Contents

э

Chittaranjan Mandal (IIT Kharagpur)

Section outline

Discrete structures

- Sets
- Relations
- Lattices

- Lattices (contd.)
- Boolean lattice
- Boolean lattice structure
- Boolean algebra
- Additional Boolean algebra properties

3 1 4 3 1

2/23

• A set A of elements: $A = \{a, b, c\}$

э

Sets

- A set *A* of elements: *A* = {*a*, *b*, *c*}
- Natural numbers: $\mathbb{N} = \{0,1,2,3,\ldots\}$ or $\{1,2,3,\ldots\} = \mathbb{Z}^+$

Sets

- A set A of elements: $A = \{a, b, c\}$
- Natural numbers: $\mathbb{N} = \{0, 1, 2, 3, ...\}$ or $\{1, 2, 3, ...\} = \mathbb{Z}^+$
- Integers: $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$ ٩

(*) * (*) *)

Chittaranjan Mandal (IIT Kharagpur)

Sets

- A set *A* of elements: *A* = {*a*, *b*, *c*}
- Natural numbers: $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ or $\{1, 2, 3, \ldots\} = \mathbb{Z}^+$
- Integers: $\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$
- Universal set: U Empty set: $\emptyset = \{\}$

3/23

Sets

- A set *A* of elements: *A* = {*a*, *b*, *c*}
- Natural numbers: $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ or $\{1, 2, 3, \ldots\} = \mathbb{Z}^+$
- Integers: $\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$
- Universal set: U Empty set: $\emptyset = \{\}$

3/23

Sets

- A set *A* of elements: *A* = {*a*, *b*, *c*}
- Natural numbers: $\mathbb{N} = \{0,1,2,3,\ldots\}$ or $\{1,2,3,\ldots\} = \mathbb{Z}^+$
- Integers: $\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$
- Universal set: U Empty set: $\emptyset = \{\}$
- $S = \{X | X \notin X\}$ $S \in S$? [Russell's paradox]

Sets

- A set *A* of elements: *A* = {*a*, *b*, *c*}
- Natural numbers: $\mathbb{N} = \{0,1,2,3,\ldots\}$ or $\{1,2,3,\ldots\} = \mathbb{Z}^+$
- Integers: $\mathbb{Z} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$
- Universal set: U Empty set: $\emptyset = \{\}$
- $S = \{X | X \notin X\}$ $S \in S$? [Russell's paradox]

Sets

• A set *A* of elements: $A = \{a, b, c\}$ • Natural numbers: $\mathbb{N} = \{0, 1, 2, 3, ...\}$ or $\{1, 2, 3, ...\} = \mathbb{Z}^+$ • Integers: $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$ • Universal set: *U* Empty set: $\emptyset = \{\}$ • $S = \{X | X \notin X\}$ $S \in S$? [Russell's paradox] • Set union: $A \cup B$

Sets

• A set *A* of elements: $A = \{a, b, c\}$ • Natural numbers: $\mathbb{N} = \{0, 1, 2, 3, ...\}$ or $\{1, 2, 3, ...\} = \mathbb{Z}^+$ • Integers: $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$ • Universal set: *U* Empty set: $\emptyset = \{\}$ • $S = \{X | X \notin X\}$ $S \in S$? [Russell's paradox] • Set union: $A \cup B$ • Set intersection: $A \cap B$

• A set A of elements: $A = \{a, b, c\}$ • Natural numbers: $\mathbb{N} = \{0, 1, 2, 3, ...\}$ or $\{1, 2, 3, ...\} = \mathbb{Z}^+$ • Integers: $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$ • Universal set: U Empty set: $\emptyset = \{\}$ • $S = \{X | X \notin X\}$ $S \in S$? [Russell's paradox] • Set union: $A \cup B$ • Set intersection: $A \cap B$ IJ • Complement: \overline{S}

Sets

Sets (contd.)

• Complement of union (De Morgan): $\overline{A \cup B} = \overline{A} \cap \overline{B}$

э

Sets (contd.)

• Complement of union (De Morgan): $\overline{A \cup B} = \overline{A} \cap \overline{B}$

• Complement of intersection (De Morgan): $\overline{A \cap B} = \overline{A} \cup \overline{B}$

B b

Sets (contd.)

• Complement of union (De Morgan): $\overline{A \cup B} = \overline{A} \cap \overline{B}$

• Complement of intersection (De Morgan): $\overline{A \cap B} = \overline{A} \cup \overline{B}$

• Power set of A: $\mathcal{P}(A)$

B b

Sets (contd.)

• Complement of union (De Morgan): $\overline{A \cup B} = \overline{A} \cap \overline{B}$

• Complement of intersection (De Morgan): $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Power set of A: P(A)
P({a,b}) = {Ø, {a}, {b}, {a,b}}

B b

Sets (contd.)

• Complement of union (De Morgan): $\overline{A \cup B} = \overline{A} \cap \overline{B}$

• Complement of intersection (De Morgan): $\overline{A \cap B} = \overline{A} \cup \overline{B}$

• Power set of $A: \mathcal{P}(A)$

 $\mathcal{P}(\{a,b\}) = \{\varnothing, \{a\}, \{b\}, \{a,b\}\}$

• Non-empty X_1, \ldots, X_k is a partition of A if $A = X_1 \cup \ldots \cup X_k$ and $X_i \cap X_j = \emptyset \mid_{i \neq j}$

B N 4 B N

Sets (contd.)

• Complement of union (De Morgan): $\overline{A \cup B} = \overline{A} \cap \overline{B}$

• Complement of intersection (De Morgan): $\overline{A \cap B} = \overline{A} \cup \overline{B}$

• Power set of $A: \mathcal{P}(A)$

 $\mathcal{P}(\{a,b\}) = \{\varnothing, \{a\}, \{b\}, \{a,b\}\}$

- Non-empty X_1, \ldots, X_k is a partition of A if $A = X_1 \cup \ldots \cup X_k$ and $X_i \cap X_j = \emptyset |_{i \neq j}$
 - $A \cap \overline{B}$, $B \cap \overline{A}$, $A \cap B$ and $\overline{A \cup B}$ constitute a partition of U

Image: A math

Set algebra

Idempotence	$A \cup A = A$	$A \cap A = A$
Associativity	$(A \cup B) \cup C = A \cup (B \cup C)$	$(A \cap B) \cup C = A \cap (B \cup C)$
Commutativity	$A \cup B = B \cup A$	$A \cap B = B \cap A$
Distributivity	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
Identity	$A \cup \{\} = A, A \cup U = U$	$A \cap \{\} = \{\}, A \cup U = A$
Involution	$\overline{\overline{A}} = A$	
Complements	$\overline{U} = \{\}, A \cup \overline{A} = U$	$\{\bar{\}} = U, A \cap \bar{A} = \{\}$
DeMorgan	$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$

5/23

æ

• Tuple: $\langle \boldsymbol{a}, \boldsymbol{b} \rangle, \langle \boldsymbol{4}, \boldsymbol{b}, \alpha \rangle$

- Tuple: $\langle \boldsymbol{a}, \boldsymbol{b} \rangle, \langle \boldsymbol{4}, \boldsymbol{b}, \alpha \rangle$
- Cartesian product: $A \times B = \{ \langle a, b \rangle \mid a \in A, b \in B \}$

Image: A math

э

- Tuple: $\langle \boldsymbol{a}, \boldsymbol{b} \rangle, \langle \boldsymbol{4}, \boldsymbol{b}, \alpha \rangle$
- Cartesian product: $A \times B = \{ \langle a, b \rangle \mid a \in A, b \in B \}$
 - $\{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}\} \times \{\alpha, \beta\} = \{\langle \boldsymbol{a}, \alpha \rangle, \langle \boldsymbol{b}, \alpha \rangle, \langle \boldsymbol{c}, \alpha \rangle, \langle \boldsymbol{a}, \beta \rangle, \langle \boldsymbol{b}, \beta \rangle, \langle \boldsymbol{c}, \beta \rangle\}$

January 21, 2020

Image: A math

- Tuple: $\langle \boldsymbol{a}, \boldsymbol{b} \rangle, \langle \boldsymbol{4}, \boldsymbol{b}, \alpha \rangle$
- Cartesian product: $A \times B = \{ \langle a, b \rangle \mid a \in A, b \in B \}$
 - $\{ \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} \} \times \{ \alpha, \beta \} = \{ \langle \boldsymbol{a}, \alpha \rangle, \langle \boldsymbol{b}, \alpha \rangle, \langle \boldsymbol{c}, \alpha \rangle, \langle \boldsymbol{a}, \beta \rangle, \langle \boldsymbol{b}, \beta \rangle, \langle \boldsymbol{c}, \beta \rangle \}$ $\mathbb{N} \times \mathbb{N} = \{ \langle \imath, \jmath \rangle \mid \imath, \jmath \ge 1 \}$

< ロ > < 同 > < 回 > < 回 > .

