Contents

< < >> < <</>

Chittaranjan Mandal (IIT Kharagpur)

Section outline

Boolean Algebra

- SOP from sets
- Boolean expressions
- Functional completeness
- Distinct Boolean functions

- Boolean expression manipulation
- Exclusive OR
- Series-parallel switching circuits
- Shannon decomposition

SOP from sets

Sum of products from sets

Sum of products from sets

Regions $\bigcirc A \cap B \cap C$ в $A \cap B \cap \overline{C}$ 8 $A \cap \overline{B} \cap C$ $\bigcirc \overline{A} \cap B \cap C$ 3 $\bigcirc A \cap \overline{B} \cap \overline{C}$ С Α $\bigcirc \overline{A} \cap B \cap \overline{C}$ $\bigcirc \overline{A} \cap \overline{B} \cap C$

Selections $1 \land 2 \land A \cap B$

Sum of products from sets

SOP from sets

Sum of products from sets

SOP from sets

Sum of products from sets

Sum of products from sets

a I have an item from A \overline{a} I don't have an item from A

Sum of products from sets

 $a\overline{b} + c$ I have an item from A but not from B or an item from C

- A *literal* is a variable (*a*) or its complement (*ā*)
- A Boolean expression is a string built from literals and the Boolean operators without violating their arity
- Grouping with parentheses is permitted
 Chittaranjan Mandal (IIT Kharagpur)

Such an expression is well formed or syntactically correct

- A literal is a variable (a) or its complement (\overline{a})
- A Boolean expression is a string built from literals and the Boolean operators without violating their arity
- Grouping with parentheses is permitted Chittaranjan Mandal (IIT Kharagpur)

SCLD

- Such an expression is well formed or syntactically correct
 - A fundamental product (FP) is a literal or a product of two or more literals arising from distinct variables

- A *literal* is a variable (*a*) or its complement (*ā*)
- A Boolean expression is a string built from literals and the Boolean operators without violating their arity
- Grouping with parentheses is permitted
 Chittaranian Mandal (IIT Kharagpur)

SCLD

SCI D

Boolean lattice (BL) for 2 variables

- Such an expression is well formed or syntactically correct
 - A fundamental product (FP) is a literal or a product of two or more literals arising from distinct variables
- A FP involving all the variables is a *minterm* atoms in the BL

- A *literal* is a variable (*a*) or its complement (*ā*)
- A Boolean expression is a string built from literals and the Boolean operators without violating their arity
- Grouping with parentheses is permitted
 Chittaranian Mandal (IIT Kharagpur)

January 28, 2020

- A *literal* is a variable (*a*) or its complement (*ā*)
- A Boolean expression is a string built from literals and the Boolean operators without violating their arity
- Grouping with parentheses
 is permitted
 Chittaranian Mandal (IIT Kharagpur)

- Such an expression is well formed or syntactically correct
 - A fundamental product (FP) is a literal or a product of two or more literals arising from distinct variables
- A FP involving all the variables is a *minterm* atoms in the BL
- A FP P_1 is contained or included in P_2 if P_2 has all the literals of P_1 ; then $P_2 \Rightarrow P_1 (P_2 \text{ implies } P_1)$

- A *literal* is a variable (*a*) or its complement (*ā*)
- A Boolean expression is a string built from literals and the Boolean operators without violating their arity
- Grouping with parentheses is permitted

Chittaranjan Mandal (IIT Kharagpur)

- Such an expression is well formed or syntactically correct
 - A fundamental product (FP) is a literal or a product of two or more literals arising from distinct variables
- A FP involving all the variables is a *minterm* atoms in the BL
- A FP P_1 is contained or included in P_2 if P_2 has all the literals of P_1 ; then $P_2 \Rightarrow P_1 (P_2 \text{ implies } P_1)$
- A sum of products (SOP) expression is FP or a sum of two or more FPs P_1, \ldots, P_n and $\forall i, j, P_i \neq P_j$

