TRAVELING

SALESMAN PROBLEM
 WITH TIME WINDOWS
 (TSPTW)

Aakash Anui 10CS30043
Surya Prakash Verma 10AE30026
Yetesh Chaudhary 10CS30044

TSP

- Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?
\square The TSP has several applications even in its purest formulation, such as planning, logistics, and the manufacture of microchips.
\square It is an NP-hard problem in combinatorial optimization

TSP

An instance of the traveling-salesman problem. Shaded edges represent a minimum-cost tour, with cost 7.

TSPTW - Definition

- A more difficult problem than TSP
- Involves the design of a minimum cost tour such that
- Every node is visited exactly once
- Service at a node must begin and end within the time interval specified at each node
\square Incorporates service time at each node and travel time to visit from one node to other

TSPTW - Motivation

- Practical applications in :
- Postal or office deliveries within specified timings for each
- School bus routing and scheduling
- Automated manufacturing environments
- Automated guided vehicles

TSPTW - Formulation

- Consider a network $\mathrm{G}=(\mathrm{N}, \mathrm{A})$
- $\mathrm{N}=\{1,2,3, \ldots, \mathrm{n}\}$ is the set of nodes and A is the set of arcs
- Each node $i \in N$ is associated with
- A time window $\left[a_{i}, b_{i}\right]$
- A service time s_{i}
\square Each arc is associated with a travel time t_{ij} and a travel $\operatorname{cost} \mathrm{c}_{\mathrm{ij}}$

[10,30], 0.6

Related Work

\square Savelsbergh (1985) showed that even finding a feasible solution to TSPTW is an NP complete problem

- Bakers (1983) proposed an approach which performed well on problems with upto 50 nodes
- This work by Dumas et al. (1995) is successful in solving problems with upto 200 nodes and fairly wide time windows

Approach

\square Preprocessing to remove infeasible arcs

- Dynamic Programming
- Reduction of the state space via infeasibility tests
- Takes advantage of the time window constraints
- Performed during the execution of the algorithm

Preprocessing

\square An arc $(i, j) \in A$ is feasible if $a_{i}+s_{i}+t_{i j} \leq b_{i}$

For the edge $B C$:

$$
\begin{aligned}
& a_{B}+s_{B}+t_{B C}=20+0.4+8 \\
& =28.4>b_{C}=25
\end{aligned}
$$

Edge $B C$ can be pruned!

Preprocessing

$\square \quad$ An $\operatorname{arc}(i, j) \in A$ is feasible if $a_{i}+s_{i}+t_{i j} \leq b_{i}$
For the edge $B C$:

$$
\begin{aligned}
& a_{B}+s_{B}+t_{B C}=20+0.4+8 \\
& =28.4>b_{C}=25
\end{aligned}
$$

Edge $B C$ can be pruned!

Approach

\square Preprocessing to remove infeasible arcs

- Dynamic Programming
\square Reduction of the state space via infeasibility tests
- Takes advantage of the time window constraints
- Performed during the execution of the algorithm

Dynamic Programming

- Define $\boldsymbol{F}(\boldsymbol{S}, \boldsymbol{i}, \boldsymbol{t})$ as the least cost of a path starting at node 1 passing through every node of S exactly once and ending at node $i \in S$ and ready to serve node i at time t or later.
- The function $F(S, j, t)$ can be computed by the recurrence
- $F(S, j, t)=\min _{(i, j) \in A}\left\{F\left(S-\{j\}, i, t^{\prime}\right)+c_{i j}\right\}$ where $\mathrm{t}^{\prime}+\mathrm{s}_{\mathrm{i}}+\mathrm{t}_{\mathrm{ij}} \leq t$ and $a_{i} \leq t^{\prime} \leq b_{i}$
- Base condition: $F(\{1\}, 1,0)=0$, since we start at node 1

Dynamic Programming

\square Define $\boldsymbol{F}(\boldsymbol{S}, \boldsymbol{i}, \boldsymbol{t})$ as the least cost of a path starting at node 1 passing through every node of S exactly once and ending at node $i \in S$ and ready to serve node i at time t or later.