January 21, 2020

- Tuple: $\langle \boldsymbol{a}, \boldsymbol{b} \rangle, \langle \boldsymbol{4}, \boldsymbol{b}, \alpha \rangle$
- Cartesian product: $A \times B = \{ \langle a, b \rangle \mid a \in A, b \in B \}$ $\{a, b, c\} \times \{\alpha, \beta\} = \{ \langle a, \alpha \rangle, \langle b, \alpha \rangle, \langle c, \alpha \rangle, \langle a, \beta \rangle, \langle b, \beta \rangle, \langle c, \beta \rangle \}$ $\mathbb{N} \times \mathbb{N} = \{ \langle i, j \rangle \mid i, j \ge 1 \}$
- Binary relation \mathcal{R} on sets A and B: $R \subseteq A \times B$

Image: A math

Relations

- Tuple: $\langle \boldsymbol{a}, \boldsymbol{b} \rangle, \langle \boldsymbol{4}, \boldsymbol{b}, \alpha \rangle$
- Cartesian product: $A \times B = \{ \langle a, b \rangle \mid a \in A, b \in B \}$ $\{a, b, c\} \times \{\alpha, \beta\} = \{ \langle a, \alpha \rangle, \langle b, \alpha \rangle, \langle c, \alpha \rangle, \langle a, \beta \rangle, \langle b, \beta \rangle, \langle c, \beta \rangle \}$ $\mathbb{N} \times \mathbb{N} = \{ \langle i, j \rangle \mid i, j \ge 1 \}$
- Binary relation \mathcal{R} on sets A and B: $R \subseteq A \times B$
- Characteristic function of \mathcal{R} : $\chi_{\mathcal{R}}(a, b) = \begin{cases} 1 & \text{if } \langle a, b \rangle \in \mathcal{R} \\ 0 & \text{if } \langle a, b \rangle \notin \mathcal{R} \end{cases}$

イロト イヨト イヨト イヨト

January 21, 2020

Relations

- Tuple: $\langle \boldsymbol{a}, \boldsymbol{b} \rangle, \langle \boldsymbol{4}, \boldsymbol{b}, \alpha \rangle$
- Cartesian product: $A \times B = \{ \langle a, b \rangle \mid a \in A, b \in B \}$ $\{a, b, c\} \times \{\alpha, \beta\} = \{ \langle a, \alpha \rangle, \langle b, \alpha \rangle, \langle c, \alpha \rangle, \langle a, \beta \rangle, \langle b, \beta \rangle, \langle c, \beta \rangle \}$ $\mathbb{N} \times \mathbb{N} = \{ \langle i, j \rangle \mid i, j \ge 1 \}$
- Binary relation \mathcal{R} on sets A and B: $R \subseteq A \times B$
- Characteristic function of \mathcal{R} : $\chi_{\mathcal{R}}(a, b) = \begin{cases} 1 & \text{if } \langle a, b \rangle \in \mathcal{R} \\ 0 & \text{if } \langle a, b \rangle \notin \mathcal{R} \end{cases}$
- $\mathcal{R} \subseteq A \times A$ is reflexive if $\forall x \in A$. $x \mathcal{R} x$

Relations

- Tuple: $\langle \boldsymbol{a}, \boldsymbol{b} \rangle, \langle \boldsymbol{4}, \boldsymbol{b}, \alpha \rangle$
- Cartesian product: $A \times B = \{ \langle a, b \rangle \mid a \in A, b \in B \}$ $\{a, b, c\} \times \{\alpha, \beta\} = \{ \langle a, \alpha \rangle, \langle b, \alpha \rangle, \langle c, \alpha \rangle, \langle a, \beta \rangle, \langle b, \beta \rangle, \langle c, \beta \rangle \}$ $\mathbb{N} \times \mathbb{N} = \{ \langle i, j \rangle \mid i, j \ge 1 \}$
- Binary relation \mathcal{R} on sets A and B: $R \subseteq A \times B$
- Characteristic function of \mathcal{R} : $\chi_{\mathcal{R}}(a,b) = \begin{cases} 1 & \text{if } \langle a,b \rangle \in \mathcal{R} \\ 0 & \text{if } \langle a,b \rangle \notin \mathcal{R} \end{cases}$
- $\mathcal{R} \subseteq \mathbf{A} \times \mathbf{A}$ is reflexive if $\forall x \in \mathbf{A}$. $x \mathcal{R} x$
- $\mathcal{R} \subseteq A \times A$ is symmetric if $\forall x, y \in A$. $x\mathcal{R}y \Rightarrow y\mathcal{R}x$

6/23

Relations

- Tuple: $\langle \boldsymbol{a}, \boldsymbol{b} \rangle, \langle \boldsymbol{4}, \boldsymbol{b}, \alpha \rangle$
- Cartesian product: $A \times B = \{ \langle a, b \rangle \mid a \in A, b \in B \}$ $\{a, b, c\} \times \{\alpha, \beta\} = \{ \langle a, \alpha \rangle, \langle b, \alpha \rangle, \langle c, \alpha \rangle, \langle a, \beta \rangle, \langle b, \beta \rangle, \langle c, \beta \rangle \}$ $\mathbb{N} \times \mathbb{N} = \{ \langle i, j \rangle \mid i, j \ge 1 \}$
- Binary relation \mathcal{R} on sets A and B: $R \subseteq A \times B$
- Characteristic function of \mathcal{R} : $\chi_{\mathcal{R}}(a,b) = \begin{cases} 1 & \text{if } \langle a,b \rangle \in \mathcal{R} \\ 0 & \text{if } \langle a,b \rangle \notin \mathcal{R} \end{cases}$
- $\mathcal{R} \subseteq A \times A$ is reflexive if $\forall x \in A$. $x \mathcal{R} x$
- $\mathcal{R} \subseteq A \times A$ is symmetric if $\forall x, y \in A$. $x\mathcal{R}y \Rightarrow y\mathcal{R}x$
- $\mathcal{R} \subseteq A \times A$ is transitive if $\forall x, y, z \in A$. $x\mathcal{R}y \land y\mathcal{R}z \Rightarrow x\mathcal{R}z$

