TRAVELING SALESMAN PROBLEM WITH TIME WINDOWS (TSPTW)

Aakash Anuj10CS30043Surya Prakash Verma10AE30026Yetesh Chaudhary10CS30044

Supervisor: Prof. Jitesh Thakkar

- Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?
- The TSP has several applications even in its purest formulation, such as planning, logistics, and the manufacture of microchips.
- **I**t is an **NP-hard** problem in combinatorial optimization

TSP

An instance of the traveling-salesman problem. Shaded edges represent a minimum-cost tour, with cost 7.

TSPTW - Definition

- □ A more difficult problem than TSP
- □ Involves the design of a minimum cost tour such that
 - Every node is visited exactly once
 - Service at a node must begin and end within the time interval specified at each node
- □ Incorporates service time at each node and travel time to visit from one node to other

TSPTW - Motivation

- **Practical applications in :**
 - Postal or office deliveries within specified timings for each
 - **S**chool bus routing and scheduling
 - Automated manufacturing environments
 - Automated guided vehicles

TSPTW – Formulation

- □ Consider a network G=(N,A)
 - N={1,2,3, ..., n} is the set of nodes and A is the set of arcs
- □ Each node $i \in N$ is associated with
 - A time window $[a_i, b_i]$
 - A service time s_i
- **E** Each arc is associated with a travel time t_{ij} and a travel cost c_{ij}

Related Work

- Savelsbergh (1985) showed that even finding a feasible solution to TSPTW is an NP complete problem
- Bakers (1983) proposed an approach which performed well on problems with upto 50 nodes
- This work by Dumas et al. (1995) is successful in solving problems with upto 200 nodes and fairly wide time windows

Approach

- Preprocessing to remove infeasible arcs
- **Dynamic Programming**
- **R**eduction of the state space via infeasibility tests
 - **D** Takes advantage of the time window constraints
 - Performed during the execution of the algorithm

Preprocessing

□ An arc (i,j) ∈ *A* is feasible if $a_i + s_i + t_{ij} \le b_j$

For the edge BC:

$$a_B + s_B + t_{BC} = 20+0.4+8$$

=28.4 > b_C = 25

Edge BC can be pruned!

Preprocessing

□ An arc (i,j) ∈ A is feasible if $a_i + s_i + t_{ij} \le b_j$

For the edge BC:

 $a_{B} + s_{B} + t_{BC} = 20 + 0.4 + 8$ = 28.4 > b_C = 25

Edge BC can be pruned!

Approach

- Preprocessing to remove infeasible arcs
- **Dynamic Programming**
- **R**eduction of the state space via infeasibility tests
 - **D** Takes advantage of the time window constraints
 - Performed during the execution of the algorithm

Dynamic Programming

- □ Define F(S, i, t) as the least cost of a path starting at node 1 passing through every node of S exactly once and ending at node i∈S and ready to serve node i at time t or later.
- □ The function F(S, j, t) can be computed by the recurrence

•
$$F(S, j, t) = \min_{(i,j) \in A} \{F(S - \{j\}, i, t') + c_{ij}\}$$
 where $t' + s_i + t_{ij} \le t$ and $a_i \le t' \le b_i$

Base condition: $F(\{1\}, 1, 0) = 0$, since we start at node 1

Dynamic Programming

- □ Define F(S, i, t) as the least cost of a path starting at node 1 passing through every node of S exactly once and ending at node $i \in S$ and ready to serve node i at time t or later.
- □ The function F(S, j, t) can be computed by the recurrence
 - $F(S, j, t) = \min_{(i,j) \in A} \{F(S \{j\}, i, t') + c_{ij}\}$ where $t' + s_i + t_{ij} \le t$ and $a_i \le t' \le b_i$
 - **Base condition:** $F(\{1\}, 1, 0) = 0$, since we start at node 1
- **The optimal TSPTW solution is given by:**

$$\min_{(j,1)\in A} \{F(N,j,t) + c_{j1}\} \ s.t. \quad a_j \le t \le b_j$$

Dynamic Programming

- Let ξ_k be a state set which contains all feasible states (S, i, t) s.t |S| = k
 S i t
 ξ₁={({1},1,0)}
- For computing ξ_k from ξ_{k-1} , do the following steps:
 - For each $(S, i, t) \in \xi_{k-1}$, add the state (S', j, t') to ξ_k where
 - $S' = S \cup \{j\}, (i, j) \in A and$
 - $t' = \max(a_j, t + s_i + t_{ij})$ and
 - (S', j, t') is a **feasible expansion** of (S, i, t)

