TRAVELING

SALESMAN PROBLEM
WITH TIME WINDOWS
(TSPTW)

Aakash Anuj 10CS30043

Surya Prakash Verma 10AE30026

Yetesh Chaudhary 10CS30044

Supervisor: Prof. Jitesh Thakkar

TSP

0 Given a list of cities and the distances between each pair of cities, what 1s the shortest
possible route that visits each city exactly once and returns to the origin city?

0 The TSP has several applications even 1n its purest formulation, such as planning,
logistics, and the manufacture of microchips.

o Itis an NP-hard problem i combinatorial optimization

An mstance of the traveling-salesman problem.
Shaded edges represent a minimum-cost tour, with cost 7.

TSPTW - Definition

o A more difficult problem than TSP
0 Involves the design of a mmmimum cost tour such that
o LEvery node 1s visited exactly once

o Service at a node must begin and end within the time interval specified at each
node

o0 Incorporates service time at each node and travel time to visit from one node to other

TSPTW - Motivation

o Practical applications in :
o Postal or office deliveries within specified timings for each
0 School bus routing and scheduling
0 Automated manufacturing environments

o Automated guided vehicles

TSPTW — Formulation

|
D COHSider a nCtVVOI'k G:(N,A) Service time
Travel time Travel cost
o N={1,2,3, ..., n} 1s the set of nodes and A 1s the set of arcs \ / X
Home base [20,35], 0.4
0 EFach node 1EN 1s associated with / \ Time
: window
o A time window [a;,b]] : :

[25,35],0.2 E

0 Each arc 1s associated with a travel time t; and a travel cost C; [10,301,0,5

C [15, 25] 0.5

Related Work

o Savelsbergh (1985) showed that even finding a feasible solution to TSP TW 1s an NP

complete problem

0 Bakers (1983) proposed an approach which performed well on problems with upto 50
nodes

0 This work by Dumas et al. (1995) 1s successful in solving problems with upto 200
nodes and fairly wide time windows

Approach

0 Preprocessing to remove infeasible arcs
0 Dynamic Programming

0 Reduction of the state space via infeasibility tests
0 Takes advantage of the time window constraints

0 Performed during the execution of the algorithm

Preprocessing
]

0 Anarc (1))€ A is feasible if o; + s, + 1, < b,

For the edge BC:

[20,35],0.4

Home base 55
A

ag t+ sz + t5c = 20+0.4+8
=28.4 > b. =25

[25,35],0.2 E

Edge BC can be pruned!

[10,30], 0.6

Preprocessing
]

0 Anarc (1))€ Aisfeasible if a; + s, + t, < b,
For the edge BC:

55 [20,35], 0.4

Home base
B

ag t+ sz + t5c = 20+0.4+8

Time
7,7 wmdow
=28.4 > b, =25
[25,35],0.2 E C [15, 25] 0.5

\\// Edge BC can be pruned!

[10,30], 0.6

Approach

0 Preprocessing to remove infeasible arcs

o Dynamic Programming
0 Reduction of the state space via infeasibility tests
0 Takes advantage of the time window constraints

0 Performed during the execution of the algorithm

Dynamic Programming

0 Define F(S, i, t) as the least cost of a path starting at node 1 passing through every
node of S exactly once and ending at node 1€S and ready to serve node 1 at time t or
later.

0 The function F(S, j, t) can be computed by the recurrence

o F(S,j,t) = (m)igA{F(S —{}it') +c;} wheret' +s;+t; <t anda, < t' < b,
Lj

o Base condition: F({1},1,0) = 0, since we start at node 1 F(s-{}ith)

olK
(D

|

Dynamic Programming

Define F(S, i, t) as the least cost of a path starting at node 1 passing through every
node of S exactly once and ending at node 1€S and ready to serve node 1 at time t or
later.

The function F(S,J, t) can be computed by the recurrence

o F(S,j,t) = ({r})igA{F(S —{bit) +c;} wheret' +s;+t; <t anda, <t < b,
o Base condition: F({1},1,0) = 0, since we start at node 1 FON,jt)
The optimal TSPTW solution 1s given by:

o (JIH%IElA{F(N,j, t)+cyt s.t. a<t<b

Dynamic Programming
.