4/12

ヨトィヨト

- A *literal* is a variable (*a*) or its complement (*ā*)
- A Boolean expression is a string built from literals and the Boolean operators without violating their arity
- Grouping with parentheses is permitted

Chittaranjan Mandal (IIT Kharagpur)

- Such an expression is well formed or syntactically correct
 - A fundamental product (FP) is a literal or a product of two or more literals arising from distinct variables
- A FP involving all the variables is a *minterm* atoms in the BL
- A FP P_1 is contained or included in P_2 if P_2 has all the literals of P_1 ; then $P_2 \Rightarrow P_1 (P_2 \text{ implies } P_1)$
- A sum of products (SOP) expression is FP or a sum of two or more FPs P_1, \ldots, P_n and $\forall i, j, P_i \neq P_j$
- DeMorgan's laws, distributivity, commutativity, idempotence, involution may be used to transform a Boolean expression to SOP

May be derived from the Boolean lattice

э

- May be derived from the Boolean lattice
- OR is required to compute the joins on the elements

- May be derived from the Boolean lattice
- OR is required to compute the joins on the elements
- NOT and AND are required to compute the atoms from the proposition variables

X	y	\overline{x}	$x \cdot y$	x + y
0	0	1	0	0
0	1	1	0	1
1	0	0	0	1
1	1	0	1	1

(*) * (*) *)

- May be derived from the Boolean lattice
- OR is required to compute the joins on the elements
- NOT and AND are required to compute the atoms from the proposition variables

X	y	\overline{x}	$x \cdot y$	x + y
0	0	1	0	0
0	1	1	0	1
1	0	0	0	1
1	1	0	1	1

(*) * (*) *)

- May be derived from the Boolean lattice
- OR is required to compute the joins on the elements
- NOT and AND are required to compute the atoms from the proposition variables

X	y	\overline{X}	$x \cdot y$	x + y
0	0	1	0	0
0	1	1	0	1
1	0	0	0	1
1	1	0	1	1

NAND $\overline{x \cdot y}$

5/12

ヨトィヨト

- May be derived from the Boolean lattice
- OR is required to compute the joins on the elements
- NOT and AND are required to compute the atoms from the proposition variables

X	y	\overline{x}	$x \cdot y$	x + y
0	0	1	0	0
0	1	1	0	1
1	0	0	0	1
1	1	0	1	1

 $\begin{array}{c} \text{NAND} \quad \overline{x \cdot y} \\ \text{NOR} \quad \overline{x + y} \end{array}$

- May be derived from the Boolean lattice
- OR is required to compute the joins on the elements
- NOT and AND are required to compute the atoms from the proposition variables

x	y	\overline{X}	$x \cdot y$	x + y
0	0	1	0	0
0	1	1	0	1
1	0	0	0	1
1	1	0	1	1

NAND $\overline{x \cdot y}$ NOR $\overline{x + y}$ XOR,AND $x \oplus y, x \cdot y$

- May be derived from the Boolean lattice
- OR is required to compute the joins on the elements
- NOT and AND are required to compute the atoms from the proposition variables

x	y	\overline{X}	$x \cdot y$	x + y
0	0	1	0	0
0	1	1	0	1
1	0	0	0	1
1	1	0	1	1

NAND
$$\overline{x \cdot y}$$

NOR $\overline{x + y}$
XOR,AND $x \oplus y, x \cdot y$
MUX $s \cdot x + \overline{s} \cdot y$

- May be derived from the Boolean lattice
- OR is required to compute the joins on the elements
- NOT and AND are required to compute the atoms from the proposition variables

x	y	\overline{X}	$x \cdot y$	x + y
0	0	1	0	0
0	1	1	0	1
1	0	0	0	1
1	1	0	1	1

NAND $\overline{x \cdot y}$ NOR $\overline{x + y}$ XOR,AND $x \oplus y, x \cdot y$ MUX $s \cdot x + \overline{s} \cdot y$ RAM Random access memory

