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 Given a list of cities and the distances between each pair of cities, what is the shortest 

possible route that visits each city exactly once and returns to the origin city? 

 The TSP has several applications even in its purest formulation, such as planning, 

logistics, and the manufacture of microchips.  

 It is an NP-hard problem in combinatorial optimization 

 

TSP  



TSP  

       An instance of the traveling-salesman problem.  

Shaded edges represent a minimum-cost tour, with cost 7. 



TSPTW - Definition 

 A more difficult problem than TSP 

 Involves the design of a minimum cost tour such that 

 Every node is visited exactly once 

 Service at a node must begin and end within the time interval specified at each 

node 

 Incorporates service time at each node and travel time to visit from one node to other 

 

 



TSPTW - Motivation 

 Practical applications in : 

 Postal or office deliveries within specified timings for each 

 School bus routing and scheduling 

 Automated manufacturing environments 

 Automated guided vehicles 



 Consider a network G=(N,A) 

 N={1,2,3, …, n} is the set of nodes and A is the set of arcs 

 Each node i∈N is associated with  

 A time window [ai,bi] 

 A service time si 

 Each arc is associated with a travel time tij and a travel cost cij   

TSPTW – Formulation 



Related Work 

 

 Savelsbergh (1985) showed that even finding a feasible solution to TSPTW is an NP 

complete problem  

 Bakers (1983) proposed an approach which performed well on problems with upto 50 

nodes  

 This work by Dumas et al. (1995) is successful in solving problems with upto 200 

nodes and fairly wide time windows 



Approach 
 

 Preprocessing to remove infeasible arcs 

 Dynamic Programming  

 Reduction of the state space via infeasibility tests 

 Takes advantage of the time window constraints 

 Performed during the execution of the algorithm 

 



Preprocessing 

 

 

For the edge BC: 

 

aB + sB + tBC = 20+0.4+8 

=28.4 > bC = 25 

 

 

Edge BC can be pruned! 

 

 An arc (i,j)∈ 𝐴 is feasible if ai + si + tij ≤ bj 
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Dynamic Programming 

 Define 𝑭(𝑺, 𝒊, 𝒕) as the least cost of a path starting at node 1 passing through every 

node of S exactly once and ending at node i∈S and ready to serve node i at time t or 

later. 

 The function 𝐹(𝑆, 𝑗, 𝑡) can be computed by the recurrence 

 𝐹 𝑆, 𝑗, 𝑡 = min
(𝑖,𝑗)∈𝐴

𝐹 𝑆 − 𝑗 , 𝑖, 𝑡′ + 𝑐𝑖𝑗  
where t′ + si + tij 

≤ 𝑡  𝑎𝑛𝑑 𝑎𝑖 ≤ 𝑡′ ≤ 𝑏𝑖   

 Base condition: 𝐹 1 , 1,0 = 0, since we start at node 1 
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𝐹 𝑆 − 𝑗 , 𝑖, 𝑡′  

𝑐𝑖𝑗 
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 Base condition: 𝐹 1 , 1,0 = 0, since we start at node 1 

 The optimal TSPTW solution is given by: 

 min
(𝑗,1)∈𝐴

𝐹 𝑁, 𝑗, 𝑡 + 𝑐𝑗1   𝑠. 𝑡.      𝑎𝑗 ≤ 𝑡 ≤ 𝑏j    
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Dynamic Programming 

 Let ξk be a state set which contains all feasible states (𝑆, 𝑖, 𝑡) s.t |S|= k  

 ξ1={({1},1,0)} 

 For computing  ξk from  ξk-1, do the following steps: 

 For each (𝑆, 𝑖, 𝑡) ∈ ξk-1,  add the state 𝑆′, 𝑗, 𝑡′  𝑡𝑜 ξ𝑘 𝑤ℎ𝑒𝑟𝑒  

 𝑆′ = 𝑆 ∪ *𝑗+ , 𝑖, 𝑗 ∈ 𝐴 𝑎𝑛𝑑  

 𝑡′ = max 𝑎𝑗, 𝑡 + 𝑠𝑖 + 𝑡𝑖𝑗 𝑎𝑛𝑑 

 𝑆′, 𝑗, 𝑡′ 𝑖𝑠 𝑎 𝒇𝒆𝒂𝒔𝒊𝒃𝒍𝒆 𝒆𝒙𝒑𝒂𝒏𝒔𝒊𝒐𝒏 𝑜𝑓 (𝑆, 𝑖, 𝑡)   

 