Relations

- Tuple: $\langle \boldsymbol{a}, \boldsymbol{b} \rangle, \langle \boldsymbol{4}, \boldsymbol{b}, \alpha \rangle$
- Cartesian product: $A \times B = \{ \langle a, b \rangle \mid a \in A, b \in B \}$ $\{a, b, c\} \times \{\alpha, \beta\} = \{ \langle a, \alpha \rangle, \langle b, \alpha \rangle, \langle c, \alpha \rangle, \langle a, \beta \rangle, \langle b, \beta \rangle, \langle c, \beta \rangle \}$ $\mathbb{N} \times \mathbb{N} = \{ \langle i, j \rangle \mid i, j \ge 1 \}$
- Binary relation \mathcal{R} on sets A and B: $R \subseteq A \times B$
- Characteristic function of \mathcal{R} : $\chi_{\mathcal{R}}(a, b) = \begin{cases} 1 & \text{if } \langle a, b \rangle \in \mathcal{R} \\ 0 & \text{if } \langle a, b \rangle \notin \mathcal{R} \end{cases}$
- $\mathcal{R} \subseteq \mathbf{A} \times \mathbf{A}$ is reflexive if $\forall x \in \mathbf{A}$. $x \mathcal{R} x$
- $\mathcal{R} \subseteq A \times A$ is symmetric if $\forall x, y \in A$. $x\mathcal{R}y \Rightarrow y\mathcal{R}x$
- $\mathcal{R} \subseteq A \times A$ is transitive if $\forall x, y, z \in A$. $x\mathcal{R}y \land y\mathcal{R}z \Rightarrow x\mathcal{R}z$
- $\mathcal{R} \subseteq A \times A$ is antisymmetric if $\forall x, y \in A$. $x\mathcal{R}y \land y\mathcal{R}x \Rightarrow x = y$

Relations

- Tuple: $\langle \boldsymbol{a}, \boldsymbol{b} \rangle, \langle \boldsymbol{4}, \boldsymbol{b}, \alpha \rangle$
- Cartesian product: $A \times B = \{ \langle a, b \rangle \mid a \in A, b \in B \}$ $\{a, b, c\} \times \{\alpha, \beta\} = \{ \langle a, \alpha \rangle, \langle b, \alpha \rangle, \langle c, \alpha \rangle, \langle a, \beta \rangle, \langle b, \beta \rangle, \langle c, \beta \rangle \}$ $\mathbb{N} \times \mathbb{N} = \{ \langle i, j \rangle \mid i, j \ge 1 \}$
- Binary relation \mathcal{R} on sets A and B: $R \subseteq A \times B$
- Characteristic function of \mathcal{R} : $\chi_{\mathcal{R}}(a, b) = \begin{cases} 1 & \text{if } \langle a, b \rangle \in \mathcal{R} \\ 0 & \text{if } \langle a, b \rangle \notin \mathcal{R} \end{cases}$
- $\mathcal{R} \subseteq \mathbf{A} \times \mathbf{A}$ is reflexive if $\forall x \in \mathbf{A}$. $x \mathcal{R} x$
- $\mathcal{R} \subseteq A \times A$ is symmetric if $\forall x, y \in A$. $x\mathcal{R}y \Rightarrow y\mathcal{R}x$
- $\mathcal{R} \subseteq A \times A$ is transitive if $\forall x, y, z \in A$. $x\mathcal{R}y \land y\mathcal{R}z \Rightarrow x\mathcal{R}z$
- $\mathcal{R} \subseteq A \times A$ is antisymmetric if $\forall x, y \in A$. $x\mathcal{R}y \land y\mathcal{R}x \Rightarrow x = y$
- Equivalence relation: \mathcal{R} is reflexive, symmetric and transitive

Relations

- Tuple: $\langle \boldsymbol{a}, \boldsymbol{b} \rangle, \langle \boldsymbol{4}, \boldsymbol{b}, \alpha \rangle$
- Cartesian product: $A \times B = \{ \langle a, b \rangle \mid a \in A, b \in B \}$ $\{a, b, c\} \times \{\alpha, \beta\} = \{ \langle a, \alpha \rangle, \langle b, \alpha \rangle, \langle c, \alpha \rangle, \langle a, \beta \rangle, \langle b, \beta \rangle, \langle c, \beta \rangle \}$ $\mathbb{N} \times \mathbb{N} = \{ \langle i, j \rangle \mid i, j \ge 1 \}$
- Binary relation \mathcal{R} on sets A and B: $R \subseteq A \times B$
- Characteristic function of \mathcal{R} : $\chi_{\mathcal{R}}(a, b) = \begin{cases} 1 & \text{if } \langle a, b \rangle \in \mathcal{R} \\ 0 & \text{if } \langle a, b \rangle \notin \mathcal{R} \end{cases}$
- $\mathcal{R} \subseteq \mathbf{A} \times \mathbf{A}$ is reflexive if $\forall x \in \mathbf{A}$. $x \mathcal{R} x$
- $\mathcal{R} \subseteq A \times A$ is symmetric if $\forall x, y \in A$. $x\mathcal{R}y \Rightarrow y\mathcal{R}x$
- $\mathcal{R} \subseteq A \times A$ is transitive if $\forall x, y, z \in A$. $x\mathcal{R}y \land y\mathcal{R}z \Rightarrow x\mathcal{R}z$
- $\mathcal{R} \subseteq A \times A$ is antisymmetric if $\forall x, y \in A$. $x\mathcal{R}y \land y\mathcal{R}x \Rightarrow x = y$
- Equivalence relation: \mathcal{R} is reflexive, symmetric and transitive
- An equivalence relation induces a partition and vice versa

Relations

- Tuple: $\langle \boldsymbol{a}, \boldsymbol{b} \rangle, \langle \boldsymbol{4}, \boldsymbol{b}, \alpha \rangle$
- Cartesian product: $A \times B = \{ \langle a, b \rangle \mid a \in A, b \in B \}$ $\{a, b, c\} \times \{\alpha, \beta\} = \{ \langle a, \alpha \rangle, \langle b, \alpha \rangle, \langle c, \alpha \rangle, \langle a, \beta \rangle, \langle b, \beta \rangle, \langle c, \beta \rangle \}$ $\mathbb{N} \times \mathbb{N} = \{ \langle i, j \rangle \mid i, j \ge 1 \}$
- Binary relation \mathcal{R} on sets A and B: $R \subseteq A \times B$
- Characteristic function of \mathcal{R} : $\chi_{\mathcal{R}}(a, b) = \begin{cases} 1 & \text{if } \langle a, b \rangle \in \mathcal{R} \\ 0 & \text{if } \langle a, b \rangle \notin \mathcal{R} \end{cases}$
- $\mathcal{R} \subseteq \mathbf{A} \times \mathbf{A}$ is reflexive if $\forall x \in \mathbf{A}$. $x \mathcal{R} x$
- $\mathcal{R} \subseteq A \times A$ is symmetric if $\forall x, y \in A$. $x\mathcal{R}y \Rightarrow y\mathcal{R}x$
- $\mathcal{R} \subseteq A \times A$ is transitive if $\forall x, y, z \in A$. $x\mathcal{R}y \land y\mathcal{R}z \Rightarrow x\mathcal{R}z$
- $\mathcal{R} \subseteq A \times A$ is antisymmetric if $\forall x, y \in A$. $x\mathcal{R}y \land y\mathcal{R}x \Rightarrow x = y$
- Equivalence relation: \mathcal{R} is reflexive, symmetric and transitive
- An equivalence relation induces a partition and vice versa
- Partial order: \mathcal{R} is reflexive, antisymmetric and transitive

Relations (contd.)

• Connected relation: $\forall x, y \in A$, either $x \mathcal{R} y$ or $y \mathcal{R} x$

Relations (contd.)

- Connected relation: $\forall x, y \in A$, either $x \mathcal{R} y$ or $y \mathcal{R} x$
- Total order: Connected partial order (eg \leq on \mathbb{R})

∃ → < ∃ →</p>

Relations (contd.)