5/12

4 B 6 4 B 6

- May be derived from the Boolean lattice
- OR is required to compute the joins on the elements
- NOT and AND are required to compute the atoms from the proposition variables

x	y	\overline{X}	$x \cdot y$	x + y
0	0	1	0	0
0	1	1	0	1
1	0	0	0	1
1	1	0	1	1

NAND $\overline{x \cdot y}$ NOR $\overline{x + y}$ XOR,AND $x \oplus y, x \cdot y$ MUX $s \cdot x + \overline{s} \cdot y$ RAM Random access memory Minority Minority value among given inputs

Э

< ∃⇒

• $E = x\overline{z} + \overline{y}z + xy\overline{z}$

- $E = x\overline{z} + \overline{y}z + xy\overline{z}$
- $\underline{E} = \overline{((xy)z)}\overline{((\overline{x}+z)(\overline{y}+\overline{z}))}$

э

- $E = x\overline{z} + \overline{y}z + xy\overline{z}$
- $\underline{E} = (\overline{(xy)}z)\overline{((\overline{x}+z)(\overline{y}+\overline{z}))}$ • $E = x(\overline{y}z)$

э

- $E = x\overline{z} + \overline{y}z + xy\overline{z}$
- $\underline{E} = (\overline{(xy)}z)\overline{((\overline{x}+z)(\overline{y}+\overline{z}))}$ • $E = x(\overline{y}z)$

э

 A SOP expression where each FP is a minterm is said to be in *disjunctive* normal form (DNF)

- $E = x\overline{z} + \overline{y}z + xy\overline{z}$
- $\underline{E} = (\overline{(xy)}z)\overline{((\overline{x}+z)(\overline{y}+\overline{z}))}$ • $E = x(\overline{y}z)$

- A SOP expression where each FP is a minterm is said to be in *disjunctive* normal form (DNF)
 - The DNF of any SOP is unique (why?) cannonical SOP

- $E = x\overline{z} + \overline{y}z + xy\overline{z}$
- $\underline{E} = (\overline{(xy)}z)\overline{((\overline{x}+z)(\overline{y}+\overline{z}))}$ • $E = x(\overline{y}z)$

- A SOP expression where each FP is a minterm is said to be in *disjunctive* normal form (DNF)
 - The DNF of any SOP is unique (why?) cannonical SOP
 - An element x in a BL is *maxterm* if it has 1 as its only successor

- $E = x\overline{z} + \overline{y}z + xy\overline{z}$
- $\underline{E} = (\overline{(xy)z})\overline{((\overline{x}+z)(\overline{y}+\overline{z}))}$ • $E = x\overline{(\overline{y}z)}$

ヨトィヨト

- A SOP expression where each FP is a minterm is said to be in *disjunctive* normal form (DNF)
 - The DNF of any SOP is unique (why?) cannonical SOP
 - An element x in a BL is *maxterm* if it has 1 as its only successor
- A maxterm is a sum of literals involving all the variables

- $E = x\overline{z} + \overline{y}z + xy\overline{z}$
- $\underline{E} = (\overline{(xy)z})\overline{((\overline{x} + z)(\overline{y} + \overline{z}))}$ • $E = x(\overline{yz})$

ヨトィヨト
SCI D

Boolean expressions

• $E = x\overline{z} + \overline{y}z + xy\overline{z}$

•
$$\underline{\underline{E}} = (\overline{(xy)}z)((\overline{x}+z)(\overline{y}+\overline{z}))$$

• $\underline{F} = x(\overline{y}z)$

- A SOP expression where each FP is a minterm is said to be in *disjunctive* normal form (DNF)
 - The DNF of any SOP is unique (why?) cannonical SOP
- An element *x* in a BL is *maxterm* if it has 1 as its only successor
- A maxterm is a sum of literals involving all the variables
- Similar to SOP, product of sums (POS) may be defined

