaring of this equation continues to generate a second sequence of linear
equations in z1, z2, . . . , zµ.

We expect to be able to obtain µ linearly independent equations from these two se-
quences.

3.2.1 A Strategy for Faster Equation Generation

There are indeed other ways of generating new linear equations in z1, z2, . . . , zµ. Let

ρ1z1 + ρ2z2 + · · ·+ ρµzµ = γ (14)

10 Karati et al.

be an equation already generated, and let f(z1, z2, . . . , zµ) be any Fq-linear combination of
the monomials z1, z2, . . . , zµ. Simplification of the equation

(ρ1z1 + ρ2z2 + · · ·+ ρµzµ)f(z1, z2, . . . , zµ) = γf(z1, z2, . . . , zµ)

using Eqn (4) again yields a linear equation in z1, z2, . . . , zµ. The particular choice

f(z1, z2, . . . , zµ) = zi

with a small degree of zi leads to a faster generation of a new equation than squaring
Eqn (14). Our experiments indicate that we can generate a full-rank system by monomial
multiplications and a few squaring operations. Moreover, only Eqn (10) suffices to generate
a uniquely solvable linearized system.

3.2.2 Examples

First, consider t = 2. In this case, Rx contains only one unknown value y1y2, and the
equation Rx = α can be immediately solved to obtain y1y2.

For t = 3, we have 3 unknown monomials y1y2, y1y3 and y2y3. Three independent
linear equations are needed to solve for these values.

For t = 4, we have 7 unknown monomials y1y2, y1y3, y1y4, y2y3, y2y4, y3y4 and
y1y2y3y4. We need seven linearly independent equations in these variables.

Table 1 List of monomials in Rx for batch sizes t 6 6

Batch No. of Monomials
size (t) monomials (µ) (z1, z2, . . . , zµ)

2 1 y1y2
3 3 y1y2, y1y3, y2y3
4 7 y1y2, y1y3, y1y4, y2y3, y2y4, y3y4, y1y2y3y4
5 15 y1y2, y1y3, y1y4, y1y5, y2y3, y2y4, y2y5, y3y4, y3y5, y4y5,

y1y2y3y4, y1y2y3y5, y1y2y4y5, y1y3y4y5, y2y3y4y5
6 31 y1y2, y1y3, y1y4, y1y5, y1y6, y2y3, y2y4, y2y5, y2y6,

y3y4, y3y5, y3y6, y4y5, y4y6, y5y6, y1y2y3y4, y1y2y3y5,
y1y2y3y6, y1y2y4y5, y1y2y4y6, y1y2y5y6, y1y3y4y5,
y1y3y4y6, y1y3y5y6, y1y4y5y6, y2y3y4y5, y2y3y4y6,
y2y3y5y6, y2y4y5y6, y3y4y5y6, y1y2y3y4y5y6

Table 1 lists the even-degree monomials for all the values of t in the range 2 6 t 6 6.
Table 2 proposes possible sequences of monomial multiplication and squaring for generating
the linearized systems.

3.3 Retrieving the Unknown y-coordinates

The final step in Algorithm S1 involves the determination of the y-coordinates yi of the
points Ri. Multiplying both sides of Eqn (11) by y1 gives an equation of the form

βy1 = ε0 + ε1z1 + ε2z2 + · · ·+ εµzµ.

Substitution of the values of zi available from the previous stage gives y1 (provided that
β 6= 0). Subsequently, the values yi for i = 2, 3, . . . , t can be obtained by dividing the

New Algorithms for Batch Verification of Standard ECDSA Signatures 11

known value of y1yj by y1 provided that y1 6= 0. Even if y1 = 0, we can multiply Eqn (11)
by y2 to solve for y2. If y2 6= 0, we are allowed to compute yi = (y2yi)/y2 for i > 3. If
y2 = 0 too, we compute y3 by directly using Eqn (11), and so on. The only condition that
is necessary to solve for all yi values uniquely is β 6= 0, where β is the y-coordinate of the
point on the right side of Eqn (2) (or Eqn (3)).

We finally check whether Eqn (4) is valid for all i = 1, 2, . . . , t. If so, all the signa-
tures are verified simultaneously. If one or more of these equations fail(s) to hold, batch
verification fails.

3.4 Algorithm S1

Algorithm 9 describes our batch-verification Algorithm S1. In short, Algorithm S1 uniquely
reconstructs the points Ri with x(Ri) = ri. The computations do not involve taking mod-
ular square roots in Fq . We also avoid computing the points R′i = uiP + viQi needed in
individual verification. The final check in Step 13 guarantees that the reconstructed points
really lie on the curve. In the next section, we prove that the reconstruction process succeeds
with very high probability. Moreover, for small batch sizes, the reconstruction process is
efficient. The only cost we have to pay is a loss of our ability to identify individual faulty
signatures. When the batch-verification condition of Step 13 fails, we have to repeat the
algorithm on sub-batches or resort to individual verifications.

Algorithm 9 ECDSA Batch-Verification Algorithm S1
INPUT: Domain Parameters, messages M1,M2, . . . ,Mt, corresponding signatures (r1, s1), (r2, s2),
. . . , (rt, st) and public keys Q1, Q2, . . . , Qt of the signers.
OUTPUT: Accept/Reject all the signatures.

1. Compute wi = s−1
i (mod n) for all i = 1, 2, . . . , t.

2. Compute ui = H(Mi)wi (mod n) for all i = 1, 2, . . . , t.
3. Compute vi = riwi (mod n) for all i = 1, 2, . . . , t.
4. Compute R′ = (

∑t

i=1
ui)P +

∑t

i=1
viQi ∈ E(Fq).

Club together the points Qi from same signers during the computation of R′. For example, if all the
signatures belong to the same signer, compute R′ as (

∑t

i=1
ui)P + (

∑t

i=1
vi)Q.

5. If R′ is the point at infinity or if y(R′) = 0, resort to individual verification, else proceed as follows.
6. Let Ri = (ri, yi) with variables yi for all i = 1, 2, . . . , t.
7. Compute R = (Rx, Ry) =

∑t

i=1
Ri symbolically using the substitutions y2i = r3i + ari + b

whenever necessary. The polynomials Rx and Ry are linear with respect to each yi.
8. Generate equations Rx = α and Ry = β, where R′ = (α, β).
9. Createµ−1 = 2t−1−2 other equations by repeated squaring ofRx = α or by repeatedly multiplying

this equation by even-degree monomials in y1, y2, . . . , yt. Make the substitutions y2i = r3i +ari+ b
whenever needed.

10. Solve the linearized system to find out the values of all even-degree monomials of y1, y2, . . . , yt. If
the system is not uniquely solvable, resort to individual verification.

11. Multiply both sides of Ry = β by y1 and solve for y1.
12. Compute yi = y1yi/y1 from the monomials y1yi for all i = 2, 3, . . . , t. (If y1 = 0, solve for

y2, y3, . . . , yt as in Step 11.)
13. Accept all the signatures if and only if y2i = r3i + ari + b (mod q) for all i = 1, 2, . . . , t.

12 Karati et al.

4 Analysis of Algorithm S1

4.1 Time and Space Complexity

The number of monomials handled during the equation-generation and equation-solving
stages is µ = 2t−1 − 1 = m

2 − 1 which grows exponentially with t. Determination of the
Eqns (10) and (11) needs t− 1 symbolic additions involving rational functions with at most
Θ(m) non-zero terms. Each symbolic addition is followed by at most t uses of Eqn (4).
Therefore, the symbolic derivation of R requires O(mt2) operations in the field Fq . The
subsequent generation of the µ× µ linearized system requires O(m2t) field operations. Fi-
nally, Gaussian elimination on an µ×µ system demandsΘ(m3) field operations. Retrieving
individual yi values calls for O(mt2) (usually O(mt)) field operations. The running time
of Algorithm S1 is dominated by the linear system-solving stage. Evidently, Algorithm S1
becomes impractical except only for small values of t.

It is worthwhile to investigate the running time of the naive Algorithm N. First, this
algorithm needs to compute t modular square roots in the field Fq . Each such square-root
computation (for example, by the Tonelli-Shanks algorithm [19]) involves an exponentiation
in Fq . Subsequently, one needs to check at most m = 2t = 2(µ+ 1) conditions, with each
check involving the computation of the sum of t points on the curve. Therefore, the total
running time of Algorithm N is O((σ+m)t), where σ is the time for computing one square
root in Fq . Thus, Algorithm S1 outperforms Algorithm N only in situations where σ is rather
large compared to m. This happens typically when the batch size t is small and the field size
q is large.

The major memory requirement for Algorithm S1 is the storage of the coefficient matrix
of the linearized system. This is a µ×µ matrix, that is, Θ(µ2) = Θ(22t) field elements need
to be stored. The naive method, on the other hand, needs the storage of Θ(t) square roots
(field elements) only.

4.2 Unique Solvability of the Linearized System

In Step 10 of Algorithm 9, we solve a linearized µ× µ system in order to obtain the values
of the even-degree monomials in the unknown y-coordinates y1, y2, . . . , yt. Let us call these
monomials z1, z2, . . . , zµ and the coefficient matrix M . In order that the linearized system
is uniquely solvable, we require detM 6= 0. We now investigate how often this condition is
satisfied, and also how we can force this condition to hold in most cases.

For a moment, let us treat the x-coordinates r1, r2, . . . , rt as symbols. But then the
failure condition detM = 0 can be rephrased in terms of a multivariate polynomial equation
in r1, r2, . . . , rt. Let us denote this equation as D(r1, r2, . . . , rt) = 0. If D is identically
zero, then any values of r1, r2, . . . , rt constitute a root of D. We explain shortly how this
situation can be avoided.

Assume that D is not identically zero. Let δ be the maximum degree of each individual
ri in D. In Appendix B, we derive that

δ 6
(
22t+3dlog2 te+2 + 3

)(
22
t−1−1 − 1

)
≈ 22

t−1+2t+3dlog2 te+1.

If we restrict our attention to the values t 6 6, we have δ 6 254. In Appendix C, we show
that the maximum number of roots of D is bounded below tδqt−1. The total number of t-
tuples (r1, r2, . . . , rt) over Fq is qt. Therefore, a randomly chosen tuple (r1, r2, . . . , rt) is a

New Algorithms for Batch Verification of Standard ECDSA Signatures 13

root of D with probability 6 tδqt−1/qt = tδ/q. If we use the inequalities t 6 6, δ 6 254

and q > 2160, we conclude that this probability is less than 2−103. Therefore, if D is not
the zero polynomial, we can solve for z1, z2, . . . , zµ uniquely with very high probability.