- Connected relation: $\forall x, y \in A$, either $x \mathcal{R} y$ or $y \mathcal{R} x$
- Total order: Connected partial order (eg \leq on \mathbb{R})
- Irreflexive relation: $\forall x \in A, \langle x, x \rangle \notin \mathcal{R}$

★ ∃ > < ∃ >
- Connected relation: $\forall x, y \in A$, either $x \mathcal{R} y$ or $y \mathcal{R} x$
- Total order: Connected partial order (eg \leq on \mathbb{R})
- Irreflexive relation: $\forall x \in A, \langle x, x \rangle \notin \mathcal{R}$
- Asymmetric relation: $\langle x, y \rangle \in \mathcal{R} \Rightarrow \langle y, x \rangle \notin \mathcal{R}$

A B > A B >

January 21, 2020

- Connected relation: $\forall x, y \in A$, either $x \mathcal{R} y$ or $y \mathcal{R} x$
- Total order: Connected partial order (eg \leq on \mathbb{R})
- Irreflexive relation: $\forall x \in A, \langle x, x \rangle \notin \mathcal{R}$
- Asymmetric relation: $\langle x, y \rangle \in \mathcal{R} \Rightarrow \langle y, x \rangle \notin \mathcal{R}$
- Strict order: \mathcal{R} is irreflexive and transitive (... asymmetric)

Relations

Relations (contd.)

- Connected relation: $\forall x, y \in A$, either $x \mathcal{R} y$ or $y \mathcal{R} x$
- Total order: Connected partial order (eg \leq on \mathbb{R})
- Irreflexive relation: $\forall x \in A, \langle x, x \rangle \notin \mathcal{R}$
- Asymmetric relation: $\langle x, y \rangle \in \mathcal{R} \Rightarrow \langle y, x \rangle \notin \mathcal{R}$
- Strict order: *R* is irreflexive and transitive (∴ asymmetric)
- If \leq is a PO on *A*, then $<: x < y \equiv x \leq y \land x \neq y$ is a SO on *A*

- Connected relation: $\forall x, y \in A$, either $x \mathcal{R} y$ or $y \mathcal{R} x$
- Total order: Connected partial order (eg \leq on \mathbb{R})
- Irreflexive relation: $\forall x \in A, \langle x, x \rangle \notin \mathcal{R}$
- Asymmetric relation: $\langle x, y \rangle \in \mathcal{R} \Rightarrow \langle y, x \rangle \notin \mathcal{R}$
- Strict order: *R* is irreflexive and transitive (∴ asymmetric)
- If \leq is a PO on *A*, then $<: x < y \equiv x \leq y \land x \neq y$ is a SO on *A*
- If < is a SO on A, then $\preceq : x \preceq y \equiv x < y \lor x = y$ is a PO on A

< ロ > < 同 > < 回 > < 回 > .

- Connected relation: $\forall x, y \in A$, either $x \mathcal{R} y$ or $y \mathcal{R} x$
- Total order: Connected partial order (eg \leq on \mathbb{R})
- Irreflexive relation: $\forall x \in A, \langle x, x \rangle \notin \mathcal{R}$
- Asymmetric relation: $\langle x, y \rangle \in \mathcal{R} \Rightarrow \langle y, x \rangle \notin \mathcal{R}$
- Strict order: *R* is irreflexive and transitive (∴ asymmetric)
- If \leq is a PO on *A*, then $<: x < y \equiv x \leq y \land x \neq y$ is a SO on *A*
- If < is a SO on A, then $\preceq : x \preceq y \equiv x < y \lor x = y$ is a PO on A

Suppose $\langle A, \preceq \rangle$ is a poset, $\underline{M \in A \ (m \in A), S \subseteq A}$ $\overline{M \ (m)}$ is a maximal (minimal) element of *S* iff $M \in S \ (m \in S)$ and $\exists x \in S \text{ st } M < x \ (x < m)$ $\overline{M \ (m)}$ is a maximum (minimum) of *S* iff $M \in S \ (m \in S)$ and $\forall x \in S, x \preceq M \ (m \preceq x)$

January 21, 2020

- Connected relation: $\forall x, y \in A$, either $x \mathcal{R} y$ or $y \mathcal{R} x$
- Total order: Connected partial order (eg \leq on \mathbb{R})
- Irreflexive relation: $\forall x \in A, \langle x, x \rangle \notin \mathcal{R}$
- Asymmetric relation: $\langle x, y \rangle \in \mathcal{R} \Rightarrow \langle y, x \rangle \notin \mathcal{R}$
- Strict order: *R* is irreflexive and transitive (∴ asymmetric)
- If \leq is a PO on *A*, then $<: x < y \equiv x \leq y \land x \neq y$ is a SO on *A*
- If < is a SO on A, then $\preceq : x \preceq y \equiv x < y \lor x = y$ is a PO on A

Suppose $\langle A, \preceq \rangle$ is a poset, $\underline{M \in A \ (m \in A), S \subseteq A}$ $\overline{M \ (m)}$ is a maximal (minimal) element of *S* iff $M \in S \ (m \in S)$ and $\exists x \in S \text{ st } M < x \ (x < m)$ $\overline{M \ (m)}$ is a maximum (minimum) of *S* iff $M \in S \ (m \in S)$ and $\forall x \in S, x \preceq M \ (m \preceq x)$

Chittaranjan Mandal (IIT Kharagpur)

SCLD

Lattices

Lattices

Let $\langle A, \prec \rangle$ be a poset, let $x, y \in A$

- The *meet* of x and y $(x \land y)$, is the maximum of all lower bounds for x and y: $x \land y = \max \{ w \in A : w \prec x, w \prec y \}$, *glb* for x and y
- The *join* of x and y $(x \lor y)$, is the minimum of all upper bounds for x and y; $x \lor y = \min \{z \in A : x \preceq z, y \preceq z\}$, lub for x and y

A poset $\langle A, \preceq \rangle$ is a lattice iff every pair of elements in A have both a meet and a join

January 21, 2020

Lattices

Lattices

Let $\langle A, \preceq \rangle$ be a poset, let $x, y \in A$

- The *meet* of x and y $(x \land y)$, is the maximum of all lower bounds for x and y: $x \land y = \max \{w \in A : w \preceq x, w \preceq y\}$, *glb* for x and y
- The *join* of x and y ($x \lor y$), is the minimum of all upper bounds for x and y; $x \lor y = \min \{z \in A : x \preceq z, y \preceq z\}$, *lub* for x and y

A poset $\langle A, \preceq \rangle$ is a lattice iff every pair of elements in A have both a meet and a join

Basic order properties of meet and join

•
$$x \wedge y \preceq \{x, y\} \preceq x \lor y$$

•
$$x \preceq y$$
 iff $x \land y = x$

•
$$x \leq y$$
 iff $x \vee y = y$

- If $x \leq y$, then $x \wedge z \leq y \wedge z$ and $x \vee z \leq y \vee z$
- If $x \leq y$ and $z \leq w$, then $x \wedge z \leq y \wedge w$ and $x \vee z \leq y \vee w$

Theorem

If
$$x \preceq y$$
, then $x \land z \preceq y \land z$ and $x \lor z \preceq y \lor z$

Proof.