- A - B - N

Boolean expressions

- $E = x\overline{z} + \overline{y}z + xy\overline{z}$
- $\underline{E} = (\overline{(xy)z})\overline{((\overline{x} + z)(\overline{y} + \overline{z}))}$ • $E = x(\overline{yz})$

- A SOP expression where each FP is a minterm is said to be in *disjunctive* normal form (DNF)
 - The DNF of any SOP is unique (why?) cannonical SOP
- An element *x* in a BL is *maxterm* if it has 1 as its only successor
- A maxterm is a sum of literals involving all the variables
- Similar to SOP, *product of sums* (POS) may be defined
- A Boolean expression which is a product of maxterms is said to be in *conjunctive normal form* (CNF)

Boolean expressions

- $E = x\overline{z} + \overline{y}z + xy\overline{z}$
- $\underline{E} = (\overline{(xy)z})\overline{((\overline{x} + z)(\overline{y} + \overline{z}))}$ • $E = x\overline{(\overline{y}z)}$

- A SOP expression where each FP is a minterm is said to be in *disjunctive* normal form (DNF)
- ^b The DNF of any SOP is unique (why?) – cannonical SOP
- An element x in a BL is *maxterm* if it has 1 as its only successor
- A maxterm is a sum of literals involving all the variables
- Similar to SOP, *product of sums* (POS) may be defined
- A Boolean expression which is a product of maxterms is said to be in *conjunctive normal form* (CNF)
- The CNF of any POS is unique (why?)
 cannonical POS

Acceptance for complements: $\overline{x} = 1$ iff x = 0

▲ 글 → ▲ 글 →

Acceptance for complements: $\overline{x} = 1$ iff x = 0Acceptance for products: xy = 1 iff x = 1 and y = 1

э

Image: A math

Acceptance for complements: $\overline{x} = 1$ iff x = 0Acceptance for products: xy = 1 iff x = 1 and y = 1Acceptance for sums: u + v = 1 iff u = 1 or v = 1

э

Acceptance for complements: $\overline{x} = 1$ iff x = 0Acceptance for products: xy = 1 iff x = 1 and y = 1Acceptance for sums: u + v = 1 iff u = 1 or v = 1Minterm expansion: sum of distinct minterms

Acceptance for complements: $\overline{x} = 1$ iff x = 0Acceptance for products: xy = 1 iff x = 1 and y = 1Acceptance for sums: u + v = 1 iff u = 1 or v = 1Minterm expansion: sum of distinct minterms

Alternate argument for minterm expansion

- Acceptance for complements: $\overline{x} = 1$ iff x = 0
- Acceptance for products: xy = 1 iff x = 1 and y = 1
- Acceptance for sums: u + v = 1 iff u = 1 or v = 1
- Minterm expansion: sum of distinct minterms
- Acceptance for minterm expansion: An acceptance for minterm expansion on truth assignment of variables happens due to acceptance of exactly one minterm

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・ ・

Alternate argument for minterm expansion

- Acceptance for complements: $\overline{x} = 1$ iff x = 0
- Acceptance for products: xy = 1 iff x = 1 and y = 1
- Acceptance for sums: u + v = 1 iff u = 1 or v = 1
- Minterm expansion: sum of distinct minterms
- Acceptance for minterm expansion: An acceptance for minterm expansion on truth assignment of variables happens due to acceptance of exactly one minterm
 - If m_i and m_j are two distinct minterms on variables x_1, \ldots, x_k

э

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Alternate argument for minterm expansion

