
~SORMAT~ON X~D COnTrOL 8, 553-578 (1965)

One-Tape, Off-Line Turing Machine Computations*

F. C. HENNIE

Department of Electrical Engineering and Research Laboratory of Electronics,
Massachusetts Institute of Technology, Cambridge, Massachusetts

This paper has two purposes. The first is to investigate the charac-
teristics of a restricted class of Turing machines, and to develop a
simple tool for describing their computations. The second is to pre-
sent specific problems for which tight lower bounds can be found for
the computation times required by Turing machines of this re-
stricted class.

I. INTRODUCTION

In this paper we shall consider Turing machines tha t can, at any
given step in their computations, do each of the following things: (a)
change the tape symbols currently scanned by their reading heads, (b)
shift each of their tapes one square to the left or right, (c) change their
internal state, and (d) halt. Each step is assumed to require exactly one
t ime unit for its completion. I n order to investigate the total t ime re-
quired to compute a particular function, it is convenient to di-stinguish
between "on-line" and "off-line" Turing machine computations. These
two types of computat ions differ only in the way in which input data
are supplied to the machine and output data are generated by the
machine.

In an on-line computation the input data are supplied to the machine,
one symbol at a time, at a special input terminal. Corresponding to each
input symbol, the machine is required to produce, at a special output
terminal, an appropriate output symbol. In general the machine will not

* This work was supported in part by the Joint Services Electronic Program
under Contract DA 36-039-AMC-03200(E); and in part by the National Science
Foundation (Grant GP-2495, the National Institutes of Health (Grant MH-04737-
04), and the National Aeronautics and Space Administration (Grant NsG-496).
Some of this material was presented at the Sixth Annual Symposium on Switching
Circuit Theory and Logical Design, Ann Arbor, Michigan, October 6-8, 1965.

1965 by Academic Press, Inc., New York, New York 10003.

553

554 HENNIF,

be able to do this immediately, but must spend a number of time units
computing the required output symbol. However, a new symbol cannot
be supplied at the input terminal until the machine has produced the
output symbol that corresponds to the previous input symbol. Thus each
output symbol is a function solely of the preceding input symbols. Most
of the work of Yamada (1962), Hartmanis and Stearns (1965), and
Rabin (1963) has used the on-line Turing machine model.

In an off-line computation all of the input symbols are written on one
of the machine's tapes prior to the start of the computation. The results
of the computation are obtained only when and if the machine halts,
and may be taken to be either the pattern of symbols appearing on one
of the tapes or else the internal state of the machine at the end of the
computation. In this paper we shall consider only off-line computations,
and in particular off-line computations having only two possible out-
comes. These outcomes, represented by the symbols 0 and 1, may be
thought of as being associated with the final states of the machine.

All of the tapes used by an off-line machine will be assumed to be
singly-infinite, having a left end but no right end. This entails no loss of
computing capability or speed, and is convenient for the analysis that
is to follow. At the beginning of a computation the input pattern must be
written at the left end of one of the machine's tapes that is designated
for this purpose. The input pattern is finite in length, and the remainder
of the tape squares are left blank. The tape is positioned so that its read-
ing head scans the leftmost square of the input pattern, and the machine
is placed in a designated starting state.

The machine then goes through a series of basic operations, as deter-
mined by its internal structure. If the machine halts in a state to which
the output 0 is assigned, it is said to have rejected its input pattern; if
it halts in a state to which the output 1 is assigned, it is said to have
accepted its input pattern. If a machine always halts within a finite time,
regardless of the input pattern with which it is presented, it is said to
recognize the set of input patterns for which it produces outputs of 1.
Such a machine may be thought of as classifying input patterns into
those that are accepted and those that are rejected.

For the most part we shall be concerned with off-line machines that
are guaranteed to halt, regardless of the particular input pattern sup-
plied. The number of basic operations that such a machine requires to
accept or reject an input pattern will be called the computation time for
that input pattern. If T(n) is a function such that the computation time

OFF-LINE TURING MACHINES 555

associated with every input pattern of n symbols is less than or equal to
T(n), then the computations of the machine will be said to be bounded
by T(n). Similarly, the set of input patterns that the machine recognizes
will be said to be recognizable within T(n) time units.

This paper investigates the behavior of one-tape, off-line Turing
machines, with two objectives. The first is to develop a tool for describing
the computations of such maehines, and the second is to apply that tool
to the problem of finding good lower bounds for the times required to
recognize various sets of patterns. Section II presents the idea of a
"crossing sequence" and develops the properties of this concept that
make it an important analytic tool for one-tape, off-line computations.
Section III deals with the determination of lower bounds on computa-
tion times, in particular, Section III, A describes a set of patterns whose
recognition time must exceed Cln2/log Q, but need not exceed 2 C2n /log Q,
where C1 and C2 are appropriate constants and Q is the number of in-
ternal states in the Turing machine that is to recognize the set. Section
III, B considers more general computation times of the form Kn ~, where
K and p are real constants. For computation times of this form, the fol-
lowing result can be established. Given any two real numbers p and q in
the range 1 _-< q < p -< 2, there exists a set of patterns that can be recog-
nized within a time proportional to n p, but that cannot be recognized
within a time proportional to n q, assuming that the recognition is to be
done by a one-tape, off-line Turing machine.

II. CROSSING SEQUENCES

A. DEFINITIONS

Recall that an off-line computation begins with the pertinent input
pattern prerecorded on one of the machine's tapes. We now wish to re-
strict our attention to machines having only one tape. Thus this tape
must be used not only to record the input pattern, but also to provide
space for any "scratch work" required in the course of a computation.
As noted earlier, it is convenient to assume that the tape extends in-
finitely far to the right, but not to the left. The input pattern occupies a
finite segment at the extreme left end of the tape, while the remainder of
the tape is blank. A computation is started with the left-most square of
the input pattern under the reading head. If desired, this square can be
marked with a special symbol to keep the machine from inadvertently
shifting the tape out of the reading head. In the computations to be con-
sidered in this paper, such a special end marker will not be needed, and

5 5 6 H E N N I E

will not be provided. To include an end marker would require no im-
portant changes in the discussion to follow.

In this paper the words "tape" and "pattern" will be used to denote
two different things. The word "tape," unless otherwise qualified, refers
to an infinite string of squares upon which some symbols may be written.
If it is necessary to refer to a portion of a tape, the words "tape seg-
ment" will be used. In particular, if t~ denotes a finite segment at the left
end of a tape, and if tb denotes the remaining infinite segment of the same
tape, the symbolism "tatb" may be used to denote the entire infinite tape,
The word "pattern," on the other hand, refers to the string of symbols
that is written on a tape at a given time. Such a string must always be
finite in length. For the most part it will be necessary to refer only to the
pattern that appears on a Turing machine tape at the beginning of a
computation. Thus we shall speak of an "initial tape" and the "input
pattern" that it contains.