- Let $v = x \land z$ and $u = y \land z$
- By transitivity, v is a lb for y and z
- By definition of ∧, v ≤ u (as v is the maximum among all lbs)

Similarly, the other clause may be proven

Commutativity $x \land y = y \land x$, $x \lor y = y \lor x$ Associativity $(x \land y) \land z = x \land (y \land z)$, $(x \lor y) \lor z = x \lor (y \lor z)$ Absorption $x \land (x \lor y) = x$, $x \lor (x \land y) = x$ Idempotence $x \land x = x$, $x \lor x = x$

- $(x \land y) \land z \preceq x \land y \preceq x [x \land y \preceq \{x, y\}$ applied twice]
- $(x \land y) \land z \preceq x$ [transitivity of \preceq]

Commutativity $x \land y = y \land x$, $x \lor y = y \lor x$ Associativity $(x \land y) \land z = x \land (y \land z)$, $(x \lor y) \lor z = x \lor (y \lor z)$ Absorption $x \land (x \lor y) = x$, $x \lor (x \land y) = x$ Idempotence $x \land x = x$, $x \lor x = x$

•
$$(x \land y) \land z \preceq x \land y \preceq x [x \land y \preceq \{x, y\}$$
 applied twice]

•
$$(x \land y) \land z \preceq x$$
 [transitivity of \preceq]

•
$$(x \land y) \preceq y [x \land y \preceq \{x, y\}]$$

•
$$(x \land y) \land z \preceq y \land z$$
 [If $x \preceq y$, then $x \land z \preceq y$]

Commutativity $x \land y = y \land x$, $x \lor y = y \lor x$ Associativity $(x \land y) \land z = x \land (y \land z)$, $(x \lor y) \lor z = x \lor (y \lor z)$ Absorption $x \land (x \lor y) = x$, $x \lor (x \land y) = x$ Idempotence $x \land x = x$, $x \lor x = x$

- $(x \land y) \land z \preceq x \land y \preceq x [x \land y \preceq \{x, y\}$ applied twice]
- $(x \land y) \land z \preceq x$ [transitivity of \preceq]
- $(x \land y) \preceq y [x \land y \preceq \{x, y\}]$
- $(x \land y) \land z \preceq y \land z$ [If $x \preceq y$, then $x \land z \preceq y$]
- Thus $(x \land y) \land z$ is a lb of both x and $y \land z$
- \therefore $(x \land y) \land z \preceq x \land (y \land z)$ [glb of x and $y \land z$]

Commutativity $x \land y = y \land x$, $x \lor y = y \lor x$ Associativity $(x \land y) \land z = x \land (y \land z)$, $(x \lor y) \lor z = x \lor (y \lor z)$ Absorption $x \land (x \lor y) = x$, $x \lor (x \land y) = x$ Idempotence $x \land x = x$, $x \lor x = x$

- $(x \land y) \land z \preceq x \land y \preceq x [x \land y \preceq \{x, y\}$ applied twice]
- $(x \land y) \land z \preceq x$ [transitivity of \preceq]
- $(x \land y) \preceq y [x \land y \preceq \{x, y\}]$
- $(x \land y) \land z \preceq y \land z$ [If $x \preceq y$, then $x \land z \preceq y$]
- Thus $(x \land y) \land z$ is a lb of both x and $y \land z$
- $\therefore (x \land y) \land z \preceq x \land (y \land z) \text{ [glb of } x \text{ and } y \land z \text{]}$
- Also, $x \land (y \land z) \preceq (x \land y) \land z$ [on similar lines]

Commutativity $x \land y = y \land x$, $x \lor y = y \lor x$ Associativity $(x \land y) \land z = x \land (y \land z)$, $(x \lor y) \lor z = x \lor (y \lor z)$ Absorption $x \land (x \lor y) = x$, $x \lor (x \land y) = x$ Idempotence $x \land x = x$, $x \lor x = x$

•
$$(x \land y) \land z \preceq x \land y \preceq x$$
 [$x \land y \preceq \{x, y\}$ applied twice]

•
$$(x \land y) \land z \preceq x$$
 [transitivity of \preceq]

•
$$(x \wedge y) \preceq y [x \wedge y \preceq \{x, y\}]$$

•
$$(x \land y) \land z \preceq y \land z$$
 [If $x \preceq y$, then $x \land z \preceq y$]

- Thus $(x \land y) \land z$ is a lb of both x and $y \land z$
- $\therefore (x \land y) \land z \preceq x \land (y \land z) \text{ [glb of } x \text{ and } y \land z]$
- Also, $x \land (y \land z) \preceq (x \land y) \land z$ [on similar lines]
- \therefore $(x \land y) \land z = x \land (y \land z)$ [if $a \preceq b$ and $b \preceq a$ then a = b]

Lattices

Lattices (contd.)

Absorbtion.

•
$$x \preceq x \lor y [\{x, y\} \preceq x \lor y]$$

$$\therefore x \land (x \lor y) = x [x \preceq y \text{ iff } x \land y = x]$$

< A >

Absorbtion.

•
$$x \preceq x \lor y [\{x, y\} \preceq x \lor y]$$

$$\therefore x \land (x \lor y) = x [x \preceq y \text{ iff } x \land y = x]$$

Idempotence.

•
$$x \wedge x = x \wedge (x \vee (x \wedge y)) = x$$
 [Absorbtion, applied twice]

Principle of Duality

The dual of any theorem in a lattice is also a theorem.

January 21, 2020

Bounded lattice: It has a maximum element (1) and a minimum element (0), in which case identity properties hold:

- $0 \lor x = x = x \lor 0$, $1 \land x = x = x \land 1$
- $0 \land x = 0 = x \land 0$, $1 \lor x = 1 = x \lor 1$

Every finite lattice is bounded

Bounded lattice: It has a maximum element (1) and a minimum element (0), in which case identity properties hold:

• $0 \lor x = x = x \lor 0$, $1 \land x = x = x \land 1$

•
$$0 \wedge x = 0 = x \wedge 0$$
, $1 \vee x = 1 = x \vee 1$

Every finite lattice is bounded

Distributive lattice: If $\forall x, y, z \in A$,

•
$$x \land (y \lor z) = (x \land y) \lor (x \land z)$$
 and

•
$$x \lor (y \land z) = (x \lor y) \land (x \lor z)$$

Are these lattices distributive?

12/23

Bounded lattice: It has a maximum element (1) and a minimum element (0), in which case identity properties hold:

• $0 \lor x = x = x \lor 0$, $1 \land x = x = x \land 1$

•
$$0 \wedge x = 0 = x \wedge 0$$
, $1 \vee x = 1 = x \vee 1$

Every finite lattice is bounded

Distributive lattice: If $\forall x, y, z \in A$,

•
$$x \land (y \lor z) = (x \land y) \lor (x \land z)$$
 and

•
$$x \lor (y \land z) = (x \lor y) \land (x \lor z)$$

Are these lattices distributive?

Is $\mathcal{P}(A)$ for set A distributive?

?
$$x \cap (y \cup z) = (x \cap y) \cup (x \cap z)$$
 and

?
$$x \cup (y \cap z) = (x \cup y) \cap (x \cup z)$$

Chittaranjan Mandal (IIT Kharagpur)

Complemented lattice

- Complement in a bounded lattice: z is the complement of x iff
 - $x \wedge z = 0$ and
 - $x \lor z = 1$
- Bounded complemented lattice: every element has a complement
- In a bounded distributive lattice with minimum 0 and maximum 1. the complements of elements are unique, provided they exist – let \bar{x} and z be complements of x ...

January 21, 2020

Complemented lattice

- Complement in a bounded lattice: z is the complement of x iff
 - *x* ∧ *z* = 0 and
 - *x* ∨ *z* = 1
- Bounded complemented lattice: every element has a complement
- In a bounded distributive lattice with minimum 0 and maximum 1, the complements of elements are unique, provided they exist let \bar{x} and z be complements of x ...