- Acceptance for complements: $\overline{x} = 1$ iff x = 0
- Acceptance for products: xy = 1 iff x = 1 and y = 1
- Acceptance for sums: u + v = 1 iff u = 1 or v = 1
- Minterm expansion: sum of distinct minterms
- Acceptance for minterm expansion: An acceptance for minterm expansion on truth assignment of variables happens due to acceptance of exactly one minterm
 - If m_i and m_j are two distinct minterms on variables x_1, \ldots, x_k
 - Let *m_i* and *m_j* differ on *x_p*

э

Alternate argument for minterm expansion

- Acceptance for complements: $\overline{x} = 1$ iff x = 0
- Acceptance for products: xy = 1 iff x = 1 and y = 1
- Acceptance for sums: u + v = 1 iff u = 1 or v = 1
- Minterm expansion: sum of distinct minterms
- Acceptance for minterm expansion: An acceptance for minterm expansion on truth assignment of variables happens due to acceptance of exactly one minterm
 - If m_i and m_j are two distinct minterms on variables x_1, \ldots, x_k
 - Let m_i and m_j differ on x_p
 - Let x_p occur as literal x_{pi} in m_i and x_{pj} in m_j

э

Alternate argument for minterm expansion

- Acceptance for complements: $\overline{x} = 1$ iff x = 0
- Acceptance for products: xy = 1 iff x = 1 and y = 1
- Acceptance for sums: u + v = 1 iff u = 1 or v = 1
- Minterm expansion: sum of distinct minterms
- Acceptance for minterm expansion: An acceptance for minterm expansion on truth assignment of variables happens due to acceptance of exactly one minterm
 - If m_i and m_j are two distinct minterms on variables x_1, \ldots, x_k
 - Let m_i and m_j differ on x_p
 - Let x_p occur as literal x_{pi} in m_i and x_{pj} in m_j
 - Then x_{pi} = x_{pj}, so if m_i accepts then m_j doesn't accept and vice versa

- Acceptance for complements: $\overline{x} = 1$ iff x = 0
- Acceptance for products: xy = 1 iff x = 1 and y = 1
- Acceptance for sums: u + v = 1 iff u = 1 or v = 1
- Minterm expansion: sum of distinct minterms
- Acceptance for minterm expansion: An acceptance for minterm expansion on truth assignment of variables happens due to acceptance of exactly one minterm
 - If m_i and m_j are two distinct minterms on variables x_1, \ldots, x_k
 - Let m_i and m_j differ on x_p
 - Let x_p occur as literal x_{pi} in m_i and x_{pj} in m_j
 - Then x_{pi} = x_{pj}, so if m_i accepts then m_j doesn't accept and vice versa
 - This ensures that the minterm expansion is unique

B b b

By lattice:

э

Chittaranjan Mandal (IIT Kharagpur)

< < >> < <</>

★ 문 > ★ 문 >

January 28, 2020

By lattice:

 A Boolean lattice for a Boolean function of k variables has n = 2^k atoms as minterms

E > < E >

By lattice:

- A Boolean lattice for a Boolean function of k variables has n = 2^k atoms as minterms
- A Boolean lattice with n atoms has 2ⁿ elements by the Stone representation theorem

By lattice:

- A Boolean lattice for a Boolean function of k variables has n = 2^k atoms as minterms
- A Boolean lattice with n atoms has 2ⁿ elements by the Stone representation theorem
- Each non-zero element has a unique representation in terms of the atoms (minterms)

(4) E > (4) E >

By lattice:

- A Boolean lattice for a Boolean function of k variables has $n = 2^k$ atoms as minterms
- A Boolean lattice with n atoms has 2ⁿ elements by the Stone representation theorem
- Each non-zero element has a unique representation in terms of the atoms (minterms)

• Thus there are $2^n = 2^{2^k}$ distinct Boolean functions

January 28, 2020

By lattice:

- A Boolean lattice for a Boolean function of k variables has n = 2^k atoms as minterms
- A Boolean lattice with n atoms has 2ⁿ elements by the Stone representation theorem
- Each non-zero element has a unique representation in terms of the atoms (minterms)
- Thus there are $2^n = 2^{2^k}$ distinct Boolean functions

