
TRAVELING

SALESMAN PROBLEM

WITH TIME WINDOWS

(TSPTW) Aakash Anuj 10CS30043

Surya Prakash Verma 10AE30026

 Yetesh Chaudhary 10CS30044

Supervisor: Prof. Jitesh Thakkar

 Given a list of cities and the distances between each pair of cities, what is the shortest

possible route that visits each city exactly once and returns to the origin city?

 The TSP has several applications even in its purest formulation, such as planning,

logistics, and the manufacture of microchips.

 It is an NP-hard problem in combinatorial optimization

TSP

TSP

 An instance of the traveling-salesman problem.

Shaded edges represent a minimum-cost tour, with cost 7.

TSPTW - Definition

 A more difficult problem than TSP

 Involves the design of a minimum cost tour such that

 Every node is visited exactly once

 Service at a node must begin and end within the time interval specified at each

node

 Incorporates service time at each node and travel time to visit from one node to other

TSPTW - Motivation

 Practical applications in :

 Postal or office deliveries within specified timings for each

 School bus routing and scheduling

 Automated manufacturing environments

 Automated guided vehicles

 Consider a network G=(N,A)

 N={1,2,3, …, n} is the set of nodes and A is the set of arcs

 Each node i∈N is associated with

 A time window [ai,bi]

 A service time si

 Each arc is associated with a travel time tij and a travel cost cij

TSPTW – Formulation

Related Work

 Savelsbergh (1985) showed that even finding a feasible solution to TSPTW is an NP

complete problem

 Bakers (1983) proposed an approach which performed well on problems with upto 50

nodes

 This work by Dumas et al. (1995) is successful in solving problems with upto 200

nodes and fairly wide time windows

Approach

 Preprocessing to remove infeasible arcs

 Dynamic Programming

 Reduction of the state space via infeasibility tests

 Takes advantage of the time window constraints

 Performed during the execution of the algorithm

Preprocessing

For the edge BC:

aB + sB + tBC = 20+0.4+8

=28.4 > bC = 25

Edge BC can be pruned!

 An arc (i,j)∈ 𝐴 is feasible if ai + si + tij ≤ bj

Preprocessing

For the edge BC:

aB + sB + tBC = 20+0.4+8

=28.4 > bC = 25

Edge BC can be pruned!

 An arc (i,j)∈ 𝑨 is feasible if ai + si + tij ≤ bj

Approach

 Preprocessing to remove infeasible arcs

 Dynamic Programming

 Reduction of the state space via infeasibility tests

 Takes advantage of the time window constraints

 Performed during the execution of the algorithm

Dynamic Programming

 Define 𝑭(𝑺, 𝒊, 𝒕) as the least cost of a path starting at node 1 passing through every

node of S exactly once and ending at node i∈S and ready to serve node i at time t or

later.

 The function 𝐹(𝑆, 𝑗, 𝑡) can be computed by the recurrence

 𝐹 𝑆, 𝑗, 𝑡 = min
(𝑖,𝑗)∈𝐴

𝐹 𝑆 − 𝑗 , 𝑖, 𝑡′ + 𝑐𝑖𝑗
where t′ + si + tij

≤ 𝑡 𝑎𝑛𝑑 𝑎𝑖 ≤ 𝑡′ ≤ 𝑏𝑖

 Base condition: 𝐹 1 , 1,0 = 0, since we start at node 1

 j

i

1

𝐹 𝑆 − 𝑗 , 𝑖, 𝑡′

𝑐𝑖𝑗

Dynamic Programming

 Define 𝑭(𝑺, 𝒊, 𝒕) as the least cost of a path starting at node 1 passing through every

node of S exactly once and ending at node i∈S and ready to serve node i at time t or

later.

 The function 𝐹(𝑆, 𝑗, 𝑡) can be computed by the recurrence

 𝐹 𝑆, 𝑗, 𝑡 = min
(𝑖,𝑗)∈𝐴

𝐹 𝑆 − 𝑗 , 𝑖, 𝑡′ + 𝑐𝑖𝑗
where t′ + si + tij ≤ 𝑡 𝑎𝑛𝑑 𝑎𝑖 ≤ 𝑡′ ≤ 𝑏𝑖

 Base condition: 𝐹 1 , 1,0 = 0, since we start at node 1

 The optimal TSPTW solution is given by:

 min
(𝑗,1)∈𝐴

𝐹 𝑁, 𝑗, 𝑡 + 𝑐𝑗1 𝑠. 𝑡. 𝑎𝑗 ≤ 𝑡 ≤ 𝑏j

j

1

𝐹 𝑁, 𝑗, 𝑡

𝑐𝑗1

Dynamic Programming

 Let ξk be a state set which contains all feasible states (𝑆, 𝑖, 𝑡) s.t |S|= k

 ξ1={({1},1,0)}

 For computing ξk from ξk-1, do the following steps:

 For each (𝑆, 𝑖, 𝑡) ∈ ξk-1, add the state 𝑆′, 𝑗, 𝑡′ 𝑡𝑜 ξ𝑘 𝑤ℎ𝑒𝑟𝑒

 𝑆′ = 𝑆 ∪ *𝑗+ , 𝑖, 𝑗 ∈ 𝐴 𝑎𝑛𝑑

 𝑡′ = max 𝑎𝑗, 𝑡 + 𝑠𝑖 + 𝑡𝑖𝑗 𝑎𝑛𝑑

 𝑆′, 𝑗, 𝑡′ 𝑖𝑠 𝑎 𝒇𝒆𝒂𝒔𝒊𝒃𝒍𝒆 𝒆𝒙𝒑𝒂𝒏𝒔𝒊𝒐𝒏 𝑜𝑓 (𝑆, 𝑖, 𝑡)

