STUDYING DELETED TWEETS IN TWITTER

Aakash Anuj	10CS30043
Amrith Krishna	13CS60R12
Yetesh Chaudhary	10CS30044

Mentor: Parantapa Bhattacharya

Supervisor: Prof. Animesh Mukherjee

Roadmap

MIDSEM EVAL:

- Had a smaller dataset (≈ 64 K)
- Were missing concrete distinctions between deleted tweets and undeleted tweets

□ NOW:

- We have a much larger dataset ($\approx 8M$)
- We have tried to make the best possible use of the random sample that we have !

1% random sample – Spritzer API

Technicalities / Technical Challenges

- Non-English Tweets
 - Translatation of all tweets to English GoSlate Library (Google API workaround for rate limit)
- Prediction of gender from first name using a Naïve Bayes Classifier
 - Source: <u>http://stephenholiday.com/articles/2011/gender-prediction-with-python/</u>
- POS Tagger for Twitter
 - CMU ARK (Used in our work) Vs. GATE PoS Tagger
- Wordnet for lexical analysis of tweets
- Latent Dirichlet Allocation (LDA) for finding out topics
 - Gibbs LDA

RESULTS

Statistics

	Deleted	Undeleted
Unique Users	3.6 M	4.7 M
% of deleted tweets containing links	19.26	12.92
% sensitive links in deleted tweets	4.09	3.21

More Statistics

	Deleted	Undeleted
% of verified users	0.059	0.13
Average number of followers	5794	1571
Average number of friends	1636	724

More Statistics

- We have a sufficient number of verified users in both deleted and undeleted tweets
 - Verified users are people whom users tend to follow a lot !
 - We can't say which of verified or unverified users delete more simply based on these counts
 - But we can definitely perform a lexical analysis on how their tweets differ in content

Verified	Dolotod 4797	Undeleted 10978
Unverified	8014355	7989022

Breakup of Tweets

 Here is the breakup of tweets in terms of how many deleted tweets are status updates, replies or mentions

	Deleted	Undeleted
Status updates (%)	44.74	44.96
Replies (%)	16.147	20.68
Mentions (%)	39.37	34.34

How fast is a tweet deleted ?

• Follows POWER LAW !

How fast is a tweet deleted ?

• In log –log scale

Topic Comparison

- Now we take equal number of random samples from 2 ranges
 - Short range (≤ 12 hours)
 - Long range (>5 days)

Now we apply LDA to compare topics in each range

Topic Comparison

 \leq 12 hours

Less of SPAM

More of SPAM !

Gender Based Cursing

We predict the gender using a Naïve Bayes Classifier

Sender	Recipient	Total # of tweets in this category (deleted)	#Cursing Tweets (deleted)	Cursing Ratio (deleted)	Total # of tweets in this category (undeleted)	#Cursing Tweets (undeleted)	Cursing Ratio (undeleted)
F	Μ	140091	7355	5.25	160252	7247	4.52
F	F	55826	2986	5.35	64048	3041	4.75
м	F	38849	2137	5.51	39221	1949	4.97
М	М	132295	7399	5.95	135911	7390	5.44

Verified vs. Unverified Users

HATE SEVERAL BITCH WE SEX TATION OF CLUCKING ASS SEXUAL ARTS EXTATION OF CLUCKERS SEX TATION OF CLUCKING ASS MILL COMPANY OF CLUCKING ASS BITCH FUCKING ASS BITCH FUCKING ASS SEXUAL SEX TATION OF CLUCKING ASS BITCH FUCKING ASS SEXUAL SEX TATION OF CLUCKING ASS SEX TATION OF CLUC

No such topic exists !