When describing the computations performed by a one-tape, off-line
machine, it is convenient to think of the tape as remaining fixed and the
control unit, or reading head, as moving back and forth. The zig-zag line
in Fig. 1 shows a typical path that the head might trace out on its tape
during the course of a computation. We will usually think of this path as
being traced out on the input pattern itself, and ignore the manner in
which the pattern changes during the course of the computation. On the
other hand, we will be very much interested in the internal state that the
machine assumes at each step in the computation, and may wish to label
the path with these states.

Now consider two adjacent squares on a tape, say those marked x and
y in Fig. 1, and note the points in the computation at which the head
crosses the boundary between the two squares. Since every computation
starts with the head at the left end of its tape, each odd-numbered cross-
ing between two given adjacent squares must be a crossing from/eft to
right; similarly, each even-numbered crossing must be from right to left.

[I I I I I x lY I I I I I
I

L - - ' Z - ' ~ _ I,
w I k , , = ?

J)
(~ ' I * I

I I I I-7

FIG. 1. The path of a computation

OFF-LINE TURING MACHINES 5 5 7

Let S(i) denote the state of the machine at the time of the ith crossing
between the two squares in question. Then the sequence C = S(1) ,
S(2) , . . . , S (i) , . - . will be called the crossing sequence tha t the given

1 Turing machine generates on the boundary between the two squares.
Informally, this crossing sequence describes the way in which the
machine "carries information," by means of its internal states, from one
side of the boundary to the other.

Specifying the crossing sequences associated with all of the boundaries
that the machine reaches in the course of its computation is equivalent
to specifying every basic step in that computation, in particular the
total computation time is equal to the total number of crossings that the
machine makes. If the number of crossings in a given sequence is re-
ferred to as the length of that sequence, then the total computation time
is equal to the sum of the lengths of all the crossing sequences. Evi-
dently a machine will halt for a given initial tape iff it generates on that
tape a finite number of non-empty crossing sequences, each of which is
of finite length.

B. BAsic PI~OP]~aTIES

Although we are primarily interested in machines that must always
eventually halt, regardless of the initial tape with which they are pre-
sented,]et us temporarily relax this restriction. Then an off-line machine
can react to an initial tape in three ways: it can halt and accept the tape,
it can halt and reject the tape, or it can continue computing forever. Two
initial tapes will be said to be treated identically by a given machine iff
they are both accepted, or both rejected, or if they both cause the
machine to compute forever.
T~oRm~ 1. Let tat~ be an initial tape consisting of a finite segment t~ ,

followed on the right by an infinite segment tb . Note that t~ need not coincide
with that portion of the tape that is initially nonblank. Similarly, let t~t~ be
an initial tape consisting of a finite segment t~ followed by an infinite set-
ment td . Assume that tatb and t~td are treated identically by a given Turing
machine M. Let C~ and C2 be the crossing sequences that this machine
generates on the boundary between t~ and tb, and on the boundary between
t~ and td , respectively. I f C1 and C2 are identical, then

(A) The initial tapes t~tb and t~td must be treated identically by the given
machine M.

A crossing sequence corresponds to the notion of a "scheme" used by Rabin
(1963).

558 HENNIE

ta t b

D---LC i)

i
tc t d

DQI_

ta t d
~//////////,~C\\\\\",,\

_ I, A

ell
FiG. 2. I l lu s t r a t ion of Theorem 1

(B) In the computations performed on t, tb and t~td, the crossing se-
quences generated at corresponding boundaries in the ta portions of the
tapes must be identical.

(C) In the computations performed on tat~ and t~td, the crossing se-
quences generated at corresponding boundaries in the t~ portions of the tapes
must be identical.

In other words, the tc portion of the tape tctd can be replaced by t~
without changing the final disposition of the tape or the crossing se-
quences that appear in the segments ta and t~. Figure 2(a) and (b) shows
typical paths that a hypothetical Turing machine might trace out on
tapes t, tb and t~td. If the crossing sequence generated on the boundary
between t, and tb is the same as that generated on the boundary between
t~ and t~, as shown, then the computation performed on the tape totd must
follow the path shown in Fig. 2(c). This picture makes the theorem al-
most "intuitively obvious," and a rigorous proof will not be given.

A useful corollary follows almost directly from Theorem 1 :
ConoI~r~A~Y 1. I f for an initial tape txt2t3 the crossing sequence that a

given machine M generates on the boundary between t~ and t2 is identical to
the crossing sequence that it generates on the boundary between t~ and ta,
then

(A) Machine M must treat initial tapes tlt2t~ and tit3 identically.
(B) Machine M must treat initial tapes t~t2t~ and t~t2t2ta identically.
In other words, if the same crossing sequence appears on both sides of

some tape segment, that segment can be removed, and the neighboring
segments joined together, without affecting the final disposition of the
tape. Alternatively, an extra copy (or copies) of the given segment can
be sandwiched in without affecting the final disposition of the tape.

Proof: Part (A). Let t~, tb, t~, and t~ represent the tape segments ta,
t2t~, t~&, and t~, respectively. Then t, tb and totd are identical tapes (namely

O F F - L I N E TURING MACHINES 5 5 9

ht2ts) and will certainly be treated identically by M. Thus according to
the Theorem, t~tb and t, te must be treated identically. But t~tb = tl&t3
and t~td = tlta.

Par t (B). Let t~ = t i t2, tb = t3, tc = tl and td = &h, and again apply
the Theorem. Q . E . D .

Although Theorem I and Corollary 1 are sufficient to establish the
t ime bounds discussed in the next section, it is worthwhile to investigate
in greater detail the ideas involved in the theorem. By so doing, we can
develop a better understanding of the relationship between the crossing
sequence concept and the more familiar internal state concept as it is
applied to finite-state machines.

Theorem 1 describes a situation in which it is possible to replace a
segment t~ at the left end of an initial tape t~td by another segment t~ with-
out affecting the outcome of the computation. Specifically, this can be
done if there exists a second tape t~tb that is treated identically to t,td and
for which the machine generates the same crossing sequence at the right
end of the t~ segment as it does at the right end of the tc segment. Seg-
ments such as t~ and t~ that appear at the left end of a tape will be re-
ferred to as "left-end" segments. Consider now the relationship that
must hold between two left-end tape segments h and t2 if t2 can a l w a y s
be substituted for h , regardless of the complete pattern in which the
latter appears. Evidently such a substitution will be possible only if every
crossing sequence that can appear at the end of h can appear at the end
o f t2 .

