
TRAVELING

SALESMAN PROBLEM

WITH TIME WINDOWS

(TSPTW) Aakash Anuj 10CS30043

Surya Prakash Verma 10AE30026

 Yetesh Chaudhary 10CS30044

Supervisor: Prof. Jitesh Thakkar

 Given a list of cities and the distances between each pair of cities, what is the shortest

possible route that visits each city exactly once and returns to the origin city?

 The TSP has several applications even in its purest formulation, such as planning,

logistics, and the manufacture of microchips.

 It is an NP-hard problem in combinatorial optimization

TSP

TSP

 An instance of the traveling-salesman problem.

Shaded edges represent a minimum-cost tour, with cost 7.

TSPTW - Definition

 A more difficult problem than TSP

 Involves the design of a minimum cost tour such that

 Every node is visited exactly once

 Service at a node must begin and end within the time interval specified at each

node

 Incorporates service time at each node and travel time to visit from one node to other

TSPTW - Motivation

 Practical applications in :

 Postal or office deliveries within specified timings for each

 School bus routing and scheduling

 Automated manufacturing environments

 Automated guided vehicles

 Consider a network G=(N,A)

 N={1,2,3, …, n} is the set of nodes and A is the set of arcs

 Each node i∈N is associated with

 A time window [ai,bi]

 A service time si

 Each arc is associated with a travel time tij and a travel cost cij

TSPTW – Formulation

Related Work

 Savelsbergh (1985) showed that even finding a feasible solution to TSPTW is an NP

complete problem

 Bakers (1983) proposed an approach which performed well on problems with upto 50

nodes

 This work by Dumas et al. (1995) is successful in solving problems with upto 200

nodes and fairly wide time windows

Approach

 Preprocessing to remove infeasible arcs

 Dynamic Programming

 Reduction of the state space via infeasibility tests

 Takes advantage of the time window constraints

 Performed during the execution of the algorithm

Preprocessing

For the edge BC:

aB + sB + tBC = 20+0.4+8

=28.4 > bC = 25

Edge BC can be pruned!

 An arc (i,j)∈ 𝐴 is feasible if ai + si + tij ≤ bj

Preprocessing

For the edge BC:

aB + sB + tBC = 20+0.4+8

=28.4 > bC = 25

Edge BC can be pruned!

 An arc (i,j)∈ 𝑨 is feasible if ai + si + tij ≤ bj

Approach

 Preprocessing to remove infeasible arcs

 Dynamic Programming

 Reduction of the state space via infeasibility tests

 Takes advantage of the time window constraints

 Performed during the execution of the algorithm

Dynamic Programming

 Define 𝑭(𝑺, 𝒊, 𝒕) as the least cost of a path starting at node 1 passing through every

node of S exactly once and ending at node i∈S and ready to serve node i at time t or

later.

 The function 𝐹(𝑆, 𝑗, 𝑡) can be computed by the recurrence

 𝐹 𝑆, 𝑗, 𝑡 = min
(𝑖,𝑗)∈𝐴

𝐹 𝑆 − 𝑗 , 𝑖, 𝑡′ + 𝑐𝑖𝑗
where t′ + si + tij

≤ 𝑡 𝑎𝑛𝑑 𝑎𝑖 ≤ 𝑡′ ≤ 𝑏𝑖

 Base condition: 𝐹 1 , 1,0 = 0, since we start at node 1

 j

i

1

𝐹 𝑆 − 𝑗 , 𝑖, 𝑡′

𝑐𝑖𝑗

Dynamic Programming

 Define 𝑭(𝑺, 𝒊, 𝒕) as the least cost of a path starting at node 1 passing through every

node of S exactly once and ending at node i∈S and ready to serve node i at time t or

later.

 The function 𝐹(𝑆, 𝑗, 𝑡) can be computed by the recurrence

 𝐹 𝑆, 𝑗, 𝑡 = min
(𝑖,𝑗)∈𝐴

𝐹 𝑆 − 𝑗 , 𝑖, 𝑡′ + 𝑐𝑖𝑗
where t′ + si + tij ≤ 𝑡 𝑎𝑛𝑑 𝑎𝑖 ≤ 𝑡′ ≤ 𝑏𝑖

 Base condition: 𝐹 1 , 1,0 = 0, since we start at node 1

 The optimal TSPTW solution is given by:

 min
(𝑗,1)∈𝐴

𝐹 𝑁, 𝑗, 𝑡 + 𝑐𝑗1 𝑠. 𝑡. 𝑎𝑗 ≤ 𝑡 ≤ 𝑏j

j

1

𝐹 𝑁, 𝑗, 𝑡

𝑐𝑗1

Dynamic Programming

 Let ξk be a state set which contains all feasible states (𝑆, 𝑖, 𝑡) s.t |S|= k

 ξ1={({1},1,0)}

 For computing ξk from ξk-1, do the following steps:

 For each (𝑆, 𝑖, 𝑡) ∈ ξk-1, add the state 𝑆′, 𝑗, 𝑡′ 𝑡𝑜 ξ𝑘 𝑤ℎ𝑒𝑟𝑒

 𝑆′ = 𝑆 ∪ *𝑗+ , 𝑖, 𝑗 ∈ 𝐴 𝑎𝑛𝑑

 𝑡′ = max 𝑎𝑗, 𝑡 + 𝑠𝑖 + 𝑡𝑖𝑗 𝑎𝑛𝑑

 𝑆′, 𝑗, 𝑡′ 𝑖𝑠 𝑎 𝒇𝒆𝒂𝒔𝒊𝒃𝒍𝒆 𝒆𝒙𝒑𝒂𝒏𝒔𝒊𝒐𝒏 𝑜𝑓 (𝑆, 𝑖, 𝑡)

