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 Given a list of cities and the distances between each pair of cities, what is the shortest 

possible route that visits each city exactly once and returns to the origin city? 

 The TSP has several applications even in its purest formulation, such as planning, 

logistics, and the manufacture of microchips.  

 It is an NP-hard problem in combinatorial optimization 

 

TSP  



TSP  

       An instance of the traveling-salesman problem.  

Shaded edges represent a minimum-cost tour, with cost 7. 



TSPTW - Definition 

 A more difficult problem than TSP 

 Involves the design of a minimum cost tour such that 

 Every node is visited exactly once 

 Service at a node must begin and end within the time interval specified at each 

node 

 Incorporates service time at each node and travel time to visit from one node to other 

 

 



TSPTW - Motivation 

 Practical applications in : 

 Postal or office deliveries within specified timings for each 

 School bus routing and scheduling 

 Automated manufacturing environments 

 Automated guided vehicles 



 Consider a network G=(N,A) 

 N={1,2,3, …, n} is the set of nodes and A is the set of arcs 

 Each node i∈N is associated with  

 A time window [ai,bi] 

 A service time si 

 Each arc is associated with a travel time tij and a travel cost cij   

TSPTW – Formulation 



Related Work 

 

 Savelsbergh (1985) showed that even finding a feasible solution to TSPTW is an NP 

complete problem  

 Bakers (1983) proposed an approach which performed well on problems with upto 50 

nodes  

 This work by Dumas et al. (1995) is successful in solving problems with upto 200 

nodes and fairly wide time windows 



Approach 
 

 Preprocessing to remove infeasible arcs 

 Dynamic Programming  

 Reduction of the state space via infeasibility tests 

 Takes advantage of the time window constraints 

 Performed during the execution of the algorithm 

 



Preprocessing 

 

 

For the edge BC: 

 

aB + sB + tBC = 20+0.4+8 

=28.4 > bC = 25 

 

 

Edge BC can be pruned! 

 

 An arc (i,j)∈ 𝐴 is feasible if ai + si + tij ≤ bj 
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Dynamic Programming 

 Define 𝑭(𝑺, 𝒊, 𝒕) as the least cost of a path starting at node 1 passing through every 

node of S exactly once and ending at node i∈S and ready to serve node i at time t or 

later. 

 The function 𝐹(𝑆, 𝑗, 𝑡) can be computed by the recurrence 

 𝐹 𝑆, 𝑗, 𝑡 = min
(𝑖,𝑗)∈𝐴

𝐹 𝑆 − 𝑗 , 𝑖, 𝑡′ + 𝑐𝑖𝑗  
where t′ + si + tij 

≤ 𝑡  𝑎𝑛𝑑 𝑎𝑖 ≤ 𝑡′ ≤ 𝑏𝑖   

 Base condition: 𝐹 1 , 1,0 = 0, since we start at node 1 
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𝐹 𝑆 − 𝑗 , 𝑖, 𝑡′  

𝑐𝑖𝑗 



Dynamic Programming 

 Define 𝑭(𝑺, 𝒊, 𝒕) as the least cost of a path starting at node 1 passing through every 

node of S exactly once and ending at node i∈S and ready to serve node i at time t or 

later. 

 The function 𝐹(𝑆, 𝑗, 𝑡) can be computed by the recurrence 

 𝐹 𝑆, 𝑗, 𝑡 = min
(𝑖,𝑗)∈𝐴

𝐹 𝑆 − 𝑗 , 𝑖, 𝑡′ + 𝑐𝑖𝑗  
where t′ + si + tij ≤ 𝑡  𝑎𝑛𝑑 𝑎𝑖 ≤ 𝑡′ ≤ 𝑏𝑖   

 Base condition: 𝐹 1 , 1,0 = 0, since we start at node 1 

 The optimal TSPTW solution is given by: 

 min
(𝑗,1)∈𝐴

𝐹 𝑁, 𝑗, 𝑡 + 𝑐𝑗1   𝑠. 𝑡.      𝑎𝑗 ≤ 𝑡 ≤ 𝑏j    
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Dynamic Programming 

 Let ξk be a state set which contains all feasible states (𝑆, 𝑖, 𝑡) s.t |S|= k  

 ξ1={({1},1,0)} 

 For computing  ξk from  ξk-1, do the following steps: 

 For each (𝑆, 𝑖, 𝑡) ∈ ξk-1,  add the state 𝑆′, 𝑗, 𝑡′  𝑡𝑜 ξ𝑘 𝑤ℎ𝑒𝑟𝑒  

 𝑆′ = 𝑆 ∪ *𝑗+ , 𝑖, 𝑗 ∈ 𝐴 𝑎𝑛𝑑  

 𝑡′ = max 𝑎𝑗, 𝑡 + 𝑠𝑖 + 𝑡𝑖𝑗 𝑎𝑛𝑑 

 𝑆′, 𝑗, 𝑡′ 𝑖𝑠 𝑎 𝒇𝒆𝒂𝒔𝒊𝒃𝒍𝒆 𝒆𝒙𝒑𝒂𝒏𝒔𝒊𝒐𝒏 𝑜𝑓 (𝑆, 𝑖, 𝑡)   