- The function $F(S, j, t)$ can be computed by the recurrence
- $F(S, j, t)=\min _{(i, j) \in A}\left\{F\left(S-\{j\}, i, t^{\prime}\right)+c_{i j}\right\}$ where $\mathrm{t}^{\prime}+\mathrm{s}_{\mathrm{i}}+\mathrm{t}_{\mathrm{ij}} \leq t$ and $a_{i} \leq t^{\prime} \leq b_{i}$
- Base condition: $F(\{1\}, 1,0)=0$, since we start at node 1
- The optimal TSPTW solution is given by:

$$
\min _{(j, 1) \in A}\left\{F(N, j, t)+c_{j 1}\right\} \text { s.t. } \quad a_{j} \leq t \leq b_{j}
$$

Dynamic Programming

\square Let $\boldsymbol{\xi}_{\mathbf{k}}$ be a state set which contains all feasible states (S, i, t) s.t $|\mathbf{S}|=\mathbf{k}$

- $\varepsilon_{1}=\{\{\{1\}, 1,0)\}$
\square For computing ξ_{k} from $\xi_{\mathrm{k}-1}$, do the following steps:
- For each $(S, i, t) \in \xi_{k-1}$, add the state $\left(S^{\prime}, j, t^{\prime}\right)$ to ξ_{k} where
- $S^{\prime}=S \cup\{j\},(i, j) \in A$ and
- $t^{\prime}=\max \left(a_{j}, t+s_{i}+t_{i j}\right)$ and
- ($\left.S^{\prime}, j, t^{\prime}\right)$ is a feasible expansion of (S, i, t)

Algorithm

- Initialize $\left.\xi_{1}=\{\{1\}, 1,0)\right\}$ and $F(\{1\}, 1,0)=0$
- $\operatorname{for}(\mathrm{k}=2,3, \ldots . . \mathrm{n})$ do
$\square \quad$ for $(S, i, t) \in \xi_{k-1}$ do
\square add the state $\left(S^{\prime}, j, t^{\prime}\right)$ to ξ_{k} only if $\left(S^{\prime}, j, t^{\prime}\right)$ passes elimination tests
\square update $F\left(S^{\prime}, j, t^{\prime}\right)=F(S, i, t)+c_{i j}$
\square The optimal solution is $\min _{(j, 1) \in A}\left\{F(N, j, t)+c_{j 1}\right\}$ s.t. $a_{j} \leq t \leq b_{\mathrm{j}}$

Elimination/Infeasibility tests

- Test 1
- Test 2
- Test 3
- Dominance Tests

Test 1

$\square \quad$ Let $\operatorname{FIRST}(\mathbf{S}, \mathrm{i})$ denotes the smallest time when a service can begin at node i
$\square \quad$ Let LDT(i, j) denote the latest departure time at i to begin service at node j s.t. time of service at j is feasible
$\square \quad \operatorname{Reject}(\mathrm{S}, \mathrm{i}, \mathrm{t}), \mathrm{a}_{\mathrm{i}} \leq t \leq \mathrm{b}_{\mathrm{i}}$ if

- $\operatorname{FIRST}(S, i)>\min _{j \notin S} L D T(i, j)$
$\operatorname{Let} \xi_{\mathrm{k}}=\{(\{1,2\}, 2,11), \quad(\{1,2\}, 2,12)\}$
$\operatorname{FIRST}(\{1,2\}, 2)=11>\operatorname{LDT}(2,3)=9$
Can remove $(\{1,2\}, 2,11)$ and $(\{1,2\}, 2,12)$

Test 2

\square Let BEFORE(j) denote the set of nodes which must be visited before visiting the node j
$\square \quad \operatorname{Reject}(\mathrm{S}, \mathrm{i}, \mathrm{t}), \mathrm{a}_{\mathrm{i}} \leq t \leq \mathrm{b}_{\mathrm{i}} \mathrm{if}$