By minterm expansion:

By lattice:

- A Boolean lattice for a Boolean function of k variables has n = 2^k atoms as minterms
- A Boolean lattice with n atoms has 2ⁿ elements by the Stone representation theorem
- Each non-zero element has a unique representation in terms of the atoms (minterms)
- Thus there are $2^n = 2^{2^k}$ distinct Boolean functions

By minterm expansion:

A Boolean function on k variables has n = 2^k possible minterms

ъ

By lattice:

- A Boolean lattice for a Boolean function of k variables has n = 2^k atoms as minterms
- A Boolean lattice with n atoms has 2ⁿ elements by the Stone representation theorem
- Each non-zero element has a unique representation in terms of the atoms (minterms)
- Thus there are $2^n = 2^{2^k}$ distinct Boolean functions

By minterm expansion:

- A Boolean function on k variables has $n = 2^k$ possible minterms
- A minterm expansion results in a unique acceptance

э

By lattice:

- A Boolean lattice for a Boolean function of k variables has n = 2^k atoms as minterms
- A Boolean lattice with n atoms has 2ⁿ elements by the Stone representation theorem
- Each non-zero element has a unique representation in terms of the atoms (minterms)
- Thus there are $2^n = 2^{2^k}$ distinct Boolean functions

By minterm expansion:

- A Boolean function on k variables has n = 2^k possible minterms
- A minterm expansion results in a unique acceptance
- The minterms may be chosen in $\sum_{k=0}^{k=n} {n \choose k} = 2^n = 2^{2^k}$ ways

4 3 5 4 3 5 5

э

By lattice:

- A Boolean lattice for a Boolean function of k variables has n = 2^k atoms as minterms
- A Boolean lattice with n atoms has 2ⁿ elements by the Stone representation theorem
- Each non-zero element has a unique representation in terms of the atoms (minterms)
- Thus there are $2^n = 2^{2^k}$ distinct Boolean functions

By minterm expansion:

- A Boolean function on k variables has $n = 2^k$ possible minterms
- A minterm expansion results in a unique acceptance
- The minterms may be chosen in $\sum_{k=0}^{k=n} {n \choose k} = 2^n = 2^{2^k}$ ways
- Each choice denotes a distinct Boolean function.

Boolean expression manipulation

•
$$xy + \overline{x}z + yz = xy + \overline{x}z$$

• $(x + y)(\overline{x} + z)(y + z) = (x + y)(\overline{x} + z)$
• $T = (x + y)\overline{[\overline{x}(\overline{y} + \overline{z})]} + \overline{x} \overline{y} + \overline{x} \overline{z}$
• $xy + \overline{x} \overline{y} + yz = xy + \overline{x} \overline{y} + \overline{x}z$

3 🕨 - 3

9/12

January 28, 2020

Exclusive OR

• $a \oplus b = b \oplus a$

Chittaranjan Mandal (IIT Kharagpur)

January 28, 2020

- $a \oplus b = b \oplus a$
- $(a \oplus b) \oplus c = a \oplus (b \oplus c) = a \oplus b \oplus c$

Image: A math

- $a \oplus b = b \oplus a$
- $(a \oplus b) \oplus c = a \oplus (b \oplus c) = a \oplus b \oplus c$
- $a(b \oplus c) = (ab) \oplus (ac)$

< A >

•
$$a \oplus b = b \oplus a$$

• $(a \oplus b) \oplus c = a \oplus (b \oplus c) = a \oplus b \oplus c$
• $a(b \oplus c) = (ab) \oplus (ac)$
• if $a \oplus b = c$ then
$$\begin{cases} a \oplus c = b \\ b \oplus c = a \\ a \oplus b \oplus c = 0 \end{cases}$$

Chittaranjan Mandal (IIT Kharagpur)