 S i t

Algorithm

 Initialize ξ1={({1},1,0)} and F 1 , 1,0 =0

 for(k=2,3,…..n) do

 for (𝑆, 𝑖, 𝑡) ∈ ξk-1 do

 add the state 𝑆′, 𝑗, 𝑡′ to ξk only if 𝑆′, 𝑗, 𝑡′ passes elimination tests

 update 𝐹 𝑆′, 𝑗, 𝑡′ = 𝐹 𝑆, 𝑖, 𝑡 + 𝑐𝑖𝑗

 The optimal solution is min
(𝑗,1)∈𝐴

𝐹 𝑁, 𝑗, 𝑡 + 𝑐𝑗1 𝑠. 𝑡. 𝑎𝑗 ≤ 𝑡 ≤ 𝑏j

Elimination/Infeasibility tests

 Test 1

 Test 2

 Test 3

 Dominance Tests

Test 1

 Let FIRST(S, i) denotes the smallest time when a service can begin at node i

 Let LDT(i, j) denote the latest departure time at i to begin service at node j s.t. time of

service at j is feasible

 Reject (S, i, t), ai ≤ 𝑡 ≤ bi if

 FIRST(S, i)> min
𝑗∉𝑆

𝐿𝐷𝑇(𝑖, 𝑗)

Let ξk = {({1,2},2,11), ({1,2},2,12)}

FIRST({1,2},2)=11 > LDT(2,3)=9

Can remove ({1,2},2,11) and ({1,2},2,12)
3

2

1

i [9,12]

j [9,10]

1

Test 2

 Let BEFORE(j) denote the set of nodes which must be visited before visiting the node j

 Reject (S, i, t), ai ≤ 𝑡 ≤ bi if

 ∃j ∉ S and (i,j) ∈ A and BEFORE(j)⊄S

1

3

2

4

5

Let ξk = {({1,2,3},3,12),({1,5,3},3,13)}

BEFORE(4)={1, 2, 5}

4 3

i j

Test 3

 Reject (S’, j ,t’), aj ≤ 𝑡′ ≤ bj if

 ∃ 𝑆, 𝑖, 𝑡 𝑠. 𝑡 j ∉ S , (i,j) ∈ A , t ≤ LDT(i,j) and

 ∀𝑘 𝑠. 𝑡 k ∉ S and t + tij > LDT(j,k)

1 2

4 3

k j

i Let (S, i, t) = ({1,2},2,18) and (S′, j, t′)=({1,2,3},3,22)

LDT(2,3)=20 and LDT(3,4)=12 and t23=4

(2,3) can be feasible since t=18≤ LDT 2,3 = 20 but

(3,4) is infeasible since t+t23=18+4=22>LDT(3,4)=12

4

Dominance Test

 Reject (𝑆, 𝑖, 𝑡’) ∈ ξk if ∃ 𝑆, 𝑖, 𝑡 ∈ ξk s.t

 F(S, i, t) ≤ 𝐹 𝑆, 𝑖, 𝑡′

 𝑡 ≤ 𝑡′

Experimental results

n |A’| |(S,i,t)| CPU time

20 34.2 4.4 0.02

40 121.8 16.0 0.08

60 226.0 21.8 0.15

80 362.6 49.8 0.35

100 510.0 45.0 0.62

150 975.8 326.8 2.44

 Variation of CPU time with number of nodes

 n |A’| |(S,i,t)| CPU time

20 115.2 35.6 0.14

40 404.2 554.0 4.37

60 670.6 1344.4 6.84

80 1149.6 7716.8 55.32

100 1731.4 6804.8 107.95

150 2953.6 26351.0 462.97

w=20 w=60

Experimental results

 Comparison of number of labels removed by each test

 w Test 1 Test 2 Test 3

(S,i,t) 20 21.8 3716.4 37.4

CPU time 0.15 6.20 0.17

(S,i,t) 40 145.8 18520.5 229.0

CPU time 0.91 49.23 0.98

n=60

Conclusion

 For a given problem size, problem difficulty increases with the time windows

 For narrow widths, its behavior is less than exponential allowing large size problems to

be solved.

 E.g. a 250 node problem with w=20 is solved in less than 10 sec.

 The algorithm can accommodate additional costs for waiting at a node such as total

schedule time.

 The algorithm works for larger problem sizes and time windows than any previous

work.

 Research papers:

 http://pubsonline.informs.org/doi/pdf/10.1287/opre.43.2.367

 http://www.jstor.org/stable/pdfplus/172015.pdf?&acceptTC=true&jpdConfirm=true

References

http://pubsonline.informs.org/doi/pdf/10.1287/opre.43.2.367
http://pubsonline.informs.org/doi/pdf/10.1287/opre.43.2.367
http://www.jstor.org/stable/pdfplus/172015.pdf?&acceptTC=true&jpdConfirm=true

Thank you

Questions / Comments?