- $\exists \mathrm{j} \notin \mathrm{S}$ and $(\mathrm{i}, \mathrm{j}) \in \mathrm{A}$ and $\operatorname{BEFORE}(\mathrm{j}) \not \subset \mathrm{S}$

Let $\xi_{\mathrm{k}}=\{(\{1,2,3\}, 3,12),(\{1,5,3\}, 3,13)\}$
$\operatorname{BEFORE}(4)=\{1,2,5\}$

Test 3

$\square \quad$ Reject $\left(S^{\prime}, \mathrm{j}, \mathrm{t}^{\mathrm{t}}\right), \mathrm{a}_{\mathrm{j}} \leq t^{\prime} \leq \mathrm{b}_{\mathrm{j}}$ if

- $\exists(S, i, t) s . t \mathrm{j} \notin S,(\mathrm{i}, \mathrm{j}) \in \mathrm{A}, \mathrm{t} \leq \operatorname{LDT}(\mathrm{i}, \mathrm{j})$ and
- $\quad \forall k$ s.t $\mathrm{k} \notin \mathrm{S}$ and $\mathrm{t}+\mathrm{t}_{\mathrm{ij}}>\operatorname{LDT}(\mathrm{j}, \mathrm{k})$

Let $(S, i, t)=(\{1,2\}, 2,18)$ and $\left(S^{\prime}, j, t^{\prime}\right)=(\{1,2,3\}, 3,22)$
$\operatorname{LDT}(2,3)=20$ and $\operatorname{LDT}(3,4)=12$ and $\mathrm{t}_{23}=4$
$(2,3)$ can be feasible since $\mathrm{t}=18 \leq \mathrm{LDT}(2,3)=20$ but
$(3,4)$ is infeasible since $\mathrm{t}^{+} \mathrm{t}_{23}=18+4=22>\operatorname{LDT}(3,4)=12$

Dominance Test

$\square \operatorname{Reject}\left(S, i, t^{\prime}\right) \in \xi_{k}$ if $\exists(S, i, t) \in \xi_{k}$ s.t

- $\mathrm{F}(\mathrm{S}, \mathrm{i}, \mathrm{t}) \leq F\left(S, i, t^{\prime}\right)$
- $t \leq t^{\prime}$

Experimental results

- Variation of CPU time with number of nodes

n	$\left\|A^{\prime}\right\|$	$\|(S, i, t)\|$	CPU time
20	34.2	4.4	0.02
40	121.8	16.0	0.08
60	226.0	21.8	0.15
80	362.6	49.8	0.35
100	510.0	45.0	0.62
150	975.8	326.8	2.44

n	$\left\|A^{\prime}\right\|$	$\|(S, i, t)\|$	CPU time
20	115.2	35.6	0.14
40	404.2	554.0	4.37
60	670.6	1344.4	6.84
80	1149.6	7716.8	55.32
100	1731.4	6804.8	107.95
150	2953.6	26351.0	462.97

Experimental results

- Comparison of number of labels removed by each test

	w	Test 1	Test 2	Test 3
$(\mathrm{S}, \mathrm{i}, \mathrm{t})$	20	21.8	3716.4	37.4
CPU time		0.15	6.20	0.17
(S,i,t)	40	145.8	18520.5	229.0
CPU time		0.91	49.23	0.98

$$
n=60
$$

Conclusion

\square For a given problem size, problem difficulty increases with the time windows
\square For narrow widths, its behavior is less than exponential allowing large size problems to be solved.

- E.g. a 250 node problem with $w=20$ is solved in less than 10 sec.
- The algorithm can accommodate additional costs for waiting at a node such as total schedule time.
- The algorithm works for larger problem sizes and time windows than any previous work.

References

\square Research papers:
■ http://pubsonline.informs.org/doi/pdf/10.1287/opre.43.2.367

- http://www.jstor.org/stable/pdfplus/172015.pdf?\&acceptTC=true\&jpdConfirm=true

Thank you

Questions / Comments?