 S i t

Algorithm

 Initialize ξ1={({1},1,0)} and F 1 , 1,0 =0

 for(k=2,3,…..n) do

 for (𝑆, 𝑖, 𝑡) ∈ ξk-1 do

 add the state 𝑆′, 𝑗, 𝑡′ to ξk only if 𝑆′, 𝑗, 𝑡′ passes elimination tests

 update 𝐹 𝑆′, 𝑗, 𝑡′ = 𝐹 𝑆, 𝑖, 𝑡 + 𝑐𝑖𝑗

 The optimal solution is min
(𝑗,1)∈𝐴

𝐹 𝑁, 𝑗, 𝑡 + 𝑐𝑗1 𝑠. 𝑡. 𝑎𝑗 ≤ 𝑡 ≤ 𝑏j

Elimination/Infeasibility tests

 Test 1

 Test 2

 Test 3

 Dominance Tests

Test 1

 Let FIRST(S, i) denotes the smallest time when a service can begin at node i

 Let LDT(i, j) denote the latest departure time at i to begin service at node j s.t. time of

service at j is feasible

 Reject (S, i, t), ai ≤ 𝑡 ≤ bi if

 FIRST(S, i)> min
𝑗∉𝑆

𝐿𝐷𝑇(𝑖, 𝑗)

Let ξk = {({1,2},2,11), ({1,2},2,12)}

FIRST({1,2},2)=11 > LDT(2,3)=9

Can remove ({1,2},2,11) and ({1,2},2,12)
3

2

1

i [9,12]

j [9,10]

1

Test 2

 Let BEFORE(j) denote the set of nodes which must be visited before visiting the node j

 Reject (S, i, t), ai ≤ 𝑡 ≤ bi if

 ∃j ∉ S and (i,j) ∈ A and BEFORE(j)⊄S

1

3

2

4

5

Let ξk = {({1,2,3},3,12),({1,5,3},3,13)}

BEFORE(4)={1, 2, 5}

4 3

i j

Test 3

 Reject (S’, j ,t’), aj ≤ 𝑡′ ≤ bj if

 ∃ 𝑆, 𝑖, 𝑡 𝑠. 𝑡 j ∉ S , (i,j) ∈ A , t ≤ LDT(i,j) and

 ∀𝑘 𝑠. 𝑡 k ∉ S and t + tij > LDT(j,k)

1 2

4 3

k j

i Let (S, i, t) = ({1,2},2,18) and (S′, j, t′)=({1,2,3},3,22)

LDT(2,3)=20 and LDT(3,4)=12 and t23=4

(2,3) can be feasible since t=18≤ LDT 2,3 = 20 but

(3,4) is infeasible since t+t23=18+4=22>LDT(3,4)=12

4

Dominance Test

 Reject (𝑆, 𝑖, 𝑡’) ∈ ξk if ∃ 𝑆, 𝑖, 𝑡 ∈ ξk s.t

 F(S, i, t) ≤ 𝐹 𝑆, 𝑖, 𝑡′

 𝑡 ≤ 𝑡′

Experimental results

n |A’| |(S,i,t)| CPU time

20 34.2 4.4 0.02

40 121.8 16.0 0.08

60 226.0 21.8 0.15

80 362.6 49.8 0.35

100 510.0 45.0 0.62

150 975.8 326.8 2.44

 Variation of CPU time with number of nodes

 n |A’| |(S,i,t)| CPU time

20 115.2 35.6 0.14

40 404.2 554.0 4.37

60 670.6 1344.4 6.84

80 1149.6 7716.8 55.32

100 1731.4 6804.8 107.95

150 2953.6 26351.0 462.97

w=20 w=60

Experimental results

 Comparison of number of labels removed by each test

 w Test 1 Test 2 Test 3

(S,i,t) 20 21.8 3716.4 37.4

CPU time 0.15 6.20 0.17

(S,i,t) 40 145.8 18520.5 229.0

CPU time 0.91 49.23 0.98

n=60

Conclusion

 For a given problem size, problem difficulty increases with the time windows

 For narrow widths, its behavior is less than exponential allowing large size problems to

be solved.

 E.g. a 250 node problem with w=20 is solved in less than 10 sec.

 The algorithm can accommodate additional costs for waiting at a node such as total

schedule time.

 The algorithm works for larger problem sizes and time windows than any previous

work.

 Research papers:

 http://pubsonline.informs.org/doi/pdf/10.1287/opre.43.2.367

 http://www.jstor.org/stable/pdfplus/172015.pdf?&acceptTC=true&jpdConfirm=true

References

http://pubsonline.informs.org/doi/pdf/10.1287/opre.43.2.367
http://pubsonline.informs.org/doi/pdf/10.1287/opre.43.2.367
http://www.jstor.org/stable/pdfplus/172015.pdf?&acceptTC=true&jpdConfirm=true

Thank you

Questions / Comments?