     S  i  t 



Algorithm 
 

 Initialize ξ1={({1},1,0)} and F 1 , 1,0 =0 

 for(k=2,3,…..n) do 

  for (𝑆, 𝑖, 𝑡) ∈ ξk-1 do 

 add the state 𝑆′, 𝑗, 𝑡′  to ξk only if 𝑆′, 𝑗, 𝑡′  passes elimination tests 

 update 𝐹 𝑆′, 𝑗, 𝑡′ = 𝐹 𝑆, 𝑖, 𝑡 + 𝑐𝑖𝑗 

 The optimal solution is min
(𝑗,1)∈𝐴

𝐹 𝑁, 𝑗, 𝑡 + 𝑐𝑗1   𝑠. 𝑡. 𝑎𝑗 ≤ 𝑡 ≤ 𝑏j    



Elimination/Infeasibility tests 
 

 Test 1 

 Test 2 

 Test 3  

 Dominance Tests 

 

 



Test 1 

 Let FIRST(S, i) denotes the smallest time when a service can begin at node i  

 Let LDT(i, j) denote the latest departure time at i to begin service at node j s.t. time of 

service at j is feasible  

 Reject (S, i, t), ai ≤ 𝑡 ≤ bi if 

 FIRST(S, i)> min
𝑗∉𝑆

𝐿𝐷𝑇(𝑖, 𝑗) 

  

Let ξk = {({1,2},2,11),    ({1,2},2,12)} 

FIRST({1,2},2)=11 > LDT(2,3)=9 

Can remove ({1,2},2,11) and ({1,2},2,12) 
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Test 2 

 Let BEFORE(j) denote the set of nodes which must be visited before visiting the node j 

 Reject (S, i, t), ai ≤ 𝑡 ≤ bi if 

 ∃j ∉ S and (i,j) ∈ A and BEFORE(j)⊄S 
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Let ξk = {({1,2,3},3,12),({1,5,3},3,13)} 

BEFORE(4)={1, 2, 5} 

4 3 

i j 



Test 3 
 

 Reject (S’, j ,t’), aj ≤ 𝑡′ ≤ bj if 

 ∃ 𝑆, 𝑖, 𝑡  𝑠. 𝑡 j ∉ S , (i,j) ∈ A , t ≤ LDT(i,j) and  

 ∀𝑘 𝑠. 𝑡 k ∉ S and t + tij > LDT(j,k)  
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i Let (S, i, t) = ({1,2},2,18) and (S′, j, t′)=({1,2,3},3,22) 

LDT(2,3)=20 and LDT(3,4)=12 and t23=4 

(2,3) can be feasible since t=18≤ LDT 2,3 = 20 but 

(3,4) is infeasible since t+t23=18+4=22>LDT(3,4)=12 
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Dominance Test 

 Reject (𝑆, 𝑖, 𝑡’) ∈  ξk if ∃ 𝑆, 𝑖, 𝑡 ∈  ξk s.t  

 F(S, i, t) ≤ 𝐹 𝑆, 𝑖, 𝑡′   

 𝑡 ≤ 𝑡′ 

  



Experimental results 

n |A’| |(S,i,t)| CPU time 

20 34.2 4.4 0.02 

40 121.8 16.0 0.08 

60 226.0 21.8 0.15 

80 362.6 49.8 0.35 

100 510.0 45.0 0.62 

150 975.8 326.8 2.44 

 Variation of CPU time with number of nodes   

  

  n |A’| |(S,i,t)| CPU time 

20 115.2 35.6 0.14 

40 404.2 554.0 4.37 

60 670.6 1344.4 6.84 

80 1149.6 7716.8 55.32 

100 1731.4 6804.8 107.95 

150 2953.6 26351.0 462.97 

w=20 w=60 



Experimental results 

 Comparison of number of labels removed by each test 

    

  w Test 1 Test 2 Test 3 

(S,i,t) 20 21.8 3716.4 37.4 

CPU time 0.15 6.20 0.17 

(S,i,t) 40 145.8 18520.5 229.0 

CPU time 0.91 49.23 0.98 

n=60 



Conclusion 

 For a given problem size, problem difficulty increases with the time windows  

 For narrow widths, its behavior is less than exponential allowing large size problems to 

be solved.  

 E.g. a 250 node problem with w=20 is solved in less than 10 sec. 

 The algorithm can accommodate additional costs for waiting at a node such as total 

schedule time. 

 The algorithm works for larger problem sizes and time windows than any previous 

work.  

  



 

 

 

 

 Research papers:  

 http://pubsonline.informs.org/doi/pdf/10.1287/opre.43.2.367 

 

 

 http://www.jstor.org/stable/pdfplus/172015.pdf?&acceptTC=true&jpdConfirm=true 
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Thank you 

Questions / Comments? 