What is needed at this point is a precise means of determining whether
a given finite crossing sequence can appear at the right of a given left-end
tape segment. This cannot be done by considering all the tapes tha t con-
tain the given left-end segment, since in general it would be necessary to
investigate an infinite number of computations in order to be sure that a
given crossing sequence could not appear at the end of a given segment.

Instead, for any given Turing machine, f i n i t e left-end tape segment t,
and finite crossing sequence, C = S(1) , S(2) , . . - , S(X), we may per-
form the following experiment.

1. Begin the experiment by placing the machine in its designated
initial state and causing it to scan the leftmost square of t.

2. If, when the machine leaves the right-hand end of t for the i th time
(i < X) it is in state S (i) , put the machine in state S (i + 1) and send it
back onto the rightmost square of t.

3. If the machine halts within t, or gets stuck in some periodic be-

560 FIENNIE

havior within t, or leaves t in such a way that rule 2 does not apply, stop
the experiment.

Evidently such an experiment must terminate within a finite number
of steps. If at the end of the experiment the crossing sequence developed
at the right-hand end of t is exactly C, the segment t will be said to sup-
port the crossing sequence C at its right-hand end. If the length of C is
odd, t h e n the experiment ends with the machine outside the segment t.
In this case C will be called a transient crossing sequence for t. If the
length of C is even, then the experiment ends with the machine inside the
segment t. If the machine halted and produced an output of 1, the se-
quence C will be called an accepting sequence for t; otherwise it will be
called a nonaccepting sequence for t.

Now suppose that every finite crossing sequence that is supported by a
given left-end tape segment tl is also supported by some other left-end
segment t2. Furthermore, suppose that every nontransient sequence
that is accepting for tl is also accepting for t2. Then consider any tape in
which 6 appears as a left-end segment and on which the machine per-
forms a finite computation. By virtue of reasoning similar to that of
Theorem 1, the segment t2 can be substituted for tl without changing the
disposition of the original tape or the crossing sequences that appear on
the portion of the tape to the right of 6 •

Finally, suppose that (a) every crossing sequence that is supported by
6 is also supported by t2, and vice versa, and (b) every nontransient se-
quence that is accepting for 6 is also accepting for 6 , and vice versa.
Then the left-end segments 6 and & can be freely interchanged in any
finite computation without affecting the outcome of the computation.
Classifying left-end tape segments according to the crossing sequences
that they support and according to which of these sequences are accept-
ing may thus be thought of as a generalization of the classification of in-
put strings according to the states to which they take a given finite-state
machine.

C. SIMPLE APPLICATIONS

I t is now instructive to consider the special case in which the crossing
sequences generated by a given n'lachine never exceed a certain length,
say K. In other words, the machine never spends more than K time units
in any one square of its tape. Loosely speaking, if a machine never visits
any tape square more than K times, there is only a finite number of
different sequences of things that it can "do" in any one square. Further-

OFF-LINE TURING MACHINES 5~1

more, there is only a finite number of distinct subsets of these sequences.
If the subset of sequences that the machine might generate in a given
square is known, then the subset of sequences that it might generate in
the next square to the right can be determined. Therefore the machine
might just as well be designed to visit each square just once, working
from left to right, and to keep track of the corresponding subsets of
sequences as it goes. This line of reasoning suggests the following
theorem:

THEOREM 2. I f every crossing sequence in every computation performed
b9 a given one-tape, off-line Turing machine contains at most K members,
then there exists a finite-state machine that recognizes precisely the same set
of input patterns as the given Turing machine.

Proof: The proof is accomplished by showing that the set of patterns
that the given machine recognizes can be represented as the union of a
number of classes of a finite, right-invariant equivalence relation.

For any given Turing machine, and for any given finite value of K,
there is at most a finite number of distinct crossing sequences whose
length does not exceed K. Furthermore, the number of subsets of these
crossing sequences is finite. Every finite left-end tape segment can then
be classified according to the crossing sequences of length K or less that
it supports at its right-hand end, and according to which of these se-
quences are transient, which are accepting, and which are nonaceepting.

Now suppose that two finite left-end segments, h and t2, belong to the
same class, as just described. Then consider any left-end tape segment of
the form ht~, where t~ is finite, and determine the crossing sequences of
length K or less that it supports. Evidently any crossing sequence that
is supported by ht~ will Mso be supported by t~t~ and vice versa, since in
the experiment described in Section II, B t,, can be replaced by t2 without
changing the crossing sequences in the tx portion. Furthermore, any non-
transient sequence that is accepting for ht~ will also be accepting for t2t~,
and any nontransient sequence that is nonaccepting for ht~ will also be
nonaccepting for t2t~. Thus t~t~ and t2t~ fall in the same class of left-end
tape segments. Since this is true for any t~, the classification described
above is a finite, right-invariant equivalence classification.

We must now show that the set of acceptable 'input patterns is com-
posed of the union of a number of the equivalence classes. Suppose that
pattern p is accepted by the given Turing machine. That is, when p ap-
pears at the left end of a tape, followed by an indefinitely long segment of
blank tape, that tape is accepted by the machine. If q is another pattern

562 HENNIE

that falls in the same equivalence class as p, then q must also be accepted
by the machine, for we have seen that members of a given equivalence
class can be interchanged without affecting the disposition of a tape in
which they appear as left-end segments. Therefore if one member of a
certain equivalence class is acceptable, every member of that class must
be acceptable. Similarly, if one member of a certain class is not accept-
able, then no member of that class is acceptable. I t follows that the set
of acceptable tape patterns must be composed of the union of certain of
the equivalence classes. This in turn implies that the set of acceptable
patterns can be recognized by a finite-state machine. Q . E . D .

Theorem 2 states that if a certain Turing machine never spends more
than a fixed number of time units on any one square of its tape it can be
replaced by a finite-state machine. Next suppose that the maximum
time that a machine spends in each square is not limited, but that the
average time per square of the input pattern is limited. In other words,
suppose that the machine is guaranteed to complete its computations
within Kn time units, where n is the length of the input pattern. In such
a case, the machine may generate very long crossing sequences at some
boundaries, as long as it generates enough short sequences elsewhere.
Nevertheless, it is possible to show that any Turing machine of this type
can also be replaced by a finite-state machine.