A topic found in unverified

Words occurring in unverified user's tweets topics, but not in verified

Regretted Content and Its Deletion

- To bring out the plausible relation between region
- Done on 8M deleted and undeleted tweets
- We select 4 regrettable topics:
 - Alcohol and Drug abuse
 - Vulgar content
 - Religion and politics
 - Offensive comments

Reference for choosing topics : Tweets Are Forever: A Large-Scale Quantitative Analysis of Deleted Tweets, Almuhimedi et al., CSCW '13

Regretted Content and Its Deletion

 The tweet is assigned to a regrettable topic if it contains at least one word from the topic word/collocation list

Regrettable topics	Source	Keyword Count	Deleted (%)	Undeleted
Alcohol & Drug abuse	Wordnet	62	0.34	0.37
Vulgar content	Wordnet	59	3.57	3.34
Religion and Politics	Wordnet	63	0.37	0.52
Offensive comments	Github repository	419	7.25	5.99

Topic Comparison

Now we categorize the deleted tweets of verified and unverified users into these 4 regrettable topics

	Verified(%)	Unverified(%)
Alcohol & Drug abuse	0.33	0.28
Vulgar content	2.65	3.41
Religion and Politics	0.63	1.01
Offensive comments	3.62	5.21

Geographical analysis

- We took the ratio of the presence of countries in deleted tweets to undeleted tweets
- Compare topics in countries having a high ratio to that having a low ratio using LDA

Country	Ratio	Country	Ratio
Turkey	1.73	Indonesia	0.59
Norway	1.42	Argentina	0.57
United States	1.06	Portugal	0.53
Japan	0.95	Malaysia	0.50
Germany	0.88	South Africa	0.42

Geographical analysis

Comparing topics between the two classes of countries using LDA gives some interesting results

No such topic exists in the latter group !

A SPAM topic in case of countries having a high ratio

Most frequently used terms

Frequency -

Positive and Negative emotions (AFINN)

- Cumulative frequency of positive and negative words for both deleted and undeleted tweets
- AFINN is a list of English words used in social networks rated for valence with an integer between -5 (negative) and +5 (positive)

Part of Speech (POS) distribution

- We analyze the POS tag distributions for both deleted tweets and undeleted tweets
- We see that the two categories have a significant difference in some POS's

POS	Ν	۸	S	Z	V	Α	R	!	#	@	U	~
Ratio (Deleted/undeleted)	0.99	0.92	0.77	0.70	1.01	0.99	1.02	0.93	0.86	0.94	1.13	1.01
	\downarrow	\downarrow	Ļ	\downarrow	Î	\downarrow	Î	\downarrow	\downarrow	\downarrow	Ţ	Î
P-value (Chi square test)	<0.01	<0.01	<0.01	<0.01	<0.01	>0.05	<0.01	<0.01	<0.01	<0.01	<0.01	>0.05
		N: comm ^ : prope S : nomin Z : prope	on noun er noun nal + posse er noun + p	essive cossessive	V : N A : c R : c ! : ii	verb adjective adverb nterjection		U:U @: #:H ~:o	JRL / emai at-mentior nashtag discourse m	l n narker		

Network of mentions

EGO center in the mentions graph

• Ego centric graph of the nodes with highest in-degree (>4000)

EGO center in the mentions graph

In case of undeleted tweets, the maximum degree in-degree was found out to be just 361

Conclusion

- The deletion time of tweets follows a power law; tweets getting deleted quickly containing more of spam
- Deleted tweets contain more curse words than undeleted tweets, with intra-gender cursing a lot more than inter-gender cursing
- Verified users are more decent in their tweeting content
- Countries with a high ratio of deleted to undeleted tweets spam more
- Adjectives do not differ much in the two streams, but all the other POS do
- Tweets containing mentions tend to be deleted more

References

Research papers:

- Self-Censorship on Facebook, Sauvik Das and Adam Kramer
- Difference in the text of text of
- I Wish I Didn't Say That! Analyzing and Predicting Deleted Messages in Twitter, Petrovic et al., CoRR, May 2013
- Cursing in English on Twitter, Wenbo Wang, Lu Chen, Krishnaprasad Thirunarayan, Amit Sheth, ACM Conference on Computer Supported Cooperative Work and Social Computing (CSCW 2014)

Questions / Comments?