•
$$\bar{x} = \bar{x} \wedge 1 = \bar{x} \wedge (x \vee z) =$$

- $(\bar{x} \wedge x) \vee (\bar{x} \wedge z) =$
- $0 \vee (\bar{x} \wedge z) =$
- $(x \wedge z) \vee (\bar{x} \wedge z) =$

•
$$(x \lor \overline{x}) \land z = 1 \land z = z$$

Boolean lattice: Bounded complemented distributive lattice

- Extreme elements: Max: 1, Min: 0
- Distributivity holds
- Every element has unique complement
- De Morgan's laws apply

January 21, 2020

Boolean lattice

Boolean lattice: Bounded complemented distributive lattice

- Extreme elements: Max: 1, Min: 0
- Distributivity holds
- Every element has unique complement
- De Morgan's laws apply

De Morgan's laws in a Boolean lattice $\langle \mathcal{A}, \preceq, -, 0, 1 \rangle$

$$\overline{\mathbf{y}} \ \overline{\mathbf{x} \wedge \mathbf{y}} = \overline{\mathbf{x}} \vee \overline{\mathbf{y}}$$

$$2 \ \overline{x \vee y} = \overline{x} \wedge \overline{y}$$

Boolean lattice

Boolean lattice: Bounded complemented distributive lattice

- Extreme elements: Max: 1, Min: 0
- Distributivity holds
- Every element has unique complement
- De Morgan's laws apply

De Morgan's laws in a Boolean lattice $\langle \mathcal{A}, \preceq, \text{-}, 0, 1 \rangle$

$$\overline{\mathbf{y}} \ \overline{\mathbf{x} \wedge \mathbf{y}} = \overline{\mathbf{x}} \vee \overline{\mathbf{y}}$$

$$2 \ \overline{x \vee y} = \overline{x} \wedge \overline{y}$$

Meet of complements is 0

•
$$(x \land y) \land (\overline{x} \lor \overline{y}) =$$

 $(x \land y \land \overline{x}) \lor (x \land y \land \overline{y})$

$$\bullet = 0 \lor 0 = 0$$

Boolean lattice: Bounded complemented distributive lattice

- Extreme elements: Max: 1, Min: 0
- Distributivity holds
- Every element has unique complement
- De Morgan's laws apply

De Morgan's laws in a Boolean lattice $\langle A, \preceq, -, 0, 1 \rangle$

Join of complements is 1

$$\overline{x \wedge y} = \overline{x} \vee \overline{y}$$

 $2 \ \overline{x \vee y} = \overline{x} \wedge \overline{y}$

Meet of complements is 0

•
$$(x \land y) \land (\overline{x} \lor \overline{y}) =$$

 $(x \land y \land \overline{x}) \lor (x \land y \land \overline{y})$

 $\bullet = 0 \lor 0 = 0$

•
$$(x \wedge y) \vee (\overline{x} \vee \overline{y}) = ((x \wedge y) \vee \overline{x}) \vee \overline{y}$$

• =
$$((x \lor \overline{x}) \land (y \lor \overline{x})) \lor \overline{y}$$

• =
$$(1 \land (y \lor \overline{x})) \lor \overline{y}$$

• =
$$(y \lor \overline{x}) \lor \overline{y}$$

• =
$$\overline{x} \lor (y \lor \overline{y})$$

$$\bullet = \overline{x} \lor 1 = 1$$

- $\bullet \ Let \ {\cal A} \ be a \ lattice \ with \ min \ 0$
- $a \in \mathcal{A}$ is join irreducible if $a \neq x \lor y$ for $x, y \preceq a$, alternatively
 - $a = x \lor y$ implies a = x or a = y
- 0 is join irreducible

January 21, 2020

• If $b_1 \leq c$ and $b_2 \leq c$ (immediate preds) of *c* then $c = b_1 \vee b_2$

- $\bullet \ Let \ {\cal A} \ be a \ lattice \ with \ min \ 0$
- $a \in \mathcal{A}$ is join irreducible if $a \neq x \lor y$ for $x, y \preceq a$, alternatively
 - $a = x \lor y$ implies a = x or a = y
- 0 is join irreducible

- If $b_1 \preceq c$ and $b_2 \preceq c$ (immediate preds) of c then $c = b_1 \lor b_2$
- a ≠ 0 is join irreducible if and only if a has a unique immediate predecessor

15/23

- $\bullet \ Let \ {\cal A} \ be a \ lattice \ with \ min \ 0$
- $a \in \mathcal{A}$ is join irreducible if $a \neq x \lor y$ for $x, y \preceq a$, alternatively
 - $a = x \lor y$ implies a = x or a = y
- 0 is join irreducible

- If $b_1 \preceq c$ and $b_2 \preceq c$ (immediate preds) of *c* then $c = b_1 \lor b_2$
- a ≠ 0 is join irreducible if and only if a has a unique immediate predecessor
- Elements immediately succeeding 0 are atoms (join irreducible)

- $\bullet \ Let \ {\cal A} \ be a \ lattice \ with \ min \ 0$
- $a \in \mathcal{A}$ is join irreducible if $a \neq x \lor y$ for $x, y \preceq a$, alternatively
 - $a = x \lor y$ implies a = x or a = y
- 0 is join irreducible

- If $b_1 \preceq c$ and $b_2 \preceq c$ (immediate preds) of *c* then $c = b_1 \lor b_2$
- $a \neq 0$ is join irreducible if and only if a has a unique immediate predecessor
- Elements immediately succeeding 0 are atoms (join irreducible)
- Any element *a* can be expressed as the join of a set of atoms

- $\bullet \ Let \ \mathcal{A} \ be \ a \ lattice \ with \ min \ 0$
- $a \in \mathcal{A}$ is join irreducible if $a \neq x \lor y$ for $x, y \preceq a$, alternatively
 - $a = x \lor y$ implies a = x or a = y
- 0 is join irreducible

- If $b_1 \preceq c$ and $b_2 \preceq c$ (immediate preds) of *c* then $c = b_1 \lor b_2$
- $a \neq 0$ is join irreducible if and only if a has a unique immediate predecessor
- Elements immediately succeeding 0 are atoms (join irreducible)
- Any element a can be expressed as the join of a set of atoms
- Not unique for non-distributive lattice (diamond lattice)

A B > A B >

January 21, 2020

- $\bullet \ Let \ \mathcal{A} \ be \ a \ lattice \ with \ min \ 0$
- $a \in \mathcal{A}$ is join irreducible if $a \neq x \lor y$ for $x, y \preceq a$, alternatively
 - $a = x \lor y$ implies a = x or a = y
- 0 is join irreducible

- If $b_1 \preceq c$ and $b_2 \preceq c$ (immediate preds) of *c* then $c = b_1 \lor b_2$
- $a \neq 0$ is join irreducible if and only if a has a unique immediate predecessor
- Elements immediately succeeding 0 are atoms (join irreducible)
- Any element a can be expressed as the join of a set of atoms
- Not unique for non-distributive lattice (diamond lattice)
- For finite lattice $a = d_1 \vee d_2 \vee \ldots \vee d_n$, d_j are join irreducible

A B M A B M

- $\bullet \ Let \ {\cal A} \ be a \ lattice \ with \ min \ 0$
- $a \in \mathcal{A}$ is join irreducible if $a \neq x \lor y$ for $x, y \preceq a$, alternatively
 - $a = x \lor y$ implies a = x or a = y
- 0 is join irreducible

- If $b_1 \preceq c$ and $b_2 \preceq c$ (immediate preds) of *c* then $c = b_1 \lor b_2$
- $a \neq 0$ is join irreducible if and only if a has a unique immediate predecessor
- Elements immediately succeeding 0 are atoms (join irreducible)
- Any element a can be expressed as the join of a set of atoms
- Not unique for non-distributive lattice (diamond lattice)
- For finite lattice $a = d_1 \lor d_2 \lor \ldots \lor d_n$, d_j are join irreducible

•
$$d_j = d_i \lor d_j$$
 for $d_i \preceq d_j$

A B M A B M

- $\bullet~$ Let ${\cal A}$ be a lattice with min 0
- $a \in \mathcal{A}$ is join irreducible if $a \neq x \lor y$ for $x, y \preceq a$, alternatively
 - $a = x \lor y$ implies a = x or a = y
- 0 is join irreducible

- If $b_1 \preceq c$ and $b_2 \preceq c$ (immediate preds) of *c* then $c = b_1 \lor b_2$
- *a* ≠ 0 is join irreducible if and only if *a* has a unique immediate predecessor
- Elements immediately succeeding 0 are atoms (join irreducible)
- Any element a can be expressed as the join of a set of atoms
- Not unique for non-distributive lattice (diamond lattice)
- For finite lattice $a = d_1 \vee d_2 \vee \ldots \vee d_n$, d_j are join irreducible

•
$$d_j = d_i \lor d_j$$
 for $d_i \preceq d_j$

• Any $d_i \leq d_j$ can be dropped to make the join irredundant

- $\bullet~$ Let ${\cal A}$ be a lattice with min 0
- *a* ∈ A is join irreducible if
 a ≠ x ∨ y for x, y ≤ a, alternatively
 - $a = x \lor y$ implies a = x or a = y
- 0 is join irreducible

- If $b_1 \preceq c$ and $b_2 \preceq c$ (immediate preds) of c then $c = b_1 \lor b_2$
- *a* ≠ 0 is join irreducible if and only if *a* has a unique immediate predecessor
- Elements immediately succeeding 0 are atoms (join irreducible)
- Any element a can be expressed as the join of a set of atoms
- Not unique for non-distributive lattice (diamond lattice)
- For finite lattice $a = d_1 \vee d_2 \vee \ldots \vee d_n$, d_j are join irreducible
- $d_j = d_i \lor d_j$ for $d_i \preceq d_j$
- Any $d_i \leq d_j$ can be dropped to make the join irredundant
- Unique (up to permutation) for distributive lattice

Boolean lattice representation (contd.)