Before proving this fact, note that we may safely restrict our attention
to Turing machines that never leave the input portions of their tapes.
For suppose that ell is a machine that completes all of its computations
within Kn time units. Such a machine certainly does not visit more than
(K - 1)n squares of blank tape. Now design a new machine M', whose
tapes are divided into K levels, or "tracks," as shown in Fig. 3. The sym-
bols that may appear in the squares of the new tapes represent ordered
combinations of K of the symbols from the original tapes, one symbol
for each track.

The top track of each new tape is used to record the input pattern,
while the remaining K - 1 tracks account for the (K -- 1)n squares of
blank tape that machine M might use. The machine M' starts out by
working only with the symbols that appear in the top track of its tape,
behaving exactly as M would at the beginning of its computation. How-
ever, if M should move off the input portion of its tape onto the blank
portion, M' turns around and works backwards on the second track of
its tape. If M should move beyond the nth square of blank tape, M'
simply turns around again and works toward the right on the third track

OFF-LINE TURING IV[ACHINES 56~

I
2n
2n+l

ONE SQUARE
co

I n' o 2n-I 2n-2 i m< n+2 n+t
2n+2 2n+3 ~- 3n-I 3n

Fro. 3. Mult i t raek tape

of its tape. In effect, the blank portion of the tape from machine M has
been folded, in zig-zag fashion, onto the input portion of the tape. Al-
though the details will not be given, it should be clear that it is always
possible to design a machine M' that recognizes the same set of input
patterns as the given machine M.

T~EOu~M 3. I f a one-tape, off-line Turing machine performs all of its
computations within the time bound T(n) = Kn, where K is a constant,
then there exists a finite-state machine that recognizes precisely the same set
of input patterns as does the given Turing machine.

Proof: The proof consists in showing that if the total computation
time is limited by Kn, then the time spent in any one square must be
limited by 2KQ :~ ÷ K, where Q is the number of internal states. The
desired conclusion then follows immediately from Theorem 2.

Assume that the given Turing machine has been constructed in such a
way that it never leaves the input portions of its tapes, and that it has
Q internal states. Then suppose that in the process of performing its
computation on some input pattern the machine does generate a crossing
sequence whose length is greater than 2KQ K + K. In particular, let no
be the shortest input pattern length for which such a "long" crossing
sequence is generated.

Now choose some input pattern of length n0 for which a long crossing
sequence is generated and examine the computation that the given
machine performs on this pattern. Let s denote the number of crossing
sequences in this computation that are shorter than K. Recalling that
the total computation time T is equal to the sum of the lengths of all the
crossing sequences in the computation, we have:

Kno > T(no) > 2KQ ~ + K + (n o - 1 - s)K

Solving for s gives
s > 2Q ~

564 HENNIE
But the number of distinct crossing sequences whose length is less than
K is

K--1

i ~ l

since the given machine has only Q states. Therefore among the more
than 2Q K boundaries that have "short" crossing sequences, there must
be at least three that have identical crossing sequences. Call these bounda-
ries bl, b2, and ba, and call the boundary on which the "long" crossing
sequence appears b0.

At least two of the boundaries bl, b2, and bs must lie on the same side
of b0 • Suppose that bl and b2 are so located, as shown in Fig. 4. Now form
a new input' pattern by removing the portion of the original pattern
between bl and b~ and joining the end pieces together. According to Cor-
ollary 1, the crossing sequences that the given machine generates in per-
forming its computation on the new tape must be identical to the cross-
ing sequences that it generated at corresponding boundaries on the old
tape. In particular, since b0 lay outside the portion of the old tape be-
tween bl and bs, the computation on the new tape will contain a crossing
sequence whose length exceeds 2KQ ~c q- K.

The length of the new pattern is certainly less than no. But no was
determined to be the shortest length of an input pattern for which such a
"long" crossing sequence is generated. Therefore the assumption that
some finite input pattern yields a crossing sequence longer than 2KQ K q-
K leads to a cont.radietion and must be false. Consequently no crossing
sequence generated by the given machine is longer than 2KQ ~ q- K,

REMOVE

• 1t21
bl

i' 1llt 1 '̧{'
b3

b o

Fro. 4. I l lustrat ion of Theorem 3

OFF-LINE TURING MACHINES 565

regardless of the particular finite input pattern supplied to the machine.
Then according to Theorem 2 there must exist a finite-state machine that
recognizes the same set of input patterns as the given Turing machine.

Q . E . D .
Restating Theorem 3 slightly gives the following interpretation.

Suppose that a certain set of input patterns can be recognized by a one-
tape, off-line Turing machine that completes each of its computations in
a time that is directly proportional to the length of the particular input
pattern supplied. Then the same set of patterns can be recognized by a
one-tape, off-line Turing machine that completes each of its computa-
tions in a time that is exactly equal to the length of the pattern supplied.
This latter Turing machine simply moves from left to right across its
tape, behaving like a finite-state machine. Thus no increase in the com-
putational capabilities of one-tape, off-line Turing machines is achieved
by increasing the allowed computation time from n to Kn.

It is interesting to compare this result with related results for other
computing situations. Using the techniques of Hartmanis and Stearns
(1965) it is possible to show that if a certain set of patterns can be recog-
nized by a one-tape, off-line Turing machine that completes its computa-
tions within time K T (n) , then it can also be recognized by a machine
that completes its computations within time T (n) , provided T (n) > n 2.
In other words, if the computation time is large enough to begin with
(greater than n2), increasing the computation time by a multiplieative
factor does not increase the computational capabilities of a one-tape,
off-line machine. I t seems reasonable to conjecture that this is true for all
functions T(n) . However, the notion of a crossing sequence does not
seem to be useful in establishing this result for T(n) greater than n, and
the methods of Hartmanis and Stearns do not seem to be useful for
T(n) less than or equal to n 2. At present, then, it is not known whether
increasing the computation time from T(n) to K T (n) increases the
capabilities of a one-tape, off-line Turing machine when T(n) lies in the
rangen 2 > T (n) > n.

5~Iatters are slightly different for two-tape, off-line machines. Again,
going from T(n) to K T (n) does not increase computational capabilities
so long as T(n) > n ~. However, going from n to Kn apparently does in-
crease the computational eapabiiities of two-tape, off-line machines.
Exactly where in the range from n to n 2 the use of a multiplicative con-
stant ceases to make a difference is not yet known, but it is clear that the
addition of a second tape does change the computational characteristics

566 HENNIE

of an off-line machine. Further understanding of the differences between
one- and two-tape machines will be developed in the next section.