0 lLet§, be a state set which contains all feasible states (S,i,t) s.t |S|=k
Sit
o §={({1}1,0)}
0 For computing § from §,_,, do the following steps:
o Foreach (S, i, t) €§_,, add the state (§',j,t") to§, where
o S'"=Su{j},(,j €Aand

o t' =max(a;,t+s;+t;)and

o (5',j,t)is a feasible expansion of (S,i,t)

Algorithm

o Initialize €,={({1},1,0)} and F({1},1,0)=0
o for(k=2,3,.....n) do
o for(S,i,t) €&, do
0 add the state (S',j,t") to § only if (S, j,t") passes elimination tests
o update F(S',j,t) = F(S,i,t) + ¢

. L . VYeta<t<h
o The optimal solution 1s(jr,r11%161A{F (N,j,t)+cji} s.t.a;<t<b,

Elimination /Infeasibility tests
-5

o Testl
o Test 2
o Test3

o Dominance Tests

Test 1

0 Let FIRST(S, 1) denotes the smallest ime when a service can begin at node 1

O

Let LDT(, j) denote the latest departure time at 1 to begin service at node j s.t. time of

service at J 1s feasible
Reject (S,1,0),a, <t < b, if

o FIRST(S, i)> min LDT(i, j)
JES

Let €& = {({1,2},2,11), ({1,2},2,12)}
FIRST({1,2},2)-11 > LDT(2,3)=9

Can remove ({1,2},2,11) and ({1,2},2,12)

119,12]

119,101

Test 2

0 Let BEFORE() denote the set of nodes which must be visited before visiting the node]
0 Reject (S,1, 1), a, < t < b if

o 33 € Sand (1)) € A and BEFOREQES

Let § ={({1,2,3},3,12),({1,5,3},3,13)}

BEFORE(4)={1, 2, 5}

Test 3

0 Reject (S,],0), a < t' < b]- if
o 3(S,i,t)s.t]€S, 1y €A,t<LDT(,) and

O Vks.tk€&Sandt+t>LDT(Kk)

Let (S, 1, t) = ({1,21,2,18) and (5, J, t')=({1,2,3},3,22)
LDT(2,3)=20 and LDT(3,4)=12 and t,3=4

(2,3) can be feasible since t=18< LDT(2,3) = 20 but

(3,4) 15 infeasible since t+tyy=18+4=22>L.DT(3,4)=12

Dominance Test
I

0 Reject (S,i,t) € § i3 (S,i,t) € § s.t
o FGS,,0)<F(@S,it)

o t<t'

Experimental results
.

o Vanation of CPU time with number of nodes

umm umm

34.2 0.02 115.2 35.6 0.14
40 121.8 16.0 0.08 40 404.2 554.0 4.37
60 226.0 21.8 0.15 60 670.6 1344.4 6.84
80 362.6 49.8 0.35 80 1149.6 7716.8 55.32
100 510.0 45.0 0.62 100 1731.4 6804.8 107.95
150 975.8 326.8 2.44 150 2953.6 26351.0 462.97

w=20 w=60

Experimental results
.

0 Comparison of number of labels removed by each test

B T S

(S,i,1) 21.8 3716.4 37.4
CPU time 0.15 6.20 0.17
(S,i,1) 40 145.8 18520.5 229.0
CPU time 0.91 49.23 0.98

n=60

Conclusion
I

0 For a given problem size, problem difficulty increases with the time windows

0 For narrow widths, 1ts behavior is less than exponential allowing large size problems to
be solved.

o LE.g a 250 node problem with w=20 1s solved 1n less than 10 sec.

0 The algorithm can accommodate additional costs for waiting at a node such as total
schedule time.

0 The algorithm works for larger problem sizes and time windows than any previous
work.

References
I

o Research papers:

O hitp://pubsonline.informs.org/doi/pdf/10.1287/opre.43.2.367

O hitp://www.istor.org/stable/pdiplus/172015.pdP&accept T'C=true&pd Confirm=true

http://pubsonline.informs.org/doi/pdf/10.1287/opre.43.2.367
http://pubsonline.informs.org/doi/pdf/10.1287/opre.43.2.367
http://www.jstor.org/stable/pdfplus/172015.pdf?&acceptTC=true&jpdConfirm=true

Thank you

Questions / Comments?