What remains is to propose a way to avoid the condition D = 0. We start with any t
randomly chosen ECDSA signatures with r-values r1, r2, . . . , rt. We then choose any se-
quence of squaring and multiplication by zi (Step 9 in Algorithm 9) in order to arrive at a
linear system in z1, z2, . . . , zµ. If the corresponding coefficient matrix M is not invertible,
we discard the chosen sequence of squaring and multiplication. This is because detM = 0
implies that either D is the zero polynomial or the chosen r1, r2, . . . , rt constitute a root
of a non-zero D. The second case is extremely unlikely. With high probability, we, there-
fore, conclude that the chosen sequence of squaring and multiplication gives D = 0 iden-
tically. We change the sequence, and repeat the above process until we come across the
situation where r1, r2, . . . , rt do not constitute a root of the non-zero polynomial equation
D(r1, r2, . . . , rt) = 0. This implies that D is not identically zero, and randomly chosen
r1, r2, . . . , rt satisfy D(r1, r2, . . . , rt) = 0 with very low probability. We keep this se-
quence for all future invocations of our batch-verification algorithm, since this will work
almost always.

Some sequences of squaring and multiplication, that work for all NIST prime curves are
listed in Table 2. In the table, S stands for a squaring step, whereas a monomial (like y2y4)
stands for multiplication by that monomial. In all these cases, we use only Eqn (10), whereas
Eqn (11) is used only for the unique determination of individual yi values. These sequences
depend upon t alone, but not on the NIST curves. For curves other than the NIST curves,
this method is expected to work equally well. Indeed, we may consider D(r1, r2, . . . , rt)
as a polynomial in Z[r1, r2, . . . , rt]. If D is not identically zero, then it is identically zero
modulo only a finite number of primes (the common prime divisors of the coefficients of
D).

Table 2 Sequences to generate linearized systems for NIST prime curves

t Sequence in Step 9 of Algorithm 9
2 No squaring or multiplication needed
3 y1y2, y1y3
4 y1y2, y1y3, y1y4, y2y3, y3y4, y1y4
5 y1y2, y1y3, y1y4, y1y5, y2y3, y2y4, y4y5, y1y2, y1y3, y1y4, y1y5, y1y2, y2y4, y2y3
6 y1y2, y1y3, y1y4, y1y5, y1y6, y2y3, y2y4, y2y5, y1y2, y3y4, y3y5, y1y5, y1y6, y1y2y3y6, y1y5,
y1y4, y1y3, y1y2y3y6, y1y2, y1y3, y1y4, y1y5, y2y5, y2y3, S, y2y6, y4y6, y3y6, y5y6, y1y5

4.3 Security Analysis

In Algorithm S1, we reconstruct the points Ri with x-coordinates x(Ri) = ri by forcing
the condition R =

∑t
i=1Ri =

∑t
i=1R

′
i = R′, where R′i = uiP + viQi. Suppose that

an adversary too can force the condition R = R′. The adversary must also reveal the x-
coordinates r1, r2, . . . , rt as parts of ECDSA signatures. Given these x-coordinates and the
condition R = R′, there exists (with high probability) a unique solution for the correspond-
ing y-coordinates y1, y2, . . . , yt of R1, R2, . . . , Rt. This solution can be computed by the
adversary, for example, using Algorithm S1 (or by taking modular square roots in Fq as in
Algorithm N). So long as t is restricted to small constant values (like t 6 6), the adversary

14 Karati et al.

requires only moderate computing resources for determining y1, y2, . . . , yt uniquely. This
implies that although the adversary needs to reveal only the x-coordinates ri, (s)he essen-
tially knows the full points Ri. But these points R1, R2, . . . , Rt satisfy the standard batch-
verification condition for ECDSA*. That is, if the adversary can fool Algorithm S1, (s)he
can fool the standard ECDSA* batch-verification algorithm too. It, therefore, follows that
Algorithm S1 is no less secure than the standard batch-verification algorithm for ECDSA*.
Conversely, if an adversary can fool any ECDSA* batch-verification algorithm, (s)he can al-
ways fool any ECDSA batch-verification algorithm, since ECDSA signatures are only parts
of corresponding ECDSA* signatures. To sum up, Algorithm S1 is as secure as ECDSA*
batch verification. For the security of the standard batch-verification algorithm for ECDSA*
(or DSA), we refer the reader to [14].

The above argument is based upon the unique solvability of y1, y2, . . . , yt. If this is not
the case, our algorithm resorts to individual verification. Moreover, we have argued that this
unwelcome situation can be made extremely improbable.

An analysis of the security of Algorithm N is also worth including here. Suppose that
an adversary can pass one of the m = 2t checks in Algorithm N along with disclosing
r1, r2, . . . , rt. The correct choices yi of the square roots of r3i +ari+b (that is, those choices
corresponding to the successful check) constitute a case of fulfillment of the ECDSA* batch-
verification criterion. Consequently, Algorithm N too is as secure as standard ECDSA*
batch verification.

4.4 Cases of Failure for Algorithm S1

Our Monte Carlo batch-verification Algorithm S1 may fail for a few reasons. We now argue
that these cases of failure are probabilistically very rare.

1. Taking xi = ri blindly is a possible cause of failure for Algorithm S1. As discussed ear-
lier, this situation has a very low probability. Furthermore, it is easy to identify when this
situation occurs. In case of ambiguity in the values of xi, we can repeat Algorithm S1
for all possible candidate tuples (x1, x2, . . . , xt). If the points Ri are randomly chosen
in E(Fq), most of these xi values are unambiguously available to us, and there should
not be many repeated runs (if any) of Algorithm S1. Repeated runs, if necessary, may
be avoided, because doing so goes against the expected benefits achievable by batch
verification.

2. Although we are able to identify good sequences of squaring and multiplication in Step 9
in order to force the determinant polynomialD(r1, r2, . . . , rt) to be not identically zero,
roots of this polynomial may appear in some cases of ECDSA signatures. We have seen
that if r1, r2, . . . , rt are randomly chosen, the probability of this situation is no more
than 2−103. However, an adversary may supply roots of D as r1, r2, . . . , rt, thereby
forcing our algorithm to resort to individual verification. Clearly, the adversary gains
nothing in this case, but our algorithm forfeits the desired speedup.

3. The derivation of Eqn (8) is based upon the point-addition formula on the curve E. The
doubling formula (corresponding to the case P1 = P2) has a different value for λ. Point
additions of the form U + (−U) cannot also be handled by the addition formula. So
long as we work symbolically using the unknown quantities y1, y2, . . . , yt, it is impos-
sible to predict when the two points being added turn out to be equal or opposite. If
R1, R2, . . . , Rt are randomly chosen from E(Fq), the probability of this occurrence is
extremely low. However, an attacker may force the case of such degenerate sums as sug-
gested by Bernstein et al. [3]. Failure of batch verification on a collection of signatures

New Algorithms for Batch Verification of Standard ECDSA Signatures 15

anyway calls for a treatment of the signatures in smaller groups and/or individually. In
doing so, one detects the error associated with Algorithm S1. Another alternative is to
randomize the batch-verification process (see Section 9).

4. Algorithm S1 fails if R′ is the point at infinity or lies on the x-axis (β = 0). In that case,
one should resort to individual verification. For randomly chosen session keys, this case
occurs with a very small probability (nearly 4/q).

5 A More Efficient Batch-Verification Algorithm

The linearization stage in Algorithm S1 (requiring O(m2t) field operations) and the sub-
sequent Gaussian-elimination stage (requiring O(m3) field operations) are rather costly, m
being already an exponential function of the batch size t. Our second symbolic-manipulation
algorithm S2 avoids these two stages altogether.

Algorithm S1 uniquely solves for the monomials z1, z2, . . . , zµ using the equationRx =
α only. At this point, there are only two possible solutions for the yi values: (y1, y2, . . . , yt)
and (−y1,−y2, . . . ,−yt). This sign ambiguity is eliminated by using the other equation
Ry = β. As mentioned in connection with the security analysis of Algorithm N, the exact
determination of these signs is not important. In other words, we would be happy even if
we can determine each yi correctly up to multiplication by ±1. This, in turn, implies that
if we have any multivariate equation (linear in yi) of the form uyi + v = 0 (where u, v
are polynomials in y1, . . . , yi−1, yi+1, . . . , yt), we do not mind multiplying this equation by
uyi−v so that±yi satisfy u2y2i −v

2 = 0. But y2i = r3i +ari+ b, so we have u2i (r
3
i +ari+

b)− v2i = 0, an equation in which yi is eliminated. This observation leads to Algorithm S2.

5.1 Algorithm S2

Like Algorithm S1, we first symbolically compute R =
∑t
i=1Ri, and arrive at Eqns (10)

and (11). Then, we consider only the multivariate equationRx−α = 0 linear individually in
each yi. We first eliminate y1, and with substitutions given by Eqn (4) for i = 2, 3, . . . , t, we
arrive at a multivariate equation in y2, y3, . . . , yt, again linear in each of these variables. We
eliminate y2 from this equation, and arrive at a multivariate equation in y3, y4, . . . , yt. We
repeat this process until all variables y1, y2, . . . , yt are eliminated. If the polynomial after all
these eliminations reduces to zero, we know that the original equation Rx = α is consistent
with respect to y2i = r3i + ari + b for all i = 1, 2, . . . , t.

We may likewise eliminate y1, y2, . . . , yt from Ry−β = 0 too, but this is not necessary,
because it suffices to know yi uniquely up to multiplication by ±1.

Algorithm 10 summarizes the steps of this improved Algorithm S2.

5.2 Implementation Issues

Some comments on efficient implementations of the elimination stage (Step 10) are now in
order. First, we are not using Eqn (11) at all in Algorithm S2. Consequently, it is not neces-
sary to compute the polynomial Ry . However, in the symbolic-computation stage (Step 8),
we need to compute all intermediate y-coordinates, since they are needed in the final value
of Rx. The computation of only the last y-coordinate Ry may be avoided. Still, this saves
quite some amount of effort (O(mt) field operations, to be precise). This saving does not

16 Karati et al.

Algorithm 10 ECDSA Batch-verification Algorithm S2
INPUT: Domain Parameters, messages M1,M2, . . . ,Mt, corresponding signatures (r1, s1), (r2, s2),
. . . , (rt, st) and public keys Q1, Q2, . . . , Qt of the signers.
OUTPUT: Accept/Reject all the signatures.