III. TIME BOUNDS FOR ONE-TAPE, OFF-LINE COMPUTATIONS

A. TH~ R~COG~ITION OF SaT S

We now consider the problem of determining upper and lower bounds
on the time required to recognize certain sets of input patterns on one-
tape, off-line machines. We shall first exhibit a set of patterns for which
the minimum computation time, T(n), can be shown to lie in the range
Cln2/log Q <= T(n) <= C2n2/log Q, where n is the length of the input
pattern and Q is the number of internal states of the machine that per-
forms the computation. Thus for this particular set of patterns the
optimum computation time grows as n 2, and can be determined within a
multiplicative constant. Appropriate modifications of this set lead to sets
whose optimum computation times grow as other powers of n in the
range between 1 and 2, and whose optimum computation times can also
be determined within multiplicative constants.

The patterns to be discussed in this section are based on the alphabet
10, 1, 2}. It is convenient to think of such patterns as being composed
of blocks of O's and l's, separated by blocks of 2's. Thus the pattern
010112022201022 contains a total of six blocks. Now let the set S be
defined as the set of patterns on the alphabet {0, 1, 2} that satisfy each
of the following conditions:

i. The pattern consists of exactly three blocks: a block of 0's and l's,
followed by a block of 2's, followed by a block of 0's and l's.

2. The lengths of the three blocks are equal
3. The pattern of O's and l's appearing in the first block is identical

to the pattern of O's and l's appearing in the third block.
Thus 020, 110222110, and 001102222200110 are members of S, while

002, 1122110, 1212, and 010222011 are not.
It is not difficult to design a one-tape, off-line Turing machine that

recognizes the set S. Perhaps the most natural approach is to have the
machine make a series of passes across the input pattern from left to
right. On each pass the machine compares one symbol in the first block
with the corresponding symbol in the third block, and "checks off" one
symbol in the second block. In this way the machine will eventually
determine whether the pattern consists of three equal-length blocks, and
whether the first and third blocks contain identical patterns.

The total time required for such a computation is equal to the product

O F F - L I N E T U R I N G M.ACi t INES 567

of the number of passes and the number of steps per pass. If the input
pattern is acceptable, each pass requires a round-trip travel time of } n
steps, and n / 3 passes must be performed. Thus we might expect the
total computation time to be about ~ n 2. Actually, a slightly longer time
may be required to handle certain nonaceeptable input patterns. Al-
though the construction will not be given, there is an eight-state off-line
machine that recognizes the set S by means of the procedure described
above. This machine can be shown to complete its computations within
the time T (n) = ~n 2 q- n.

Faster computations will result if the machine is designed to compare
two or more symbols from the first and third blocks during a single pass.
In particular, if/~ symbols are compared on each pass, the number of
passes--and hence the total computation time--will be ~pproximateIy
divided by/~. Such a scheme will, of course, require extra internal states.
Without going into details, we may simply note that/c symbols can be
compared on each pass by a machine that uses at most (/c q- 1)2 ~+1 states.
The corresponding computation time can be shown to be at most

2n 2
- - q- 4n (for Q => 8)
log Q

where Q is the total number of internal states and the logarithm is taken
to the base two. Thus the set S can be recognized by a one-tape, off-line
Turing machine within a computation time whose growth for large n is
directly proportional to n 2 and inversely proportional to log Q, the num-
ber of bits of internal memory.

Let us now try to find a good lower bound for the fastest possible
computation time, in terms of the number of states and the length of the
input pattern. Suppose that we are presented with a one-tape, off-line
Turing machine that has Q internal states and does in fact recognize the
set S. In the discussion to follow we shall consider only the acceptable
input patterns of some arbitrarily chosen length n, where n is a multiple
of three. There are, of course, exactly 2 "/a such patterns. For each of
these patterns the machine will go through a well-defined computation,
generating a finite crossing sequence at each of the n - 1 boundaries
within the pattern. Which of these crossing sequences must be distinct,
and which may be identical?

Since we are eonsidering only acceptable patterns, Theorem 1 and
Corollary 1 imply that two crossing sequences can be identical only if
the result of joining the tape segment on the left of one crossing sequence

568 HENNIE

to the tape segment on the right of the other is to form another accept-
able pattern. A little thought shows that this will happen only if the
two crossing sequences appear at corresponding positions within the
first (or third) blocks of two different computations, and if the patterns
appearing to the left (right) of the two sequences are identical. In such a
case, cutting the two initial tapes at the boundaries in question and
swapping their left (right) ends does not change the patterns at all. For
any other locations of the two crossing sequences, cutting the initial tape
or tapes at the boundaries involved and rejoining the ends will yield at
least one nonaeceptable pattern. Hence the crossing sequences that ap-
pear on such boundaries must be distinct.

In particular, a]l of the crossing sequences that appear on boundaries
within the center blocks of acceptable patterns of length n must be dis~
tinct. For if we consider two boundaries within the center block of the
same pattern, removing the segment between the boundaries would re-
sult in a pattern without enough 2's to be acceptable. If we consider two
boundaries within the center blocks of different patterns, swapping ends
will result in a pattern in which the first and third blocks do not match.
If the crossing sequences on the two boundaries were identical, either
Corollary 1 or Theorem 1 would be violated.

We can now use this fact to derive a lower bound on the maximum
time that the given machine must spend on some acceptable pattern of
length n. Because the argument to be used does not take into considera-
tion the crossing sequences that appear in the first and third blocks, it
cannot be expected to yield the best possible bound. However, considera-
tion of all the crossing sequences requires a rather lengthy argument and
results in an improvement of only a factor of two in computation time.

Let s denote the number of distinct crossing sequences whose length
does not exceed X = (n/3 log Q) - 1, where again Q is the number of
states in the given machine and the logarithm is taken to the base two.
Note that the number of distinct crossing sequences of length one is Q,
the number of length two is Q2, and so on. Therefore

X

s = ~ Q~ < @+1 = Q~/31og~ _ 2~/8 (for Q ~ 2)
i=1

But the number of acceptable patterns of length n is exactly 2 "/~, which
is greater than s. Since no one crossing sequence can appear in the center
portion of two different computations, we see that there are not enough
of the "short" crossing sequences to have one in the center portion of

OFF-LINE TUftING MACHINES 569

each computation. Tha t is, there must be some computation performed
on an acceptable pat tern of length n for which the length of every cross-
ing sequence in the center portion exceeds X.

The amount of time that the given machine must spend on this one
computation is equal to the sum of the lengths of the crossing sequences
that appear in that computation. In particular, the amount of time the
machine spends in the center block of the pattern is at least (n/3) (X q- 1),
since there are n/3 boundaries in this block and each must have a cross-
ing sequence of length X -t- 1 or more. Thus the total computation time
is at least n~/9 log Q.