Unique irredundant irreducible sum representation

• Let
$$a = c_1 \lor c_2 \lor \ldots \lor c_m = d_1 \lor d_2 \lor \ldots \lor d_n$$

16/23

< 17 ▶

Boolean lattice representation (contd.)

Unique irredundant irreducible sum representation

- Let $a = c_1 \lor c_2 \lor \ldots \lor c_m = d_1 \lor d_2 \lor \ldots \lor d_n$
- Now, $c_i, d_j \leq c_1 \lor c_2 \lor \ldots \lor c_m = d_1 \lor d_2 \lor \ldots \lor d_n$

16/23
Unique irredundant irreducible sum representation

- Let $a = c_1 \lor c_2 \lor \ldots \lor c_m = d_1 \lor d_2 \lor \ldots \lor d_n$
- Now, $c_i, d_j \leq c_1 \lor c_2 \lor \ldots \lor c_m = d_1 \lor d_2 \lor \ldots \lor d_n$
- $\therefore c_i = c_i \land (d_1 \lor d_2 \lor \ldots \lor d_n) = (c_i \land d_1) \lor (c_i \land d_2) \lor \ldots \lor (c_i \land d_n)$

16/23

- ∢ ≣ →

Unique irredundant irreducible sum representation

- Let $a = c_1 \lor c_2 \lor \ldots \lor c_m = d_1 \lor d_2 \lor \ldots \lor d_n$
- Now, $c_i, d_j \preceq c_1 \lor c_2 \lor \ldots \lor c_m = d_1 \lor d_2 \lor \ldots \lor d_n$
- $\therefore c_i = c_i \land (d_1 \lor d_2 \lor \ldots \lor d_n) = (c_i \land d_1) \lor (c_i \land d_2) \lor \ldots \lor (c_i \land d_n)$
- Since c_i is join irreducible, $\exists d_j | c_i = c_i \land d_j$, so that $c_i \preceq d_j$

16/23

・ロト ・同ト ・ヨト ・ヨト

Unique irredundant irreducible sum representation

- Let $a = c_1 \lor c_2 \lor \ldots \lor c_m = d_1 \lor d_2 \lor \ldots \lor d_n$
- Now, $c_i, d_j \preceq c_1 \lor c_2 \lor \ldots \lor c_m = d_1 \lor d_2 \lor \ldots \lor d_n$
- $\therefore c_i = c_i \land (d_1 \lor d_2 \lor \ldots \lor d_n) = (c_i \land d_1) \lor (c_i \land d_2) \lor \ldots \lor (c_i \land d_n)$
- Since c_i is join irreducible, $\exists d_j | c_i = c_i \land d_j$, so that $c_i \preceq d_j$
- But similar working, $d_j \leq c_k$, so that $c_i \leq d_j \leq c_k$

16/23

・ロト ・同ト ・ヨト ・ヨト

Unique irredundant irreducible sum representation

- Let $a = c_1 \lor c_2 \lor \ldots \lor c_m = d_1 \lor d_2 \lor \ldots \lor d_n$
- Now, $c_i, d_j \preceq c_1 \lor c_2 \lor \ldots \lor c_m = d_1 \lor d_2 \lor \ldots \lor d_n$
- $\therefore c_i = c_i \land (d_1 \lor d_2 \lor \ldots \lor d_n) = (c_i \land d_1) \lor (c_i \land d_2) \lor \ldots \lor (c_i \land d_n)$
- Since c_i is join irreducible, $\exists d_j | c_i = c_i \land d_j$, so that $c_i \preceq d_j$
- But similar working, $d_j \leq c_k$, so that $c_i \leq d_j \leq c_k$
- This requires $c_i = c_k$, since these are irredundant

Unique irredundant irreducible sum representation

- Let $a = c_1 \lor c_2 \lor \ldots \lor c_m = d_1 \lor d_2 \lor \ldots \lor d_n$
- Now, $c_i, d_j \preceq c_1 \lor c_2 \lor \ldots \lor c_m = d_1 \lor d_2 \lor \ldots \lor d_n$
- $\therefore c_i = c_i \land (d_1 \lor d_2 \lor \ldots \lor d_n) = (c_i \land d_1) \lor (c_i \land d_2) \lor \ldots \lor (c_i \land d_n)$
- Since c_i is join irreducible, $\exists d_j | c_i = c_i \land d_j$, so that $c_i \preceq d_j$
- But similar working, $d_j \leq c_k$, so that $c_i \leq d_j \leq c_k$
- This requires $c_i = c_k$, since these are irredundant

• Thus,
$$c_i \leq d_j$$
 and $d_j \leq c_i$, $c_i = d_j$,

э

Unique irredundant irreducible sum representation

- Let $a = c_1 \lor c_2 \lor \ldots \lor c_m = d_1 \lor d_2 \lor \ldots \lor d_n$
- Now, $c_i, d_j \preceq c_1 \lor c_2 \lor \ldots \lor c_m = d_1 \lor d_2 \lor \ldots \lor d_n$
- $\therefore c_i = c_i \land (d_1 \lor d_2 \lor \ldots \lor d_n) = (c_i \land d_1) \lor (c_i \land d_2) \lor \ldots \lor (c_i \land d_n)$
- Since c_i is join irreducible, $\exists d_j | c_i = c_i \land d_j$, so that $c_i \preceq d_j$
- But similar working, $d_j \leq c_k$, so that $c_i \leq d_j \leq c_k$
- This requires $c_i = c_k$, since these are irredundant

• Thus,
$$c_i \preceq d_j$$
 and $d_j \preceq c_i$, $c_i = d_j$,

• This way, all the *c*_is may to paired off with the *d*_js,

3

Unique irredundant irreducible sum representation

- Let $a = c_1 \lor c_2 \lor \ldots \lor c_m = d_1 \lor d_2 \lor \ldots \lor d_n$
- Now, $c_i, d_j \preceq c_1 \lor c_2 \lor \ldots \lor c_m = d_1 \lor d_2 \lor \ldots \lor d_n$
- $\therefore c_i = c_i \land (d_1 \lor d_2 \lor \ldots \lor d_n) = (c_i \land d_1) \lor (c_i \land d_2) \lor \ldots \lor (c_i \land d_n)$
- Since c_i is join irreducible, $\exists d_j | c_i = c_i \land d_j$, so that $c_i \preceq d_j$
- But similar working, $d_j \leq c_k$, so that $c_i \leq d_j \leq c_k$
- This requires $c_i = c_k$, since these are irredundant

• Thus,
$$c_i \preceq d_j$$
 and $d_j \preceq c_i$, $c_i = d_j$,

 This way, all the c_is may to paired off with the d_is, making the representation unique (up to permutation)

16/23

э

Boolean lattice structure (contd.)