1. Compute wi = s−1
i (mod n) for all i = 1, 2, . . . , t.

2. Compute ui = H(Mi)wi (mod n) for all i = 1, 2, . . . , t.
3. Compute vi = riwi (mod n) for all i = 1, 2, . . . , t.
4. Compute R′ = (

∑t

i=1
ui)P +

∑t

i=1
viQi ∈ E(Fq).

Club together the points Qi from same signers during the computation of R′. For example, if all the
signatures belong to the same signer, compute R′ as (

∑t

i=1
ui)P + (

∑t

i=1
vi)Q.

5. If R′ is the point at infinity or if y(R′) = 0, resort to individual verification, else proceed as follows.
6. For each i = 1, 2, . . . , t, if r3i + ari + b is neither zero nor a quadratic residue modulo q, reject the
i-th signature, and remove it from the batch.

7. Let Ri = (ri, yi) with variables yi for all i = 1, 2, . . . , t.
8. Compute R = (Rx, Ry) =

∑t

i=1
Ri symbolically using the substitutions y2i = r3i + ari + b

whenever necessary.
9. Let φ = Rx − α.

10. For i = 1, 2, 3, . . . , t− 1, eliminate yi from φ as in the following steps:
If φ is identically zero, resort to individual verification.
Otherwise, write φ = uyi + v where u, v are polynomials in yi+1, . . . , yt.
If u is the zero polynomial, resort to individual verification.
Set φ = u2(r3i + ari + b)− v2.
Substitute y2j in φ by r3j + arj + b for j = i+ 1, . . . , t.

11. Accept all the signatures if and only if φ = 0.

affect the theoretical complexity of Step 8 in the big-Oh notation, but its practical effects are
noticeable.

The second issue is that the polynomials u and v computed in Step 10 have some nice
properties. Throughout this step, φ and v are polynomials with each non-zero term having
even degree, whereas u is a polynomial with each non-zero term having odd degree. In
particular, when the first t − 2 y-coordinates are eliminated, we have φ = uyt−1yt + v

with u, v ∈ Fq . Elimination of yt−1 eliminates yt too, so an explicit elimination of yt is not
necessary, that is, it suffices to let the loop of Step 10 run for i = 1, 2, . . . , t− 1 only.

5.3 Reconstruction of y1, y2, . . . , yt

This step is unnecessary (and is not included) in Algorithm S2, but is explained here for
theoretical interest only. Suppose that a set of t ECDSA signatures with the x-coordinates
r1, r2, . . . , rt passes Algorithm S2. We remember all φ values of the form φ = uyi + v in
Step 10. We then work back to obtain two solutions for the y-coordinates y1, y2, . . . , yt. Just
before yt−1 is eliminated, we have φ = uyt−1yt+v with u, v ∈ Fq . Since φ will eventually
reduce to zero, some square roots of r3t−1 + art−1 + b and r3t + art + b satisfy φ = 0.
If yt−1, yt are two such square roots (computed by the Tonelli-Shanks algorithm [19]), the
other solution of φ = 0 at this point is −yt−1,−yt.

Now, let us assume that we have computed two solutions yi+1, yi+2, . . . , yt and −yi+1,

−yi+2, . . . ,−yt. We now look at the elimination step for yi, that is, φ = uyi + v with
u, v ∈ Fq[yi+1, yi+2, . . . , yt]. Since φ = 0 gives yi = −v/u with v a polynomial with non-
zero terms of even degrees and with u a polynomial with non-zero terms of odd degrees, the
substitution of the two sets of values of yi+1, . . . , yt gives exactly two values ±yi.

New Algorithms for Batch Verification of Standard ECDSA Signatures 17

Here, we have assumed that u evaluates to a non-zero value for the computed values of
yi+1, . . . , yt. If, however, we have u(yi+1, . . . , yt) = 0, we must also have v(yi+1, . . . , yt)
= 0 too, since otherwise we cannot reduce φ to zero after the remaining eliminations of
yi+1, . . . , yt. In this case, plugging in any value of y2i allows the algorithm to succeed, that
is, the information y2i = r3i + ari+ b is not utilized during the elimination of yi. Therefore,
if this situation occurs, we resort to individual verification. Since u and v are polynomials
of degrees much smaller than q, this situation occurs with vanishingly small probabilities.

Eventually, we compute two solutions y1, y2, . . . , yt and−y1,−y2, . . . ,−yt ofRx = α.
The sign ambiguity is eliminated by using the other batch-verification condition Ry = β,
provided that β 6= 0. The case β = 0 is handled by Step 5 of Algorithm S2.

The running time of this reconstruction procedure is O(mt2 + σ). Here, σ is the time
for computing a square root in Fq . It follows that this reconstruction procedure is practical
in all cases where running the algorithms N and S1 is practical.

The condition detM = 0 (Step 10 of Algorithm 9) was necessary for Algorithm S1 to
work. Such a condition is not needed for Algorithms N and S2. Moreover, Steps 11 and 12
of Algorithm S1 (determination of individual yi values) are cryptographically unimportant,
since Rx = α already identifies exactly two solutions for the reconstructed points. If these
steps are omitted, the batch-acceptance criterion of Step 13 has to be changed. We compute
z2i for all i = 1, 2, . . . , µ, and match these values against appropriate products of r3j+arj+b.
In fact, it suffices to consider only the monomials zi of degree 2. Note, however, that the
unique determination of all yi values takes only an insignificant amount of time compared
to Steps 7–9 in Algorithm S1. Therefore, it does not practically matter to make a choice
between whether we carry out these steps or not.

6 Analysis of Algorithm S2

6.1 Time and Space Complexity

The symbolic computation of (Rx, Ry) involves O(mt2) field operations (as in Algorithm
S1). Subsequently, we start with the polynomial φ = Rx − α with at most µ+ 1 = m

2 + 1
non-zero terms. Elimination of yi requires computing the squares u2 and v2, carrying out the
polynomial arithmetic u2(r3i + ari + b)− v2, and t− i substitutions of y2j by r3j + arj + b.
Therefore, the reduction of φ too requires O(mt2) field operations. This is significantly
better than the O(m3) operations needed by Algorithm S1. Moreover, Algorithm S2 out-
performs Algorithm N for a wide range of t and q, since the condition (σ +m)t � mt2 is
more often satisfied than the condition (σ +m)t� m3.

For Algorithm S2, the major storage requirement is that for the polynomial φ. This
multivariate polynomial hasm/2 non-zero terms, so the space complexity is that ofΘ(m) =
Θ(2t) field elements.

6.2 Security Analysis

We establish the equivalence between the security of Algorithm S2 and the security of stan-
dard ECDSA* batch verification, as we have done for the earlier algorithms (N and S1).
Suppose that an adversary reveals the x-coordinates r1, r2, . . . , rt in ECDSA signatures
which pass the batch-verification procedure of Algorithm S2. The procedure described in

18 Karati et al.

Section 5.3 indicates that there are exactly two solutions

(y1, y2, . . . , yt) and (−y1,−y2, . . . ,−yt)

consistent with φ = 0 (Step 9 of Algorithm S2) and y2i = r3i +ari+b for i = 1, 2, . . . , t. One
of these solutions corresponds to the ECDSA* signatures based upon the disclosed values
r1, r2, . . . , rt. It is that solution that would pass Ry = β. To sum up, the adversary can forge
the standard ECDSA* batch-verification algorithm. Moreover, this forging procedure which
essentially involves the unique reconstruction of the points Ri = (ri, yi) is practical for any
adversary with only a moderate amount of computing resources, so long as t is restricted to
small values (the only cases where we can apply S2).

6.3 Cases of Failure for Algorithm S2

Algorithm S2 may fail for a variety of reasons. Most of these reasons are identical to those
associated with Algorithm S1 (see points 1, 3 and 4 in Section 4.4). However, unlike Al-
gorithm S1, Algorithm S2 does not generate or solve the linearized system. It instead uses
a separate elimination idea. Here, we require φ to be never identically equal to zero before
all variables y1, y2, . . . , yt are eliminated. This is motivated by that we require all of the t
y-coordinates to play active roles in the elimination phase. If pi denotes the probability that
φ becomes identically zero during the elimination of yi, then the probability of failure of
Algorithm S2 inside the loop of Step 10 is

p1 + (1− p1)p2 + (1− p1)(1− p2)p3 + · · ·+ (1− p1)(1− p2) · · · (1− pt−2)pt−1

≈ p1 + p2 + · · ·+ pt−1

≈ pt−1

(recall that yt−1 and yt are eliminated together). In Appendix D, we show that for q > 2160

and t 6 8, this failure probability is 6 2−246. Algorithm S2 can be randomized exactly like
Algorithm S1 (see Section 9).

7 Efficient Variants of S1 and S2

In Algorithm S1, we generate a system of linearized equations in m
2 − 1 = 2t−1 − 1

monomials (Steps 7–9). The resulting equation is solved in Step 10 which turns out to be
the costliest step of Algorithm S1, demanding Θ(m3) field operations.

In Algorithm S2, on the other hand, Step 8 turns out to be the most time-consuming
step. This step calls for Θ(mt2) field operations. Step 10 too calls for Θ(mt2) operations.
Any improvement in these steps speeds up Algorithm S2.

In this section, we explain a strategy to reduce the number of monomials in Algo-
rithms S1 and S2. So far, we have been symbolically computing the point R =

∑t
i=1Ri,

and equating the symbolic sum to R′ = (α, β). This results in polynomial expressions with
Θ(2t−1) (that is, Θ(m)) non-zero terms.

Now, let τ = dt/2e. We symbolically compute the two sums:

R(1) =

τ∑
i=1

Ri and R(2) = R′ −
t∑

i=τ+1

Ri. (15)

New Algorithms for Batch Verification of Standard ECDSA Signatures 19

The polynomial expressions involved in R(1) and R(2) contain only Θ(2τ), that is, Θ(
√
m)

non-zero terms. Computing these two symbolic sums, therefore, needs Θ(2τ τ2), that is,
Θ(
√
mt2) field operations which is significantly smaller than the Θ(mt2) operations asso-

ciated with the symbolic computation of the complete sum
∑t
i=1Ri. The conditionR = R′

is equivalent to the condition R(1) = R(2). Using this new condition helps us in speeding
up the subsequent steps too.