If all the crossing sequences in the computations performed on accept-
able patterns of length n are taken into account, this lower bound can be
doubled. Thus if n is a multiple of three, there must be some acceptable
pattern of length n upon which the machine spends at least 2n2/9 log Q
time units. In conclusion, if the set S is to be recognized by a (?-state,
one-tape, off-line Turing machine, then the associated computation time
must exceed 2n2/9 log Q when n is a multiple of three, but need not
exceed (2u2/iog Q) -4- 4r~. In particular, for q = 8, the computation
time must exceed 2n2/27, whereas we know that it is possible to con-
struet an eight-state machine whose computation time does not exceed
12r~/27 q- n. Thus for large n the optimum computation time of an
eight-state machine has been determined within a factor of six.

I t is instructive to t ry to determine, at least on art informal basis, why
the upper and lower bounds differ by as much as a factor of six. In order
to do this, it is appropriate to think of the task of a one-tape machine as
that of carrying data back and forth across the various boundaries of its
tape. The shorter the computation time is to be made, the more data
each individual member of a crossing sequence must carry. Of course,
fixing the number of internal states also fixes the maximum "amount" of
data that can be transported by a single crossing sequence member. If
the shortest possible computation time is to be achieved, each crossing
sequence member must be used to its full capacity. Tha t is, for any
choice of an internal state and integer i, it must be possible to find a
crossing sequence in which the given state appears in the ith position.

Returning to the method described above for recognizing the set S, we
see that the members of the crossing sequences are not being used at
their fullest data-carrying capacity. In particular, whenever the machine
moves from right to left, it is simply returning from the completion of
one pass to the starting point of the next, and is carrying almost no useful

570 HENNn~

information. Thus the data-carrying capacity of all the even-numbered
crossing sequence members is almost entirely wasted. From this fact
alone we would expect the computation time required by the present
method to be about twice that given by the lower bound.

The efficiency of the realization is further reduced by other "inter~
symbol" constraints that the machine imposes on its crossing sequences.
These other constraints arise primarily from the machine's need to keep
track of which block of the input pattern its reading head is currently
scanning. Thus the machine's "housekeeping" duties interfere with its
primary job of transporting information about the input pattern, and
this interference substantially reduces the machine's computing effi-
ciency. The only way of combating this problem is to change the method
used to recognize the set S. With a modified computing scheme and a
greatly expanded tape alphabet, it is possible to design an eight-state
machine that comes within about a factor of two of achieving the com-
putation time given by the lower bound. Thus, in this particular example,
a relatively high data-carrying efficiency can be obtained, and the lower
bound previously given is a relatively good one.

It must be remembered, however, that the argument used to obtain
the lower bound on computation time does not take into account the fact
that the crossing sequences involved will have to be generated by a one-
tape Turing machine. Since the Taring machine model itself imposes
constraints on the crossing sequences that can appear in a given com-
putation, arguments similar to those of this section cannot be expected
to lead to good lower bounds for all recognition problems.

The problem of recognizing the set S is interesting for several reasons.
First, it illustrates the application of the crossing-sequence concept to the
problem of determining minimum computation times. Second, it pro-
vides a specific example of a computing problem for which reasonably
close upper and lower time bounds can be obtained. Third, it provides
some insight into the relationships among crossing sequences, particular
computing schemes, and the "efficiencies" of these schemes. Finally, it
provides information about the relative speeds of one- and two-tape
machines, as discussed below.

We next consider the problem of designing a two-tape, off-line Turing
machine that recognizes the set S. Such a machine is to begin its compu-
tation with the input pattern written on one of its tapes, called the input
tape. The second tape, called the extra tape, is to be compIetely blank at

OFF-LINE TURING MACHINES 571

the beginning of the computation. One simple way of carrying out the
desired computation consists of the following three steps:

Step 1. The machine moves both its tapes from right to left, copying
the first block of the input pattern onto the extra tape. The total time
required for this step is equal to the length of the first block.

Step P. The machine continues to move the input tape from right to
left but now moves the extra tape from left to right, so that it passes
back over the pattern that it has just recorded on that tape. In this way
the machine is able to compare the length of the second block (on the
input tape) with the length of the first block (on the extra tape). If these
lengths are not the same, the computation is immediately stopped. If the
lengths are the same, the machine will end up scanning the first symbol
of the third block on the input tape, and the first symbol of the first
block on the extra tape. In any event the time required for this step will
not exceed the number of symbols in the second block of the input pat-
tern.

Step 8. The machine moves both tapes from right to left, comparing
the pattern that appears in the third block (on the input tape) with the
pattern that appears in the first block (on the extra tape). The time re-
quired for this step will not exceed the number of symbols in the third
block of the input pattern. Thus if n is the length of the entire input
pattern, the total time required for the computation is at most n, and
the computation time is certainly bounded by the function T(n) = n.

The present example is one for which the fastest computation time
that can be achieved with a one-tape, off-line machine is necessarily pro-
portional to the square of the fastest computation time that can be
achieved with a two-tape, off-line machine. On the other hand, we know
from the work of Hartmanis and Stearns (1965) that if a given two-tape
machine completes its computations within T~(n) time units, there must
exist a one-tape machine that completes its computations within
C[T1(n)] 2, where C is a constant. In other words, going from a two-tape
machine to a one-tape machine need never require more than a squaring
of the computation time. But we now have an example in which the
squaring is necessary. Thus the I-Iartmanis-Stearns "square law" cannot
be improved upon in general.

B. GROWTH RATES FOR OTHER SETS

The set S provides an example of a recognition problem whose compu-
tation time necessarily grows in proportion to n 2, and for which a compu-

572 HENNIE

tation time that grows in proportion to n 2 can be realized. Thus we
may think of n 2 as the "growth rate" associated with the recognition of
S by a one-tape, off-line Turing machine. In this section we shall briefly
consider recognition problems with other growth rates, in particular
growth rates of the form n p, where p is a rational number between one
and two.

As a first example, we will examine a set of input patterns whose recog-
nition time grows as n 3/2. This set is similar to the set S, the essential
difference between the two lying in the relative lengths of the three
blocks. The new set, designated set R, consists of just those patterns that
satisfy each of the following conditions:

1. The pattern consists of exactly three blocks: a block of O's and l's,
followed by a block of 2's, followed by a block of O's and l's.