- Let *z* be the complement of *a* in a lattice as shown
- Suppose a has b as a unique predecessor
- So, $a \lor z = 1$ and $a \land z = 0$
- Now, b ∨ z = a ∨ z = 1 and b ∧ z = a ∧ z = 0 as b is the immediate predecessor of a
- So, b is also a complement of z

17/23

а

 $b \neq 0$

★ ∃ > < ∃ >

Boolean lattice structure (contd.)

- Let *z* be the complement of *a* in a lattice as shown
- Suppose a has b as a unique predecessor
- So, $a \lor z = 1$ and $a \land z = 0$
- Now, b ∨ z = a ∨ z = 1 and b ∧ z = a ∧ z = 0 as b is the immediate predecessor of a
- So, b is also a complement of z

Join irreducible elements in a Boolean lattice

- A lattice with having a non-zero join irreducible element will not have unique complements
- In a Boolean lattice all non-zero join irreducible elements are atoms

а

 $b \neq 0$

 $z \neq 1$

- Atom of a Boolean lattice: Non-trivial minimal element of A \ {0}
- $|A| = 2^n$ for some *n* for a Boolean lattice
- Its structure is that of the power set of the atomic elements

- Atom of a Boolean lattice: Non-trivial minimal element of A \ {0}
- $|A| = 2^n$ for some *n* for a Boolean lattice
- Its structure is that of the power set of the atomic elements
- Non-trivial atomic elements are present for |A| > 1 directly above level 0, let those be S = {a₁,..., a_n}, akin to {a₁}, {a₂},... {a_n}

18 / 23

- Atom of a Boolean lattice: Non-trivial minimal element of A \ {0}
- $|A| = 2^n$ for some *n* for a Boolean lattice
- Its structure is that of the power set of the atomic elements
- Non-trivial atomic elements are present for |A| > 1 directly above level 0, let those be S = {a₁,..., a_n}, akin to {a₁}, {a₂},... {a_n}
- Join of pairs of elements Y_1 , Y_2 at level *i* (n > i > 1) st $|Y_1 Y_2| = |Y_2 Y_1| = 1$ at level i + 1 is $Y = Y_1 \cup Y_2$

- Atom of a Boolean lattice: Non-trivial minimal element of A \ {0}
- $|A| = 2^n$ for some *n* for a Boolean lattice
- Its structure is that of the power set of the atomic elements
- Non-trivial atomic elements are present for |A| > 1 directly above level 0, let those be S = {a₁,..., a_n}, akin to {a₁}, {a₂},... {a_n}
- Join of pairs of elements Y_1 , Y_2 at level i (n > i > 1) st $|Y_1 - Y_2| = |Y_2 - Y_1| = 1$ at level i + 1 is $Y = Y_1 \cup Y_2$
- Meet of pairs of elements X_1 , X_2 at level i (n > i > 1) st $|X_1 - X_2| = |X_2 - X_1| = 1$ at level i - 1 is $Y = Y_1 \cap Y_2$

- Atom of a Boolean lattice: Non-trivial minimal element of A \ {0}
- $|A| = 2^n$ for some *n* for a Boolean lattice
- Its structure is that of the power set of the atomic elements
- Non-trivial atomic elements are present for |A| > 1 directly above level 0, let those be S = {a₁,..., a_n}, akin to {a₁}, {a₂},... {a_n}
- Join of pairs of elements Y_1 , Y_2 at level i (n > i > 1) st $|Y_1 - Y_2| = |Y_2 - Y_1| = 1$ at level i + 1 is $Y = Y_1 \cup Y_2$
- Meet of pairs of elements X_1 , X_2 at level i (n > i > 1) st $|X_1 - X_2| = |X_2 - X_1| = 1$ at level i - 1 is $Y = Y_1 \cap Y_2$
- There will be $\binom{n}{i}$ such sets in level *i*, totaling to $\sum_{0}^{n} \binom{n}{i} = 2^{n}$

Boolean algebra from Boolean lattice

- For the Boolean lattice $\langle \mathcal{A}, \preceq, 0, 1 \rangle$ consider the algebraic system $\langle \mathcal{A}, +, \cdot, \bar{}, 0, 1 \rangle$ where $\lor \mapsto +, \land \mapsto \cdot$ and $\forall x \in \mathcal{A}, \overline{x} \mapsto z | x + z = 1, x \cdot z = 0$
- This system satisfies the Huntington's postulates for a Boolean algebra

B1: Commutative Laws

$$\begin{array}{ccc} \mathbf{1} & \mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x} \\ \mathbf{2} & \mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x} \end{array}$$

B2: Distributive Laws

1
$$x \cdot (y + z) = x \cdot y + x \cdot z$$

2 $x + (y \cdot z) = (x + y) \cdot (x + z)$

B3: Identity Laws

1
$$x + 0 = x = 0 + x$$

2 $x \cdot 1 = x = 1 \cdot x$

B4: Complementation Laws

$$x + \overline{x} = 1 = \overline{x} + x x \cdot \overline{x} = 0 = \overline{x} \cdot x$$

Chittaranjan Mandal (IIT Kharagpur)

化基本 化基本

Additional Boolean algebra properties

- These properties carry over from the Boolean lattice
- May be proven independently from the Huntington's postulates

Idempotence:

$$\begin{array}{c} \mathbf{1} \quad x + x = x \\ \mathbf{2} \quad x \cdot x = x \end{array}$$

Absorption:

•
$$x + xy = x$$

• $x \cdot (x + y) = x$
• $x + \overline{x}y = x + y$
• $x \cdot (\overline{x} + y) = xy$

Axiomatic proof

•
$$x + x = (x + x) \cdot 1$$

$$\bullet = (x + x) \cdot (x + x)$$

$$\bullet = x + (x \cdot \overline{x})$$

$$\bullet = x + 0 = x$$

Axiomatic proof

Boolean algebra (contd.)

Boundedness/annihilation:

0	<i>x</i> + 1 = 1
	$v \cdot 0 = 0$

Axiomatic proof

0

Truth table for Boolean AND, OR, NOT:

Associativity:

•
$$(x + y) + z = x + (y + z)$$

• $(x \cdot y) \cdot z = x \cdot (y \cdot z)$

ヨトィヨト

Boolean algebra (contd.)

Axiomatic proof of associativity of Boolean +

•
$$ax = aa + a(b + c) = a + a(b + c) = a$$

•
$$bx = ba + b(b + c) = ba + (bb + bc) = ba + (b + bc) = ba + b = b$$

• Similarly, cx = c and ay = a, by = b and cy = c

•
$$yx = ((a+b)+c)x = (a+b)x+cx = (ax+bx)+cx = (a+b)+c = y$$

•
$$xy = (a+(b+c))y = ay+(b+c)y = ay+(by+cy) = a+(b+c) = x$$

• Thus,
$$x = xy = yx = y$$

프 > 프 > · ·

Image: A math

Additional Boolean algebra properties (contd.)

Uniqueness of Complement:

f
$$(a + x) = 1$$
 and $(a \cdot x) = 0$, then $x = \overline{a}$.

Involution:

$$\overline{(\overline{a})} = a$$

Complements of extreme elements:

Axiomatic proof

•
$$\overline{\underline{0}} = 1$$

• $\overline{1} = 0$

- 1 + 0 = 1 [identity]
- $1 \cdot 0 = 0$ [boundedness]
- ... 0 is the complement of 1

DeMorgan's laws:

•
$$\overline{(x+y)} = \overline{x} \cdot \overline{y}$$

• $\overline{(x \cdot y)} = \overline{x} + \overline{y}$

• Let $a \leq b$ if $a \cdot b = a$ or a + b = b then $\cdot \mapsto \land$ and $+ \mapsto \lor$

 Properties from axiomatic proofs allow Boolean algebras to be expressed as Boolean lattices – they are equivalent