The symbolic sum R(1) can be computed using Algorithm 8. For computing R(2), one
may first compute the symbolic sum

∑t
i=τ+1Ri by Algorithm 8, and subsequently add

the opposite of this point to the explicit point R = (α, β) ∈ E(Fq). This symbolic addition
involves denominator clearing and substitutions (4) for i = τ+1, . . . , t. A faster approach is
to computeR(2) asR′+

∑t
i=τ+1(−Ri) = R′+

∑t
i=τ+1(ri,−yi). This situation is similar

to the case of Algorithm 8 with two modifications. For the first summand, the y-coordinate
is explicitly available as an element of Fq . Consequently, this y-coordinate is not considered
in the denominator-clearing procedure of Algorithm 7. For the other summands, the elliptic-
curve point being added is (ri,−yi) instead of (ri, yi). Therefore, Step 1 of Algorithm 8
should return (rj ,−yj).

7.1 Algorithm S1′

Step 7 of Algorithm S1 can be replaced by the two symbolic additions given by Eqn (15). In
that case, we replace Step 8 by the initial generation of two equations x(R(1)) = x(R(2))
and y(R(1)) = y(R(2)). It is easy to argue that x(R(1)) is a polynomial in y1, y2, . . . , yτ
with each non-zero term having even degree, whereas y(R(1)) is a polynomial in y1, y2, . . . ,
yτ with each non-zero term having odd degree. That is, the number of non-zero terms
in these two expressions is 2τ−1 =

√
m
2 . However, the presence of R′ = (α, β) on the

right side of the expression for R(2) (Eqn 15) lets both x(R(2)) and y(R(2)) contain all
(square-free) monomials in yτ+1, yτ+2, . . . , yt (both even and odd degrees). There are ex-
actly 2bt/2c − 1 6

√
m − 1 monomials in these two expressions. In the linearized system

that we subsequently generate, we consider, as variables, only the even-degree monomials in
y1, y2, . . . , yτ and all monomials in yτ+1, yτ+2, . . . , yt. To start with, we have one equation
x(R(1)) = x(R(2)) in these Θ(

√
m) monomials.

Subsequently, we keep on squaring the equation x(R(1)) = x(R(2)) (and substituting
values of y2i wherever necessary). This sequence does not increase the number of monomi-
als in the linearized equations. More precisely, for any j > 0, the equation x(R(1))2

j

=

x(R(2))2
j

contains only the Θ(
√
m) monomials with which we start. If we fail to obtain

a linearized system of full rank, we start squaring the other initial equation y(R(1)) =

y(R(2)). For any j > 1, the equation y(R(1))2
j

= y(R(2))2
j

again contains only the
monomials with which we start. In all the cases studied, we have been able to obtain a full-
rank linearized system by squaring the two initial equations. Since the number of linearized
variables in Θ(

√
m), the total cost of Step 9 of Algorithm S1 now reduces to O(mt) field

operations. Finally, in Step 10, we solve a system with Θ(
√
m) variables. This step calls for

Θ(m3/2) field operations.
To sum up, using the trick introduced in this section decreases the number of field op-

erations from Θ(m3) to Θ(m3/2). Let us plan to call this efficient variant of S1 as S1′.
Fundamentally, S1′ is not a different algorithm from S1. In particular, the security of S1′ is
the same as the security of S1 (in fact, little better, because fewer linearized equations are

20 Karati et al.

involved). However, the reduction in the running time is very significant, both theoretically
and practically. The space complexity too improves from Θ(m2) to Θ(m).

7.2 Algorithm S2′

Instead of starting with φ = Rx − α (Step 9 of Algorithm S2), we start with the initial
expression

φ = x(R(1))− x(R(2)). (16)

We then repeatedly eliminate y1, y2, . . . , yt as in Step 10. Although the initial expression of
φ contains much less number of monomials than in the original Algorithm S2, elimination of
y1 itself introduces many new monomials in φ, that is, soon φ becomes almost full. Conse-
quently, Step 10 continues to makeΘ(mt2) field operations as before, that is, the theoretical
running time of S2′ is the same as that of S2. The space complexity also remains the same
as S2, namely, Θ(m) field elements. Still, the effects of our heuristic are clearly noticeable
in practical implementations.

As described in Section 5.2, the y-coordinates y(R(1)) and y(R(2)) need not be com-
puted. It is, however, necessary to symbolically compute the y-coordinates of all intermedi-
ate sums.

This variant of Algorithm S2, in which Step 8 is replaced by the computations given by
Eqn (15), and Step 9 is replaced by the initialization given by Eqn (16), is denoted as S2′.
Notice that S2′ is not fundamentally different from S2. For example, the security of S2′ is
identical to that of S2.

7.3 Cases of Failure for Algorithms S1′ and S2′

From the viewpoint of failure analysis, the variants S1′ and S2′ are identical to Algo-
rithms S1 and S2, respectively. The coefficients in the monomials can be treated as poly-
nomials in r1, r2, . . . , rt. For S1′ and S2′, these polynomials have smaller total degrees in
rj’s than S1 and S2. Consequently, the failure probabilities arising out of detM being zero
(for S1 and S1′) or of φ becoming identically zero before all elimination rounds are smaller
for S1′ and S2′ than for S1 and S2. A more precise upper bound on these failure probabilities
can be computed for S1′ and S2′. However, since S1 and S2 already enjoy negligibly small
failure probabilities, an exact determination of these probabilities for S1′ and S2′ would be
of theoretical interests only, and is omitted here.

8 Experimental Results

Our batch-verification algorithms are implemented using the GP/PARI calculator [5]. Our
choice of this implementation platform is dictated by the symbolic-computation facilities
and an easy user interface provided by the calculator. Simplification of polynomial expres-
sions and rational functions using Eqn (4) has been carried out by our customized functions.
Although GP/PARI provides the built-in function substpol() for this purpose, using this
function leads to a slow implementation, particularly when we are simplifying rational func-
tions. All experiments are carried out in a 2.33 GHz Xeon server running Mandriva Linux
Version 2010.1. The GNU C compiler 4.4.3 is used for compiling the GP/PARI calculator.
Our version of GP/PARI is 2.3.5.

New Algorithms for Batch Verification of Standard ECDSA Signatures 21

In Table 3, we have listed the average times for carrying out single scalar multipli-
cations in the NIST elliptic curves over prime fields. When a batch of t signatures is of
concern, individual verification calls for 2t such scalar multiplications, whereas batch veri-
fication involves between 2 and t+ 1 (both inclusive) scalar multiplications, irrespective of
which batch-verification algorithm we use. Table 3 also lists the times for single square-root
calculations in the underlying fields.

Table 4 lists the worst-case overheads associated with the three algorithms N, S1 and
S2. These overhead figures do not include the scalar-multiplication times. Indeed, Steps 1–4
are common to all the three batch-verification algorithms. Two variants of the naive algo-
rithm N are experimented with. Algorithm 4 is specified as N in the table. If we remove
the checking of m = 2t conditions (at the expense of appending one bit to each ECDSA
signature), we arrive at the algorithm indicated as N′. The faster variants S1′ and S2′ of
the symbolic-computation algorithms are also implemented. The algorithms S1, S1′ and S2
become impractical for batch sizes t > 6, so these algorithms are not implemented for t = 7
and t = 8. Use of randomizers degrades the performance of all the algorithms. However,
since the use of randomizers is external to the batch-verification algorithms (more precisely,
one needs to compute x(ξiRi) from x(Ri) and ξi before invoking any batch-verification
algorithm at all), we do not consider the effects of randomizers while comparing different
batch-verification algorithms.

Table 4 indicates that Algorithm S1 is not very practical, since the overhead increases
rapidly with the batch size. Only for t 6 4 and for large fields, Algorithm S1 is more
efficient than Algorithm N. However, its improved variant S1′ significantly outperforms S1
in all cases of primes and batch sizes. Indeed, S1′ outperforms even N in most of these
studied cases.

Algorithm S2′ is always faster than Algorithm S2, and is more efficient than Algo-
rithm N in all reported cases, whereas Algorithm S2 is more efficient than Algorithm N in
all cases for t 6 4 and in some cases (large fields) for t = 5 and t = 6 too. The superiority
between Algorithms N and S2 is determined by the relative cost of square-root computations
in Fq and symbolic manipulations in Fq[y1, y2, . . . , yt].

All of the batch-verification algorithms N, S1, S1′, S2, S2′ become impractical beyond
some small values of t (since their running times are exponential in t). So, we have restricted
our experiments only to the values 2 6 t 6 8. Algorithm N′, on the other hand, does not
carry out any effort exponential in the batch size t. Consequently, Algorithm N′ eventually
outperforms all the other five algorithms for large values of t. Our experiments reveal that for
small batch sizes, symbolic computation provides faster alternatives. It is also worthwhile to
note here that Algorithm N′ makes use of extra information. The other five algorithms, on
the other hand, are fully compliant with standardized ECDSA signatures.

Table 5 records the speedup values achieved by the six algorithms N, N′, S1, S1′, S2 and
S2′. Here, the speedup is computed with respect to individual verification, and incorporates
both scalar-multiplication times and batch-verification overheads. The maximum achievable
speedup values (t in the case of same signer, and 2t/(t+ 1) in the case of different signers)
are also listed in Table 5, in order to indicate how our batch-verification algorithms compare
with the ideal cases. The maximum speedup achieved by our fully ECDSA-compliant algo-
rithms is 6.20 in the case of same signer, and 1.70 in the case of different signers. Both these
records are achieved by Algorithm S2′ for the curve P-521 and for the batch size t = 7.