2. Let n denote the length of the entire pattern and let x denote the
length of the first block. Then

(A) x is a power of 2, and
(B) n equals x 2.
3. The patterns that appear in the first and third blocks are identical

(which implies that the first and third blocks have the same length).
Thus the pattern 0111222222220111 belongs to the set R, while

011122220111 does not, because its entire length is not equal to the
square of the length of its first block.

The set R may conveniently be recognized by a machine whose compu-
tations consist of two consecutive stages. In the first stage, the machine
determines whether conditions 1 and 2 are satisfied; in the second stage
it determines whether condition 3 is satisfied. Condition 1 can be checked
very simply by making a single pass across the tape, which requires only
n time units. Condition 2(A) is equivalent to requiring that log x be an
integer, while condition 2(B) is equivalent to requiring that log x = ½
log n. The machine will therefore be designed to check condition (2) by
computing the logarithms of x and n.

A machine can compute the integer part of the base-two logarithm of
the length of a block of tape by making a series of passes across that
block. On each pass it "marks" with some special symbol the first, third,
fifth, etc. previously unmarked squares, as illustrated in Fig. 5. The
number of passes required to mark all the squares will then be one
greater than the integer part of the logarithm of the length of that block.
Furthermore, the length of the block will be a power of two (and its

OFF-LINE TUBING MACItINES 573

i" PASS [vl Ivl

2 r'd PASS I , / Iv lv l

Vl Iel IZI 77-1

Ivlvlvl IJtJL

S'"PASS IJIVlViVlVtVtVl IVlViVl

4 t~ PASS IJi,'Ivlvl Jlvlvl Jivl,'i vl
FIG. 5. Method of determining logarithms

logarithm will be an integer) iff the rightmost square in the block is the
last square to be marked.

In order for a machine to determine whether condition 2 is met, it
must carry out two marking operations, one on the entire pat tern, the
other on the first block alone. These two operations can be distinguished
by the use of different marking symbols. I t is most convenient to design
the machine so tha t it makes two passes across the entire tape for each
pass across the first block. Then condition 2 will be met iff the two mark=
ing operations are completed on the same pass, and in each case the last
symbol is not marked until the last pass. Each pass requires at most 2n

t ime units, and the max imum number of passes required is proportionM
to the logari thm of n. Thus the total t ime needed to check conditions 1
and 2 is at most aln log n, where al is a constant.

Finally, condition 3 can be checked in a manner similar to tha t used in
the recognition of S. The machine again makes a series of passes across
the tape, on each pass comparing one symbol in the first block with one
symbol in the third block. The t ime required for a single pass is less than
2n, while the number of passes is x = n~% Thus the t ime required to
check condition 3 is less than 2n sl2, and the time required for the entire
computat ion is less than 2n s/2 + ~ n log n, which in turn is less than
a2n . In other words, the set R can be recognized within a computat ion
t ime tha t grows only as fast as n a~2.

T h a t a growth rate of n s/2 is necessary for the recognition of R can be
established by a technique similar to tha t used in the preceding section.
I f we are not concerned with the actual constant of proportionality, it is
sufficient to consider only the crossing sequences tha t are generated in
the center blocks of the acceptable pat terns of length n. Note tha t there
are exactly 2 ~ ~2 different acceptable pat terns of length n (assuming n to

574 ~nNN~n

be a power of four). On the other hand, the number of distinct crossing
sequences whose lengths do not exceed ~ = (nit ' / log Q) - 1 is

Q~ < Q,+I = 2~1,2 (for Q > 2)

Thus there are not as many "shor t" sequences as there are computat ions
and some computat ion must have only crossing sequences of length
greater than ~ in its center block. Since the number of boundaries in the
center block is a t leas t 1/~n, the total t ime required for this computat ion
is at least

T(n) = (u + 1) n _ n 312
2 2 log Q

In other words, for any fixed number of states, the computat ion t ime
required to recognize the set R must grow in proportion to n 3/~.

The definition of set R can now be modified so as to describe sets hav-
ing different growth rates in the range from n to n 2, exclusive. The follow-
ing conditions define a set of pat terns whose associated growth rate is
n 1+~/~, where q and r are integers and q is less than r.

1. Each pa t te rn consists of exactly three blocks: a block of O's and
l 's , followed by a block of 2's, followed by a block of O's and l 's .

2. Let n denote the length of the entire pa t tern and let x denote the
length of the first block. Then

(A) x is a power of 2 q,
(g) x = r~ ~/~.

: 3. The pat terns tha t appear in the first and third blocks are ident ical
A machine tha t recognizes such a set can be designed in much the same

way as the machine tha t recognizes R. As before, condition 1 is quite
easy to check. Conditions 2(A) and 2(B) together are equivalent to re-
quiring tha t

i log x = I log n -- integer
q r

Therefore when the machine computes the logarithms of x and n it should
make a series of r passes across the entire pattern, followed by a series of
q passes across the first block, followed by a series of r passes across the
entire pattern, etc. Condition 2 will then be met iff

(a) The marking operation for the entire pat tern is completed on the
first pass after some integral number, k, of series of r passes.

OFF-LINE TURING MACHINES 5 7 5

(b) The marking operation for the first block is completed on the first
pass after the same integral number k, of series of q passes.

(c) The last step of each marking operation is the marking of the last
square in the appropriate tape segment; i.e., both log x and log n are
integers.

Condition (3) can be checked in the usual manner. The total computa-
tion time is at most

~4n log n + asn(n q/r) < a6n l+qjT

Tha t a growth rate of n 1+q/~ is necessary for the recognition of the given
set can be shown by arguments similar to those used for the set R.

C. GENERAL RESULTS

The results developed in the preceding two sections can be sum-
marized in:

T~EO~EM 4. For any rational number p in the range 1 < p <= 2 there
exists a set of input patterns Sp such that

(a) Sp can be recognized within a computation time that is less than
Cl(p, Q)n ~, and

(b) Sp cannot be recognized within a computation time that is less than
C2(p, Q)n p
where C1 and C2 are functions only of p and the number of internal states
available for the computation.

CO~OLLAaY 4. I f p and q are two real numbers in the range 1 <= q <
p _-< 2, then there exists a set of input patterns that can be recognized within
a computation time that is proportional to n p, but that cannot be recognized
within a computation time that is proportional to n q.

Proof: First choose r to be a rational number such that q < r < p.
Then according to Theorem 4 there must exist a set of pat terns that can
be recognized within C1 (r, Q)n ~ t ime units, but that cannot be recognized
within C2(r, Q)n ~ t ime units. Since Cl(r, Q)n ~ < Cl(r, Q)n ~, this set can
certainly be recognized within a computation time that is proportional
to n p. Now assume that there exists some Q-state machine that recog-
nizes the same set within Cn q t ime units. But for sufficiently large n,
Cn q < C2(r, Q)n ~, contradicting the assumption. Thus the set cannot be
recognized within a computation time that is proportional t o n q.