Algorithm

- □ Initialize $\xi_1 = \{(\{1\}, 1, 0)\}$ and $F(\{1\}, 1, 0) = 0$
- □ for(k=2,3,....n) do
 - $\square \quad \text{for } (S, i, t) \in \xi_{k-1} \text{ do}$
 - add the state (S', j, t') to ξ_k only if (S', j, t') passes elimination tests
 - □ update $F(S', j, t') = F(S, i, t) + c_{ij}$
- The optimal solution is $\min_{(j,1)\in A} \{F(N, j, t) + c_{j1}\}\$ s. t. $a_j \le t \le b_j$

Elimination/Infeasibility tests

- **Test 1**
- **Test 2**
- □ Test 3
- Dominance Tests

Test 1

- □ Let FIRST(S, i) denotes the smallest time when a service can begin at node i
- □ Let LDT(i, j) denote the latest departure time at i to begin service at node j s.t. time of service at j is feasible
- $\Box \quad \text{Reject (S, i, t), } a_i \le t \le b_i \text{ if }$
 - FIRST(S, i)> $\min_{j \notin S} LDT(i, j)$

 $\begin{array}{c} \text{i } [9,12] \\ \text{Let } \xi_k = \{(\{1,2\},2,11), \quad (\{1,2\},2,12)\} \\ \text{FIRST}(\{1,2\},2) = 11 > \text{LDT}(2,3) = 9 \\ \text{Can remove } (\{1,2\},2,11) \text{ and } (\{1,2\},2,12) \\ \text{j } [9,10] \end{array}$

Test 2

- □ Let BEFORE(j) denote the set of nodes which must be visited before visiting the node j
- $\Box \quad \text{Reject } (S, i, t), a_i \leq t \leq b_i \text{ if }$
 - □ $\exists j \notin S$ and (i,j) $\in A$ and BEFORE(j) $\not\subset S$

Test 3

- $\Box \quad \text{Reject (S', j, t'), } a_j \leq t' \leq b_j \text{ if }$
 - $\blacksquare \ \exists (S,i,t) \; s. \; t \; j \notin S \; , \; (i,j) \in \mathcal{A} \; , \; t \leq \mathrm{LDT}(i,j) \; \mathrm{and} \;$
 - $\forall k \ s. t \ k \notin S$ and $t + t_{ij} > LDT(j,k)$

Let $(S, i, t) = (\{1, 2\}, 2, 18)$ and $(S', j, t') = (\{1, 2, 3\}, 3, 22)$

LDT(2,3)=20 and LDT(3,4)=12 and $t_{23}=4$

(2,3) can be feasible since $t=18 \le LDT(2,3) = 20$ but

(3,4) is infeasible since $t+t_{23}=18+4=22>LDT(3,4)=12$

Dominance Test

- □ Reject $(S, i, t') \in \xi_k$ if $\exists (S, i, t) \in \xi_k$ s.t
 - $F(S, i, t) \leq F(S, i, t')$
 - $t \leq t'$

Experimental results

□ Variation of CPU time with number of nodes

n	A '	(S,i,t)	CPU time	n	A'	(S,i,t)	CPU time
20	34.2	4.4	0.02	20	115.2	35.6	0.14
40	121.8	16.0	0.08	40	404.2	554.0	4.37
60	226.0	21.8	0.15	60	670.6	1344.4	6.84
80	362.6	49.8	0.35	80	1149.6	7716.8	55.32
100	510.0	45.0	0.62	100	1731.4	6804.8	107.95
150	975.8	326.8	2.44	150	2953.6	26351.0	462.97

w=20

w=60

Experimental results

Comparison of number of labels removed by each test

	w	Test 1	Test 2	Test 3
(S,i,t)	20	21.8	3716.4	37.4
CPU time		0.15	6.20	0.17
(S,i,t)	40	145.8	18520.5	229.0
CPU time		0.91	49.23	0.98

Conclusion

- **•** For a given problem size, problem difficulty increases with the time windows
- For narrow widths, its behavior is less than exponential allowing large size problems to be solved.
 - E.g. a 250 node problem with w=20 is solved in less than 10 sec.
- The algorithm can accommodate additional costs for waiting at a node such as total schedule time.
- The algorithm works for larger problem sizes and time windows than any previous work.

References

- **Research papers**:
 - http://pubsonline.informs.org/doi/pdf/10.1287/opre.43.2.367

http://www.jstor.org/stable/pdfplus/172015.pdf?&acceptTC=true&jpdConfirm=true

Questions / Comments?