From Table 5, it is evident that one should use Algorithm S2′ if extra information (a bit
identifying the correct square root of each r3i + ari + b) is not available. In this case, the
optimal batch size is t = 7 (or t = 6 if the underlying field is small). If, on the other hand,

22 Karati et al.

Table 3 Timings (ms) for NIST prime curves

P-192 P-224 P-256 P-384 P-521
Time for Scalar Multiplication (in E(Fq)) 1.82 2.50 3.14 7.33 14.38

Time for Square-root (in Fq) 0.06 0.35 0.09 0.26 0.67

Table 4 Overheads (ms) for different batch-verification algorithms

Naive (N) Naive (N′)
t t

Curve 2 3 4 5 6 7 8 2 3 4 5 6 7 8
P-192 0.18 0.39 0.76 1.57 3.40 7.71 17.00 0.13 0.19 0.26 0.33 0.39 0.46 0.52
P-224 0.81 1.34 2.04 3.29 5.63 10.60 21.50 0.71 1.06 1.42 1.78 2.14 2.49 2.85
P-256 0.24 0.49 0.97 1.95 4.18 9.27 20.85 0.19 0.29 0.38 0.48 0.58 0.68 0.78
P-384 0.66 1.15 1.95 3.51 6.76 13.80 29.90 0.53 0.81 1.08 1.35 1.62 1.90 2.17
P-521 1.66 2.70 4.21 6.73 11.63 21.00 43.10 1.36 2.05 2.74 3.42 4.11 4.80 5.49

Symbolic (S1) Symbolic (S1′)
t t

Curve 2 3 4 5 6 2 3 4 5 6
P-192 0.14 0.57 2.01 8.66 40.50 0.07 0.20 0.70 1.60 4.40
P-224 0.15 0.60 2.10 9.50 45.60 0.07 0.20 0.80 1.80 4.70
P-256 0.16 0.61 2.17 9.78 46.30 0.08 0.21 0.82 1.90 4.90
P-384 0.18 0.74 2.71 12.56 62.10 0.08 0.30 0.90 2.20 6.10
P-521 0.22 0.90 3.45 16.80 88.40 0.12 0.40 1.30 2.90 8.00

Symbolic (S2) Symbolic (S2′)
t t

Curve 2 3 4 5 6 2 3 4 5 6 7 8
P-192 0.07 0.30 0.76 2.39 6.65 0.07 0.11 0.32 0.61 1.14 2.36 5.46
P-224 0.07 0.32 0.84 2.53 7.11 0.07 0.12 0.33 0.64 1.21 2.51 5.91
P-256 0.08 0.32 0.80 2.51 7.08 0.08 0.12 0.33 0.64 1.22 2.52 5.88
P-384 0.09 0.37 0.91 2.85 8.15 0.09 0.14 0.38 0.72 1.41 2.95 7.12
P-521 0.11 0.44 1.07 3.45 10.02 0.11 0.18 0.42 0.95 1.76 3.72 9.26

disambiguating extra bits are appended to ECDSA signatures, one should use S2′ for t 6 4
for (curves over) small fields and for t 6 6 (or t 6 7) for large fields. If the batch size
increases beyond these bounds, it is preferable to use Algorithm N′.

9 Randomizing Batch Verification

The occurrence of degenerate sums caused accidentally or by an attacker can be largely
eliminated if the batch-verification algorithm is randomized (see [2,3,14]). In the first attack
of [3], the batch verifier handles t−2 genuine signatures along with the two forged signatures
(r, s) and (r,−s) on the same message M . Since the sum of the elliptic-curve points (r, s)
and (r,−s) is O, the entire batch of t signatures is verified as genuine. In the second attack,
the forger knows a valid key pair (d1, Q1), and can fool the verifier by a forged signature
for any message M2 under any valid public key Q2 along with a message M1 under the
public key Q1. The forger selects a random k2, computes R2 = k2P and r2 = x(R2).
For another random s2, the signature on M2 under Q2 is presented as (r2, s2). For the
message M1, the signature (r1, s1) is computed as R1 = r2s

−1
2 Q2, r1 = x(R1), and

s1 = (e1 + r1d1)(k2 − e2s−1
2)−1, where e1 = H(m1), e2 = H(m2), and H is a secure

New Algorithms for Batch Verification of Standard ECDSA Signatures 23

Table 5 Speedup obtained by different batch-verification algorithms

(Experiment not carried out for cells marked as –)
Same signer Different signers

Curve t Ideal N N′ S1 S1′ S2 S2′ Ideal N N′ S1 S1′ S2 S2′

P-192 2 2.00 1.91 1.94 1.93 1.96 1.96 1.96 1.33 1.29 1.30 1.30 1.32 1.32 1.32
3 3.00 2.71 2.86 2.59 2.84 2.77 2.91 1.50 1.42 1.46 1.39 1.46 1.44 1.48
4 4.00 3.31 3.75 2.58 3.35 3.31 3.68 1.60 1.48 1.56 1.31 1.49 1.48 1.55
5 5.00 3.49 4.62 1.48 3.47 3.02 4.28 1.67 1.46 1.62 0.93 1.45 1.37 1.58
6 6.00 3.10 5.46 0.49 2.72 2.12 4.57 1.71 1.35 1.67 0.41 1.27 1.13 1.57
7 7.00 2.24 6.28 – – – 4.25 1.75 1.14 1.70 – – – 1.51
8 8.00 1.41 7.07 – – – 3.20 1.78 0.87 1.73 – – – 1.33

P-224 2 2.00 1.72 1.75 1.94 1.97 1.97 1.97 1.33 1.20 1.22 1.31 1.32 1.32 1.32
3 3.00 2.37 2.48 2.68 2.88 2.82 2.93 1.50 1.32 1.36 1.42 1.47 1.45 1.48
4 4.00 2.84 3.12 2.82 3.45 3.42 3.75 1.60 1.38 1.44 1.37 1.50 1.50 1.56
5 5.00 3.02 3.70 1.72 3.68 3.32 4.43 1.67 1.37 1.49 1.02 1.49 1.43 1.60
6 6.00 2.82 4.23 0.59 3.09 2.48 4.83 1.71 1.30 1.53 0.48 1.35 1.22 1.60
7 7.00 2.24 4.70 – – – 4.66 1.75 1.14 1.56 – – – 1.55
8 8.00 1.51 5.13 – – – 3.67 1.78 0.91 1.58 – – – 1.41

P-256 2 2.00 1.93 1.94 1.95 1.97 1.97 1.97 1.33 1.30 1.31 1.31 1.32 1.32 1.32
3 3.00 2.78 2.88 2.73 2.90 2.85 2.94 1.50 1.44 1.47 1.43 1.48 1.46 1.49
4 4.00 3.46 3.78 2.97 3.54 3.55 3.80 1.60 1.51 1.56 1.41 1.52 1.52 1.57
5 5.00 3.82 4.67 1.96 3.84 3.57 4.54 1.67 1.51 1.63 1.10 1.51 1.47 1.61
6 6.00 3.60 5.52 0.72 3.37 2.82 5.02 1.71 1.44 1.67 0.55 1.40 1.30 1.62
7 7.00 2.83 6.36 – – – 5.00 1.75 1.28 1.71 – – – 1.59
8 8.00 1.85 7.18 – – – 4.13 1.78 1.02 1.73 – – – 1.47

P-384 2 2.00 1.91 1.93 1.98 1.99 1.99 1.99 1.33 1.29 1.30 1.32 1.33 1.33 1.33
3 3.00 2.78 2.85 2.86 2.94 2.93 2.97 1.50 1.44 1.46 1.46 1.48 1.48 1.49
4 4.00 3.53 3.74 3.38 3.77 3.77 3.90 1.60 1.52 1.56 1.49 1.56 1.56 1.58
5 5.00 4.03 4.59 2.69 4.35 4.19 4.77 1.67 1.54 1.62 1.30 1.59 1.57 1.64
6 6.00 4.11 5.42 1.15 4.24 3.86 5.47 1.71 1.51 1.66 0.78 1.53 1.48 1.67
7 7.00 3.61 6.23 – – – 5.83 1.75 1.42 1.70 – – – 1.67
8 8.00 2.63 7.01 – – – 5.38 1.78 1.22 1.72 – – – 1.60

P-521 2 2.00 1.89 1.91 1.98 1.99 1.99 1.99 1.33 1.28 1.29 1.33 1.33 1.33 1.33
3 3.00 2.74 2.80 2.91 2.96 2.95 2.98 1.50 1.43 1.45 1.48 1.49 1.49 1.50
4 4.00 3.49 3.66 3.57 3.83 3.86 3.94 1.60 1.51 1.54 1.53 1.57 1.58 1.59
5 5.00 4.05 4.48 3.16 4.54 4.46 4.84 1.67 1.55 1.60 1.40 1.61 1.60 1.65
6 6.00 4.27 5.26 1.47 4.69 4.45 5.65 1.71 1.54 1.65 0.91 1.59 1.56 1.68
7 7.00 4.05 6.02 – – – 6.20 1.75 1.48 1.68 – – – 1.70
8 8.00 3.20 6.74 – – – 6.05 1.78 1.33 1.71 – – – 1.66

hash function. Now, R1 + R2 and (e1s
−1
1 + e2s

−1
2)P + r1s

−1
1 Q1 + r2s

−1
2 Q2 have the

same value as (k2P + r2s
−1
2 Q2). These forged signatures are verified if they are in the

same batch.
Let ξ1, ξ2, . . . , ξt be randomly chosen multipliers. Instead of symbolically manipulating

Eqns (2) and (3), we now need to manipulate the weighted sums

t∑
i=1

ξiRi =

(
t∑
i=1

ξiui

)
P +

t∑
i=1

ξiviQi (17)

or
t∑
i=1

ξiRi =

(
t∑
i=1

ξiui

)
P +

(
t∑
i=1

ξivi

)
Q. (18)

The right sides of these equations do not pose any problem. But only the x-coordinates of
Ri are available. However, this information is enough to compute the x-coordinates of ξiRi

24 Karati et al.

uniquely. If the x-coordinates of ξiRi are available, we can apply our symbolic-computation
algorithms exactly as we have done for the unweighted sum of the points Ri. Two ways of
computing x(ξiRi) from x(Ri) are described in [12]. One of these techniques uses Mont-
gomery ladders, and the other a form of (semi)numeric computation. In this paper, we do not
make a detailed discussion of these randomization algorithms. We instead concentrate on the
experimental effects of randomization on the performance of our fastest batch-verification
algorithm S2′.