Q . E . D .
As pointed out before, it seems reasonable to conjecture that if a cer-

tain set of input patterns can be recognized by a one-tape, off-line Turing

576 ttENNIE

machine within a computation time K T (n) , then it can also be recog-
nized within the computation time T(n), provided T(n) >= n. In other
words, it seems reasonable to suppose that any computation can be
speeded up by a constant factor through the use of additional internal
states. According to Theorem 4, however, this is the best speed-up that
can be obtained for an arbitrary recognition problem, at least in the
range of computation times from n to n 2.

Furthermore, the allowable computation time need not be increased
very much in order to provide one-tape, off-line machines with the ability
to recognize new sets. According to Corollary 4, increasing any time
bound of the form uP(1 N p < 2) by a factor of n~(e > 0) increases the
computing capabilities of one-tape machines. Thus the hierarchy of com-
plexity classes (Hartmanis and Stearns, 1965) is very densely packed, at
least in the range from n to n ~.

IV. CONCLUSION

Crossing sequences provide a convenient means of describing the man-
ner in which a one-tape, off-line Turing machine carries "information"
from one part of its tape to another. Their role may be compared with
that of the internal states of a finite-state machine. The occurrence of a
particular state in a finite-state machine specifies the one class, out of a
finite number of classes, that contains the input sequence that the
machine has received so far. The occurrence of a particular crossing
sequence in the computation performed by a Turing machine specifies
two classes: one that contains the portion of the initial tape pattern that
ties to the left of the sequence, and one that contains the portion of the
initial tape pattern that lies to the right of the sequence. In each case,
the specification is of one class out of an infinite number of classes.
' Thus both internal states and crossing sequences provide some in-
:formation about the input pattern with which their respective machines
~are supplied. Whereas the internal state supplies information only about
'the pattern that appears on one "side" of its point of occurrence (the
past), the crossing sequence supplies information about the patterns
that appear on both sides of its point of occurrence. Furthermore, the
s~ate of a finite-state machine can denote only a finite number of classes
Of past hlstories, while the crossing sequences of a Turing machine can
d6note an infinite number of pairs of classes of patterns.

When working with finite-state machines, it is often possible to con-
clude that two specific input sequences must lead the machine to different

O:~t~-LINE TURING MACHINES 5,7,~

internal states in order that the machine behave properly in the future,
In much the same way, it is often possible to conclude that the crossing
sequences that appear at specific points in one or more computations
must be distinct in order that the Turing machine that produces thelr~
behave properly for all possible input patterns. The knowledge that the
states that result from certain input sequences must be distinct enables
us to place a lower bound on the number of states required by a finite~
state machine. The knowledge that certain crossing sequences must be
distinct similarly enables us to p!aee a lower bound on the time required.
by the computations of a one-tape Turing machine. Unfortunately, such
a bound is not usuM]y as easy to obtain as the analogous bound on the
number of states of a finite-state machine.

The time bounds arrived at through consideration of crossing se~
quences are not necessarily very close ones. There are two reasons f0~
this. First, it is not always feasible to take into account all the distinc=
tions that must exist among the various crossing sequences that a given
Turing machine generates. Thus it may be necessary to ignore part of.
the machine's task when deriving a lower bound on the computatio~
time. Second, the arguments used to obtain the bounds assume that the
machine uses its crossing sequences to carry "information" at maximum
efficiency. In practice, this is not always possible, either because the,
machine must return "empty-handed" from some remote portion 0 f i t s
tape, or because it must spend considerable time organizing, or encoding,
the data to be transmitted into a form in which it can be used in another
part of t he tape.

I t is this last problem, that of encoding data into a usable format, that
prevents the concept of a crossing sequence from being very useful for
problems that require computation times greater than n 2. For consider
the extreme ease in which all the crossing sequences in all the computa-
tions performed on all the input patterns of length n or less must be disz
tinct. Even in this case, the arguments used in the preceding sections
require an average computation time that grows only as fast as n 2. This
is the maximum growth rate required, under ideal conditions, to dis-
tribute to each tape square complete information abou~o the symbols
initially appearing in every other tape square. The catch is, of eourse,
that simply distributing this data is not enough. It must be supplied in
such a form that it can be correctly interpreted by the machine at the
point at which the decision concerning acceptance or rejection is made.
Since this decision must be made by what amounts to a finite-state

578 HENNIE

mechanism (whose inputs are the states of the Turing machine and
whose internal states are the tape symbols), the format of the crossing
sequences is often severely constrained. In such cases the crossing se-
quences may need to be much longer than the length dictated by data-
transmission considerations alone, and the total computation time may
need to be much greater than that dictated by the arguments of Sec-
tion III.

Although the idea of a crossing sequence can be extended to apply to
off-line machines with two tapes, it does not seem to be useful for ob-
taining time bounds for such machines. Perhaps the most appropriate
way of regarding the computations of a two-tape machine is to think of
the reading head as moving in a plane, the coordinates of a point in this
plane indicating the location of the head on each of the two tapes. I t is
then possible to define a crossing sequence as the sequence of internal
states in which the machine enters and leaves a given square in the
plane. Unfortunately, there seems to be no direct counterpart of Theorem
i or Corollary I that applies to the planar situation, and hence the entire
method of finding lower bounds falls apart.

I n spite of its limited range of application, the concept of a crossing
sequence can be used to obtain strong results about certain Turing
machine computations. Indeed, the class of one-tape, off-line Turing
machines is one of the few classes of Turing machines for which such
strong statements as Theorem 4 can be made. Most important, this class
of Turing machines is the only one for which any eoneept that approaches
the power and usefulness of the finite-internal-state concept is presently
available.

AeK~OWLEDOM~T

The author wishes to thank Dr. Juris Hartmanis of the General Electric Re-
search Laboratory for his critical reading of the manuscript.

RECEIVED: January 12, 1965

REFERENCES

YAMADA, i . (1962), Real-time computation and recursive functions not real-
time computable, IRE Trans. Electron Computers EC-11,753-760.

tt~I~T~ANIS, J., AND ST~A~NS, R. E. (1965), On the computational complexity of
algorithms. Trans. Am. Math. Soc., in press.

RAVIN, M. O. (1963), Real-time computation, Israel J. Math., 1,203-211.