æ

10/12

January 28, 2020

• A transmission device may be treated as a gate (pass or block)

(4) (E) (b)

Chittaranjan Mandal (IIT Kharagpur)

- A transmission device may be treated as a gate (pass or block)
- MOS transistor, relay, pneumatic valve

- A transmission device may be treated as a gate (pass or block)
- MOS transistor, relay, pneumatic valve
- Normally closed (primed: \overline{x}) or normally open (unprimed: x)

- A transmission device may be treated as a gate (pass or block)
- MOS transistor, relay, pneumatic valve
- Normally closed (primed: \overline{x}) or normally open (unprimed: x)
- Series connection denoted by AND

.

- A transmission device may be treated as a gate (pass or block)
- MOS transistor, relay, pneumatic valve
- Normally closed (primed: \overline{x}) or normally open (unprimed: x)
- Series connection denoted by AND
- Parallel connection denoted by OR

11/12

イロト イポト イラト イラト

- A transmission device may be treated as a gate (pass or block)
- MOS transistor, relay, pneumatic valve
- Normally closed (primed: \overline{x}) or normally open (unprimed: x)
- Series connection denoted by AND
- Parallel connection denoted by OR

•
$$T = x\overline{y} + (\overline{x} + y)z$$

イロト イポト イラト イラト

January 28, 2020

- A transmission device may be treated as a gate (pass or block)
- MOS transistor, relay, pneumatic valve
- Normally closed (primed: \overline{x}) or normally open (unprimed: x)
- Series connection denoted by AND
- Parallel connection denoted by OR

•
$$T = x\overline{y} + (\overline{x} + y)z$$

• $T = x\overline{y} + \overline{x}z + \overline{y}z + yz = x\overline{y} + \overline{x}z + z = x\overline{y} + z$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

January 28, 2020
Series-parallel switching circuits

- A transmission device may be treated as a gate (pass or block)
- MOS transistor, relay, pneumatic valve
- Normally closed (primed: \overline{x}) or normally open (unprimed: x)
- Series connection denoted by AND
- Parallel connection denoted by OR
- $T = x\overline{y} + (\overline{x} + y)z$
- $T = x\overline{y} + \overline{x}z + \overline{y}z + yz = x\overline{y} + \overline{x}z + z = x\overline{y} + z$
- CMOS NAND, NOR

• $f(x_1, x_2, ..., x_n) = x_1 \cdot f(1, x_2, ..., x_n) + \overline{x_1} \cdot f(0, x_2, ..., x_n)$

< < >> < <</>

• $f(x_1, x_2, ..., x_n) = x_1 \cdot f(1, x_2, ..., x_n) + \overline{x_1} \cdot f(0, x_2, ..., x_n)$ • $f(x_1, x_2, ..., x_n) = (\overline{x_1} + f(1, x_2, ..., x_n)) \cdot (x_1 + f(0, x_2, ..., x_n))$

- $f(x_1, x_2, ..., x_n) = x_1 \cdot f(1, x_2, ..., x_n) + \overline{x_1} \cdot f(0, x_2, ..., x_n)$
- $f(x_1, x_2, ..., x_n) = (\overline{x_1} + f(1, x_2, ..., x_n)) \cdot (x_1 + f(0, x_2, ..., x_n))$
- Multiplexer realisation by Shannon decomposition or Shannon expansion

January 28, 2020

12/12

- $f(x_1, x_2, ..., x_n) = x_1 \cdot f(1, x_2, ..., x_n) + \overline{x_1} \cdot f(0, x_2, ..., x_n)$
- $f(x_1, x_2, ..., x_n) = (\overline{x_1} + f(1, x_2, ..., x_n)) \cdot (x_1 + f(0, x_2, ..., x_n))$
- Multiplexer realisation by Shannon decomposition or Shannon expansion
- Repeated application to obtain CNF or DNF of a given Boolean function

イロト イポト イラト イラト