It is easy to see that for l-bit randomizers, the probability of successful attacks against
batch verification is 2−l. The length l is chosen to make a tradeoff between security and per-
formance. The randomizers need not be of full lengths (of lengths close to that of the prime
order p of the relevant elliptic-curve group). As discussed in [2], much smaller randomiz-
ers typically suffice to make most attacks on batch-verification schemes infeasible. If the
underlying field is of size d bits, then the best known algorithms (the square-root methods)
to solve the ECDLP take O (̃2d/2) times. As a result, d/2-bit randomizers do not degrade
the security of the ECDSA scheme. Another possibility is to take l = 128 to get 128-bit
security independent of the security guarantees of ECDSA.

We have implemented windowed, w-NAF and frac-w-NAF variants of the seminumeric
method of [12]. We have used affine and projective (standard or Jacobian) coordinates. We
report the results obtained by the fastest randomization methods.

Table 6 Speedup for NIST Prime Curves

Batch P-192 P-224 P-256
Size(t) None∗ l = 96 None l = 112 None l = 128

3 2.95 1.39 2.95 1.45 2.95 1.40
4 3.82 1.56 3.84 1.63 3.85 1.57
5 4.53 1.67 4.59 1.76 4.62 1.69
6 5.04 1.73 5.16 1.83 5.23 1.76
7 4.95 1.72 5.15 1.83 5.33 1.77
8 4.02 1.59 4.30 1.71 4.57 1.68

∗Without randomization
Batch P-384 P-521
Size(t) None∗ l = 128 l = 192 None l = 128 l = 256

3 2.96 1.71 1.43 2.96 1.96 1.45
4 3.89 1.98 1.61 3.91 2.33 1.64
5 4.73 2.18 1.74 4.80 2.62 1.78
6 5.44 2.32 1.83 5.58 2.83 1.88
7 5.76 2.38 1.86 6.06 2.95 1.93
8 5.28 2.29 1.81 5.80 2.89 1.90

∗Without randomization

Table 6 illustrates the performance degradation of the batch-verification Algorithm S2′

caused by randomization. The speedup figures are computed over individual verification
and pertain to the situation where all the signatures come from the same signer. We have
taken two cryptographically meaningful bit-lengths l of randomizers (half-length and 128).
Although the increased security provided by randomization incurs reasonable overhead, we
still have sizable speedup over individual verification. The algorithms S1, S2 and S1′ would
provide little performance gain, if any at all, when used in conjunction with randomization.
Likewise, the case of multiple signers too is severely affected by randomization. Therefore,
we do not present experimental data for these cases.

New Algorithms for Batch Verification of Standard ECDSA Signatures 25

10 Batch Verification on Koblitz Curves

So far, we have concentrated on elliptic-curve parameters with cofactor h = 1. If h > 1, the
disclosure of r in an ECDSA signature leaves multiple possibilities for the x-coordinate of
the point R = kP (See Algorithm 2). Running a batch-verification algorithm for all these
possibilities is not a practical solution. However, if h is not too large, one can append a few
bits to a standard ECDSA signature in order to identify the correct x-coordinate from the
published value of r. This leads to a slight loss of conformity with the ECDSA standard.
However, under the assumption that we know the exact x-coordinates of the points R, we
can apply our batch-verification algorithms mutatis mutandis to these curves as well. Hence-
forth, we assume, with a slight abuse of notation, that r itself stands for the x-coordinate of
the point R (before conversion to an integer and reduction modulo n). In this section, we
report our experience with the NIST Koblitz curves [15].

10.1 Koblitz Curves

A Koblitz curve is defined over a binary field F2l by the equation

y2 + xy = x3 + ax2 + 1. (19)

Here, a is either 0 or 1. If a = 0, the cofactor is h = 4, whereas h = 2 if a = 1. The NIST
standard lists five such curves K-163, K-233, K-283, K-409 and K-571, where the number
after K- indicates the size of the field elements (that is, the extension degree l). The standard
also specifies how the arithmetic of each such field F2l is to be implemented.

The Koblitz curves, being defined over fields of characteristic two, are subtly different
from the prime curves. We can no longer use the simplified Weierstrass equation used for
curves defined over large prime fields. Indeed, the two y-coordinates of points with a given
x-coordinate r now satisfy the equation

y2 + ry + (r3 + ar2 + 1) = 0. (20)

The sum of the two roots is r, and their product is r3 + ar2 + 1. This calls for suitable
changes in the batch-verification algorithms described so far, since they are based upon the
simplified Weierstrass equation.

The NIST standard also specifies a set of random elliptic curves defined over the above
five binary fields. They all correspond to the cofactor value h = 2. Adaptations of our
batch-verification algorithms to these curves are straightforward, given those for Koblitz
curves. Consequently, we do not discuss this random family in the rest of this paper. Indeed,
following the adaptations to Koblitz curves, one can easily modify our algorithms to work
for any non-supersingular elliptic curve defined over F2l .

10.2 Adaptation of the Naive Algorithms

The basic computational task involved in the algorithms N and N′ was the computation
of square roots in the underlying field. In the case of binary fields, we need to solve the
quadratic equation (20) both the roots of which lie in the field. We can use a root-finding or
polynomial-factoring algorithm for computing these two roots, such as Berlekamp’s trace

26 Karati et al.

algorithm or its randomized variant as described in Menezes et al. [13]. For quadratic poly-
nomials over F2l , these algorithms take O(l3) expected running time—theoretically the
same as the Tonelli-Shanks algorithm. In practice, however, these algorithms are signifi-
cantly slower than modular square-root computations in prime fields of comparable sizes.
The implication of this is that the naive algorithms are rather inefficient for fields of char-
acteristic two, and consequently, our symbolic-computation algorithms exhibit noticeably
better performances than the naive algorithms.

10.3 Adaptation of the Symbolic-computation Algorithms

The symbolic-computation algorithms S1, S1′, S2 and S2′ require modifications in view of
the changed equation for y in terms of r. In all these algorithms, we can keep each yi-degree
below 2 by making repeated substitutions y2i = riyi + (r3i + ar2i + 1). The introduction of
the term riyi creates some trouble with the parity of the degrees of the terms. The sequence
of linearized equations generated in Steps 7–9 of Algorithm S1 now involves also the odd-
degree monomials in y1, y2, . . . , yt, that is, the count of linearized variables increases from
2t−1 − 1 to 2t − 1. This results in a degradation of the performance of S1.

In both Algorithms S1 (Step 7) and S2 (Steps 8 and 10), we need to eliminate yi from a
multivariate polynomial linear with respect to yi. Let us write such a polynomial as

φ = uyi + v,

where u and v are multivariate polynomials not containing yi. Multiplying φ by u(yi+ri)+v
gives

(u(yi + ri) + v)φ = (u(yi + ri) + v)(uyi + v) = u2(y2i + riyi) + uvri + v2

=u2(r3i + ar2i + 1) + uvri + v2.

The last expression is free from yi. The polynomials u2, uv, v2 may contain y2j for j 6= i.
Each such occurrence of y2j is to be substituted by rjyj+(r3j+ar

2
j+1) in order to reduce the

yj-degree of the expression to below 2. Algorithms S2 and S2′ do not deal with linearized
systems, but still experience an increase in the count of non-zero terms from a maximum
of 2t−1 to a maximum of 2t. This reduces the performance benefits of S2 and S2′, but this
degradation is much more graceful than for S1. The variant S1′ is also less affected than S1.

10.4 Experimental Results

We continued our experiments with GP/PARI 2.3.5. It seems that the GP/PARI routines
for elliptic curves over binary fields F2l are not very optimized. Table 7 indicates that
elliptic-curve scalar-multiplication times for Koblitz curves are over three orders of mag-
nitude slower than those for prime curves (Table 3) for fields of comparable sizes. A more
critical difference is in the times for solving quadratic equations over the underlying fields.
For prime curves, the modular square-root algorithm is over 20 times faster than individual
scalar multiplication. For Koblitz curves, we use the GP/PARI function factorff which
requires comparable (even larger) running times relative to individual scalar multiplication.

Table 8 lists the worst-case overheads (excluding the computation of the point R =
(α, β)) associated with the five batch-verification algorithms studied. Both the variants of

New Algorithms for Batch Verification of Standard ECDSA Signatures 27

Table 7 Timings (sec) for NIST Koblitz curves

K-163 K-233 K-283 K-409 K-571
Time for Scalar Multiplication (in E(F2l)) 2.57 6.97 12.00 36.16 94.17

Time for factorff (over F2l) 1.78 6.41 12.96 49.30 165.67

Table 8 Overheads (sec) for different batch-verification algorithms

Naive (N) Naive (N′)
t t

Curve 2 3 4 5 6 7 2 3 4 5 6 7
K-163 3.57 5.47 7.60 10.17 13.85 20.07 3.56 5.33 7.12 8.90 10.74 12.48
K-233 12.89 19.51 26.55 34.47 44.61 59.45 12.82 19.26 25.72 32.11 38.52 45.14
K-283 26.21 39.85 53.17 68.42 86.64 111.85 26.17 38.97 52.00 65.08 77.88 91.13
K-409 99.27 149.31 199.78 253.62 313.77 388.08 98.56 148.41 197.75 248.54 297.92 345.14
K-571 333.4 500.8 668.1 842.7 1028.9 1241.8 332.0 500.5 664.5 830.0 1017.5 1162.6

Symbolic (S1′) Symbolic (S2) Symbolic (S2′)
t t t

Curve 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6 7
K-163 0.04 0.26 0.88 3.64 8.52 0.03 0.28 1.20 4.64 16.95 0.03 0.07 0.21 0.66 1.65 5.73
K-233 0.08 0.48 1.59 6.77 15.51 0.06 0.48 2.09 8.23 30.97 0.06 0.12 0.37 1.17 2.94 10.22
K-283 0.11 0.68 2.28 9.36 21.58 0.08 0.66 2.88 11.25 42.92 0.08 0.17 0.52 1.59 4.05 14.17
K-409 0.23 1.29 4.28 18.01 40.83 0.14 1.20 5.16 20.21 73.33 0.14 0.31 0.95 2.90 7.23 25.71
K-571 0.40 2.36 7.82 31.75 72.50 0.25 2.04 8.80 34.88 127.1 0.25 0.57 1.65 4.93 12.28 44.21

Table 9 Speedup obtained by different batch-verification algorithms

Same signer Different signers
Curve t Ideal N N′ S1′ S2 S2′ Ideal N N′ S1′ S2 S2′