 

     S  i  t 



Algorithm 
 

 Initialize ξ1={({1},1,0)} and F 1 , 1,0 =0 

 for(k=2,3,…..n) do 

  for (𝑆, 𝑖, 𝑡) ∈ ξk-1 do 

 add the state 𝑆′, 𝑗, 𝑡′  to ξk only if 𝑆′, 𝑗, 𝑡′  passes elimination tests 

 update 𝐹 𝑆′, 𝑗, 𝑡′ = 𝐹 𝑆, 𝑖, 𝑡 + 𝑐𝑖𝑗 

 The optimal solution is min
(𝑗,1)∈𝐴

𝐹 𝑁, 𝑗, 𝑡 + 𝑐𝑗1   𝑠. 𝑡. 𝑎𝑗 ≤ 𝑡 ≤ 𝑏j    



Elimination/Infeasibility tests 
 

 Test 1 

 Test 2 

 Test 3  

 Dominance Tests 

 

 



Test 1 

 Let FIRST(S, i) denotes the smallest time when a service can begin at node i  

 Let LDT(i, j) denote the latest departure time at i to begin service at node j s.t. time of 

service at j is feasible  

 Reject (S, i, t), ai ≤ 𝑡 ≤ bi if 

 FIRST(S, i)> min
𝑗∉𝑆

𝐿𝐷𝑇(𝑖, 𝑗) 

  

Let ξk = {({1,2},2,11),    ({1,2},2,12)} 

FIRST({1,2},2)=11 > LDT(2,3)=9 

Can remove ({1,2},2,11) and ({1,2},2,12) 
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Test 2 

 Let BEFORE(j) denote the set of nodes which must be visited before visiting the node j 

 Reject (S, i, t), ai ≤ 𝑡 ≤ bi if 

 ∃j ∉ S and (i,j) ∈ A and BEFORE(j)⊄S 
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Let ξk = {({1,2,3},3,12),({1,5,3},3,13)} 

BEFORE(4)={1, 2, 5} 

4 3 
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Test 3 
 

 Reject (S’, j ,t’), aj ≤ 𝑡′ ≤ bj if 

 ∃ 𝑆, 𝑖, 𝑡  𝑠. 𝑡 j ∉ S , (i,j) ∈ A , t ≤ LDT(i,j) and  

 ∀𝑘 𝑠. 𝑡 k ∉ S and t + tij > LDT(j,k)  
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i Let (S, i, t) = ({1,2},2,18) and (S′, j, t′)=({1,2,3},3,22) 

LDT(2,3)=20 and LDT(3,4)=12 and t23=4 

(2,3) can be feasible since t=18≤ LDT 2,3 = 20 but 

(3,4) is infeasible since t+t23=18+4=22>LDT(3,4)=12 
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Dominance Test 

 Reject (𝑆, 𝑖, 𝑡’) ∈  ξk if ∃ 𝑆, 𝑖, 𝑡 ∈  ξk s.t  

 F(S, i, t) ≤ 𝐹 𝑆, 𝑖, 𝑡′   

 𝑡 ≤ 𝑡′ 

  



Experimental results 

n |A’| |(S,i,t)| CPU time 

20 34.2 4.4 0.02 

40 121.8 16.0 0.08 

60 226.0 21.8 0.15 

80 362.6 49.8 0.35 

100 510.0 45.0 0.62 

150 975.8 326.8 2.44 

 Variation of CPU time with number of nodes   

  

  n |A’| |(S,i,t)| CPU time 

20 115.2 35.6 0.14 

40 404.2 554.0 4.37 

60 670.6 1344.4 6.84 

80 1149.6 7716.8 55.32 

100 1731.4 6804.8 107.95 

150 2953.6 26351.0 462.97 

w=20 w=60 



Experimental results 

 Comparison of number of labels removed by each test 

    

  w Test 1 Test 2 Test 3 

(S,i,t) 20 21.8 3716.4 37.4 

CPU time 0.15 6.20 0.17 

(S,i,t) 40 145.8 18520.5 229.0 

CPU time 0.91 49.23 0.98 

n=60 



Conclusion 

 For a given problem size, problem difficulty increases with the time windows  

 For narrow widths, its behavior is less than exponential allowing large size problems to 

be solved.  

 E.g. a 250 node problem with w=20 is solved in less than 10 sec. 

 The algorithm can accommodate additional costs for waiting at a node such as total 

schedule time. 

 The algorithm works for larger problem sizes and time windows than any previous 

work.  

  



 

 

 

 

 Research papers:  

 http://pubsonline.informs.org/doi/pdf/10.1287/opre.43.2.367 

 

 

 http://www.jstor.org/stable/pdfplus/172015.pdf?&acceptTC=true&jpdConfirm=true 
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Thank you 

Questions / Comments? 