K-163 2 2.00 1.18 1.18 1.98 1.99 1.99 1.33 0.91 0.91 1.33 1.33 1.33
3 3.00 1.45 1.47 2.86 2.85 2.96 1.50 0.98 0.99 1.46 1.46 1.49
4 4.00 1.61 1.68 3.42 3.24 3.84 1.60 1.01 1.03 1.50 1.46 1.57
5 5.00 1.68 1.83 2.93 2.63 4.43 1.67 1.00 1.06 1.35 1.28 1.60
6 6.00 1.62 1.94 2.26 1.40 4.54 1.71 0.97 1.07 1.16 0.88 1.57
7 7.00 1.43 2.04 – – 3.31 1.75 0.89 1.09 – – 1.37

K-233 2 2.00 1.04 1.04 1.99 1.99 1.99 1.33 0.82 0.83 1.33 1.33 1.33
3 3.00 1.25 1.26 2.90 2.90 2.97 1.50 0.88 0.89 1.47 1.47 1.49
4 4.00 1.38 1.41 3.59 3.48 3.90 1.60 0.91 0.92 1.53 1.51 1.58
5 5.00 1.44 1.51 3.37 3.14 4.61 1.67 0.91 0.94 1.43 1.39 1.62
6 6.00 1.43 1.59 2.84 1.86 4.95 1.71 0.90 0.96 1.30 1.05 1.62
7 7.00 1.33 1.65 – – 4.04 1.75 0.85 0.97 – – 1.48

K-283 2 2.00 0.96 0.96 1.99 1.99 1.99 1.33 0.77 0.77 1.33 1.33 1.33
3 3.00 1.13 1.14 2.92 2.92 2.98 1.50 0.82 0.83 1.48 1.48 1.49
4 4.00 1.24 1.26 3.65 3.57 3.92 1.60 0.85 0.86 1.54 1.53 1.59
5 5.00 1.30 1.35 3.60 3.40 4.69 1.67 0.85 0.88 1.47 1.44 1.63
6 6.00 1.30 1.41 3.16 2.15 5.13 1.71 0.84 0.89 1.36 1.13 1.64
7 7.00 1.24 1.46 – – 4.40 1.75 0.81 0.90 – – 1.52

K-409 2 2.00 0.84 0.85 1.99 2.00 2.00 1.33 0.70 0.70 1.33 1.33 1.33
3 3.00 0.98 0.98 2.95 2.95 2.99 1.50 0.74 0.74 1.49 1.49 1.50
4 4.00 1.06 1.07 3.78 3.73 3.95 1.60 0.76 0.76 1.56 1.56 1.59
5 5.00 1.11 1.13 4.00 3.91 4.81 1.67 0.77 0.78 1.54 1.52 1.64
6 6.00 1.12 1.17 3.83 2.98 5.45 1.71 0.77 0.79 1.48 1.33 1.67
7 7.00 1.10 1.21 – – 5.16 1.75 0.75 0.80 – – 1.61

K-571 2 2.00 0.72 0.72 2.00 2.00 2.00 1.33 0.61 0.61 1.33 1.33 1.33
3 3.00 0.82 0.82 2.96 2.97 2.99 1.50 0.64 0.64 1.49 1.49 1.50
4 4.00 0.88 0.88 3.84 3.82 3.97 1.60 0.66 0.66 1.57 1.57 1.59
5 5.00 0.91 0.92 4.28 4.22 4.87 1.67 0.67 0.68 1.58 1.57 1.65
6 6.00 0.93 0.94 4.33 3.58 5.63 1.71 0.67 0.67 1.54 1.44 1.68
7 7.00 0.92 0.98 – – 5.67 1.75 0.66 0.69 – – 1.65

28 Karati et al.

the naive algorithm are crippled by huge running times taken by factorff. The symbolic-
computation algorithms do not involve this function and perform significantly better than
the naive algorithms. Since Algorithm S1 involves generating and solving large linear sys-
tems, we have not implemented it. Its efficient variant S1′ is only implemented. Once again,
randomizers are not considered in these running times, because they do not show up in the
relative performance of the different batch-verification algorithms.

Speedup figures over individual verification are listed in Table 9. The maximum speedup
achieved by the naive algorithms is 2.04 for the case of the same signer and 1.09 for the
case of different signers, indicating that these algorithms are not effective at all for Koblitz
curves. The symbolic-computation algorithms, on the other hand, exhibit a similar pattern
for Koblitz curves, as they have done for prime curves. The maximum recorded speedup is
achieved always by S2′. For the curve K-571 and for the batch size t = 7, this is 5.67 in
the case of the same signer, and 1.65 in the case of different signers. Even for small fields,
S2 and S2′ exhibit decent performance. The performance of S1′ is between those of S2 and
S2′.

10.5 Randomization for Koblitz Curves

As mentioned in Section 9, we have chosen the bit-lengths l of randomizes to be 128 and
d/2. The seminumeric algorithm is used to compute the x-coordinate of ξR from the ran-
domizer ξ and the the x-coordinate of the point R. For Koblitz curves, the τ -NAF variant of
the seminumeric method of [12] is the fastest randomization method. In the τ -NAF method,
the lengths of the addition chains are nearly equal for half- and full-length randomizers.
This causes a substantial overhead in the randomization procedure, and the resulting per-
formance gains are much lower than those for prime fields. Table 10 lists all the speedup
figures obtained using Algorithm S2′ in the case of the same signer.

Table 10 Speedup for NIST Koblitz Curves

Batch K-163 K-233 K-283
Size(t) None∗ l = 80 None l = 112 None l = 128

2 1.95 0.86 1.96 0.86 1.97 0.89
3 2.82 0.99 2.87 1.00 2.89 1.04
4 3.48 1.06 3.59 1.08 3.66 1.13
5 3.31 1.05 3.61 1.08 3.78 1.14
6 2.81 0.99 3.22 1.04 3.48 1.11
7 1.50 0.76 1.84 0.84 2.09 0.92

∗Without randomization

Batch K-409 k-571
Size(t) None∗ l = 128 l = 192 None l = 128 l = 256

2 1.98 1.05 0.86 1.98 1.19 0.87
3 2.92 1.27 1.01 2.94 1.48 1.02
4 3.75 1.41 1.09 3.80 1.67 1.11
5 4.07 1.45 1.11 4.25 1.75 1.14
6 3.96 1.43 1.11 4.28 1.76 1.14
7 2.61 1.21 0.97 3.05 1.51 1.03

∗Without randomization

New Algorithms for Batch Verification of Standard ECDSA Signatures 29

11 Conclusion

In this paper, we have proposed six algorithms for the batch verification of ECDSA sig-
natures. To the best of our knowledge, these are the first batch-verification algorithms ever
proposed for ECDSA. In particular, development of algorithms based upon symbolic ma-
nipulations appears to be a novel approach in the history of batch-verification algorithms.
There are several ways to extend our study, some of which are listed below.

– Section 7 describes a way to reduce the running time of Step 8 of Algorithm S2 from
O(mt2) to O(

√
mt2). An analogous speedup for Step 10 would be very useful.

– Our best symbolic-computation algorithm runs in O(mt2) time. Removal of a factor of t
(that is, designing an O(mt)-time algorithm) would be useful to achieve higher speedup
values.

– It is also of good research interest to study our algorithms in conjunction with the earlier
works [1,4] on ECDSA*.

References

1. Antipa, A., Brown, D., Gallant, R., Lambert, R., Struik, R., Vanstone, S.: Accelerated verification of
ECDSA signatures. In: SAC. Lecture Notes in Computer Science, vol. 3897, pp. 307–318. Springer
(2006)

2. Bellare, M., Garay, J.A., Rabin, T.: Fast batch verification for modular exponentiation and digital signa-
tures. In: EUROCRYPT. Lecture Notes in Computer Science, vol. 1403, pp. 236–250. Springer (1998)

3. Bernstein, D.J., Doumen, J., Lange, T., Oosterwijk, J.J.: Faster batch forgery identification. In: IN-
DOCRYPT. Lecture Notes in Computer Science, vol. 7668, pp. 454–473. Springer (2012)

4. Cheon, J.H., Yi, J.H.: Fast batch verification of multiple signatures. In: PKC. Lecture Notes in Computer
Science, vol. 4450, pp. 442–457. Springer (2007)

5. Cohen, H., Belabas, K.: PARI/GP. http://pari.math.u-bordeaux.fr/ (2003–2013)
6. Das, A., Choudhury, D.R., Bhattacharya, D., Rajavelu, S., Shorey, R., Thomas, T.: Authentication

schemes for VANETs: A survey. International Journal of Vehicle Information and Communication Sys-
tems 3(1), 1–27 (2013)

7. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on Information Theory
22(6), 644–654 (November 1976)

8. ElGamal, T.: A public-key cryptosystem and a signature scheme based on discrete logarithms. IEEE
Transactions on Information Theory 31, 469–472 (1985)

9. Harn, L.: Batch verifying multiple RSA digital signatures. Electronics Letters 34(12), 1219–1220 (1998)
10. Hwang, M.S., Lin, I.C., Hwang, K.F.: Cryptanalysis of the batch verifying multiple RSA digital signa-

tures. Informatica 11(1), 15–19 (2000)
11. Johnson, D., Menezes, A.: The elliptic curve digital signature algorithm (ECDSA). Journal on Informa-

tion Security 1, 36–63 (2001)
12. Karati, S., Das, A., Roychowdhury, D.: Using randomizers for batch verification of ECDSA signatures.

Tech. rep., Cryptology ePrint Archive: Report 2012/582 (2012)
13. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Some computational aspects of root finding in

GF(qm). In: ISSAC. Lecture Notes in Computer Science, vol. 358, pp. 259–270. Springer (1989)
14. Naccache, D., M’Raihi, D., Rapheali, D., Vaudenay, S.: Can D.S.A. be improved? Complexity trade-offs

with the digital signature standard. In: EUROCRYPT. Lecture Notes in Computer Science, vol. 950, pp.
77–85. Springer (1994)

15. NIST: Recommended elliptic curves for federal government use. http://csrc.nist.gov/
groups/ST/toolkit/documents/dss/NISTReCur.pdf (1999)

16. NIST: Digital Signature Standard (DSS). http://csrc.nist.gov/publications/drafts/
fips_186-3/Draft-FIPS-186-3%20_March2006.pdf (2006)

17. NIST: Secure Hash Standard (SHS). http://csrc.nist.gov/publications/drafts/
fips180-3/draft_fips_180-3_June-08-2007.pdf (2007)

18. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key cryp-
tosystems. Comm. ACM 21(2), 120–126 (1978)

19. Shanks, D.: Five number theoretic algorithms. In: Proceedings of the Second Manitoba Conference on
Numerical Mathematics. pp. 51–70 (1973)

30 Karati et al.

A Properties of Rx and Ry

Theorem 1 Rx consists of only even-degree monomials, and Ry consists of only odd-degree monomials in
the variables y1, y2, . . . , yt.

Proof : We proceed by induction on the batch size t > 1. If t = 1 (this amounts to individual verifica-
tion), we have Rx = r1 and Ry = y1, for which the theorem evidently holds.

So assume that t > 2. We compute R =
∑t

i=1
Ri as R′ + R′′ with R′ =

∑τ

i=1
Ri and R′′ =∑t

i=τ+1
Ri for some τ in the range 1 6 τ 6 t − 1. Let R′ = (R′x, R

′
y) and R′′ = (R′′x , R

′′
y).

The inductive assumption is that all non-zero terms of R′x and R′′x are of even degrees (in y1, . . . , yτ and
yτ+1, . . . , yt, respectively), and all non-zero terms of R′y and R′′y are of odd degrees.

We first symbolically compute λ = (R′′y−R′y)/(R′′x−R′x) as a rational function. Clearing the variables
yi from the denominator multiplies both the numerator and the denominator of λ by polynomials of non-zero
terms having even degrees. Every substitution of y2i by the field element r3i +ari+b reduces the yi-degree of
certain terms by 2, so the parity of the degrees in these terms is not altered. Finally, λ becomes a polynomial
with each non-zero term having odd degree. But then, Rx = λ2 − R′x − R′′x is a polynomial with each
non-zero term having even degree, whereas Ry = λ(R′x − Rx) − R′y is a polynomial with each non-zero
term having odd degree. Further substitutions of y2i by r3i + ari + b to simplify Rx and Ry preserve these
degree properties. •

B Derivation of δ

In order to compute the number of roots (r1, r2, . . . , rt) of detM = 0, we treat r1, r2, . . . , rt as symbols,
and need to calculate an upper bound on the degree δ of each individual ri. Without loss of generality, we
compute an upper bound on the degree δ of r1 in detM = 0. To this effect, we first look at the expressions for
Rx andRy which are elements of Fq(r1, r2, . . . , rt)[y1, y2, . . . , yt]. We can writeRx = gx/h andRy =
gy/h, where gx, gy are polynomials in Fq [r1, r2, . . . , rt, y1, y2, . . . , yt], and the common denominator h
is a polynomial in Fq [r1, r2, . . . , rt]. Let ηt denote the maximum of the r1-degrees in gx, gy and h. We
first recursively derive an upper bound for ηt.

We computeR = R′+R′′ withR′ = (R′x, R
′
y) =

∑τ

i=1
Ri andR′′ = (R′′x , R

′′
y) =

∑t

i=τ+1
Ri,

where τ = dt/2e. The r1-degree of R′ is ητ , whereas the r1-degree of R′′ is 0. The initial r1-degree of
λ = (R′′y −R′y)/(R′′x−R′x) is at most ητ . Clearing y1 from the denominator of λ changes the r1-degree to
2ητ + 3. Subsequent eliminations of y2, . . . , yt finally reduces λ with a y-free denominator. The maximum
r1-degree of this expression for λ is 2t−1(2ητ +3). Therefore, λ2 has r1-degree no more than 2t(2ητ +3).
Subsequent computations of Rx = λ2 −R′x −R′′x and Ry = λ(R′x −Rx)−R′y indicate that

ηt 6 (2t + 2t−1)(2ητ + 3) + 2ητ 6 (2t + 2t−1)(2ητ + 3) + 2ητ

with τ = dt/2e. Solving this recurrence gives the upper bound ηt 6 22t+3dlog2 te+2.
Now, we follow a sequence of squaring and monomial multiplication to convert Rx = α to a set of

linear equations. If ∆i is the r1-degree of the i-th equation, we have

∆1 = ηt,

∆i 6 2∆i−1 + 3 for i > 2.

The recurrence relation pertains to the case of squaring. One easily checks that ∆i 6 (ηt + 3)2i−1 for all
i > 1. Finally, we consider detM = 0. The r1-degree of this equation is

δ 6 ∆1 +∆2 + · · ·+∆µ 6 (ηt + 3)(2µ − 1) 6
(
22t+3dlog2 te+2 + 3

)(
22
t−1−1 − 1

)
.

Notice that this is potentially a very loose upper bound for δ. In general, we avoid squaring. Multiplication by
a monomial can increase the r1-degree by 3 if the monomial contains y1. If the monomial does not contain
y1, the r1-degree does not increase at all. Nevertheless, this loose upper bound is good enough in the present
context.

New Algorithms for Batch Verification of Standard ECDSA Signatures 31

C Number of Roots of detM = 0

Let us write the equation detM = 0 as D(r1, r2, . . . , rt) = 0, where the ri-degree of the multivariate
polynomialD is6 δ for each i. We assume thatD is not identically zero. We plan to show that the maximum
number B(t) of roots of D is 6 tδqt−1. To that effect, we first write D as a polynomial in rt:

D(r1, r2, . . . , rt) = Dδ(r1, r2, . . . , rt−1)r
δ
t +Dδ−1(r1, r2, . . . , rt−1)r

δ−1
t + · · ·+

D1(r1, r2, . . . , rt−1)rt +D0(r1, r2, . . . , rt−1).

Since D is not identically zero, at least one Di is not identically zero. If (r1, r2, . . . , rt−1) is a common
root of each Di, appending any value of rt gives a root of D. The maximum number of common roots of
D0, D1, . . . , Dδ is B(t−1). On the other hand, if (r1, r2, . . . , rt−1) is not a common root of all Di, there
are at most δ values of rt satisfying D(r1, r2, . . . , rt) = 0. We, therefore, have

B(t) 6 B(t−1)q + (qt−1 −B(t−1))δ = (q − δ)B(t−1) + δqt−1. (21)

Moreover, we have
B(1) 6 δ. (22)

By induction on t, one can show thatB(t) 6 tδqt−1. This bound is rather tight, particularly for δ � q (as it
happens in our cases of interest). A polynomial D satisfying equalities in (21) and (22) can be constructed as
D(r1, r2, . . . , rt) = ∆(r1)∆(r2) · · ·∆(rt), where ∆ is a square-free univariate polynomial of degree δ,
that splits over Fq . By the principle of inclusion and exclusion (or by explicitly solving the recurrence (21)),
we obtain the total number of roots of this D as

δtqt−1 −
(t
2

)
δ2qt−1 +

(t
3

)
δ3qt−3 − · · ·+ (−1)t−1δt

= qt − (q − δ)t

= δ(qt−1 + (q − δ)qt−2 + (q − δ)2qt−3 + · · ·+ (q − δ)t−1).

If δ � q, this count is very close to tδqt−1. It remains questionable whether our equation detM = 0
actually encounters this worst-case situation, but this does not matter, at least in a probabilistic sense.

D Derivation of the Probabilities pi

Like Algorithm S1, we first symbolically compute R =
∑t

i=1
Ri, and arrive at Eqns (10) and (11). Then,

we set φ = Rx −α in step 9 of Algorithm S2. If φ is identically zero, then for any values of y1, y2, . . . , yt,
batch verification succeeds without using the Eqns (4) in the elimination phase at all. This situation occurs if
all the coefficients of all the monomials (and also the constant term) in φ are zero. We name the monomials
(of even total degrees, including that of degree zero) as z1, z2, . . . , zµ+1, where µ = 2t−1 − 1. We write
this situation as

ρ1z1 + ρ2z2 + · · ·+ ρµ+1zµ+1 = 0. (23)

with each ρi = 0. For the moment, we treat the x-coordinates r1, r2, . . . , rt as symbols. Each ρi in Eqn (23)
is a polynomial in Fq [r1, r2, . . . , rt]. Let δ′ be the maximum degree of each individual rj in each ρi. As
already derived in Appendix B, δ′ is bounded from above by ∆1 = ηt 6 22t+3dlog2 te+2. If we restrict
our attention to the values t 6 8, we see that δ′ 6 227. Let the tuple (r1, r2, . . . , rt) be a root of ρi. As
in Appendix C, we estimate that there are 6 tδ′qt−1 such tuples. The total number of t-tuples over Fq is
qt. Therefore, a randomly chosen tuple (r1, r2, . . . , rt) is a root of ρi with probability 6 tδ′qt−1/qt =
tδ′/q. Now, the total number of ρi’s is µ + 1. Therefore, the probability that a randomly chosen tuple
(r1, r2, . . . , rt) over Fq is a root of all the ρi’s is p1 6 (tδ′/q)µ+1. For t 6 8, δ′ 6 227 and q > 2160,
we have p1 6 2−16510.

Even if φ is not identically zero at the beginning of the elimination phase, it should never become so
before all of y1, y2, . . . , yt are eliminated. Let pi denote the probability that φ becomes identically zero
before the elimination of yi. We have calculated p1 above. Here, we calculate pi for i = 2, 3, . . . , t− 1. Let
δ′i be the total degree in all rj ’s in φ just before the elimination of yi. We have δ′i = 2δ′i−1 + 3 ≈ 2δ′i =

2t−iδ′. Moreover, at this point, the number of even-degree monomials in yi, yi+1, . . . , yt in φ is 2t−i =

(µ+ 1)/2i−1. Therefore, like the expression for p1, we derive that pi 6 (tδ′i/q)
2t−i = (tδ′i/q)

µ+1

2i−1 .

32 Karati et al.

The probability that φ becomes identically zero just before the elimination of yi, but never earlier, is
(1− p1)(1− p2) · · · (1− pi−1)pi. Therefore, the probability that φ becomes identically zero in any one of
the t− 1 elimination rounds is

π 6
t−1∑
i=1

[
pi

i−1∏
j=1

(1− pj)

]
.

For practical ranges of parameter values, all pi are very close to zero, so we can approximate 1 − pi by 1,
and conclude that

π ≈
t−1∑
i=1

pi.

Moreover, pt−1 is the most dominating term in the above summation, so we have

π ≈ pt−1 6 (tδ′t−1/q)
2 ≈ (t2t−2δ′/q)2 6 26t+8dlog2 te+2/q2.

