INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR Computer Science and Engineering

Switching Circuits and Logic Design (CS21002)

Class Test – I (Spring)

Name:		Roll number:
Date: Wed, Feb 05, 2020	Marks: 90	Time: 6:15-7:15pm (AN)
Place: CSE-107, CSE-108, CSE-119). CSE-120. CSE-302	Students: 72+73=145

Answer ALL the questions. Do rough work on available blank pages/sheets.

Q1: Run the *double dabble* (also called *add-3 and shift*) algorithm to convert the binary number 110100101 to BCD showing each step clearly. The operations should be either L Sft for left shift or Add 3. The entries for B1, B2 and B3 should be their values after application of the indicated operation.

50

Operation	B2	B1	В0	421
Start	0000	0000	0000	110100101
L Sft	0000	0000	0001	110100101
L Sft	0000	0000	0011	110100101
L Sft	0000	0000	0110	110100101
Add 3	0000	0000	<u>1001</u>	110100101
L Sft	0000	0001	0011	110100101
T. 00	0000	0010	0110	110100101
L Sft	0000	0010	0110	110100101
A 112	0000	0010	1001	110100101
Add 3	0000	0010	<u>1001</u>	110100101
1 00	0000	0101	0010	110100101
L Sft	0000	0101	0010	110100101
A 11 2	0000	1000	0010	110100101
Add 3	0000	1000	0010	110100101
I CG	0001	0000	0101	110100101
L Sft	0001	0000	0101	110100101
A dd 2	0001	0000	1000	110100101
Add 3	0001	0000	<u>1000</u>	110100101
L Sft	0010	0001	0000	110100101
L SII				110100101
L Sft	0100	0010	0001	110100101
Finish	4	2	1	110100101
1 1111311	1		1	

Q2: Represent 29 and -17 in 8-bit signed 2's complement representation; then perform the following operations on your representations, showing each step clearly:

(a) 29+(-17)

Item	Binary representation
17	0001 0001
-17 (2's complement)	1110 1111
29	0001 1101
+ (-17)	1110_1111
Result12	0000 1100

(b) (-17)+(-29)

Item	Binary representation
29	0001 1101
-29 (2's complement)	1110 0011
-17	1110 1111
+ (-29)	1110_0011
Result46	1101 0010

20

Q3: Bits 1111011 corresponding to $\langle p_1, p_2, d_1, p_3, d_2, d_3, d_4 \rangle$ for single bit ECC Hamming code is received; here d_1, d_2, d_3 and d_4 are the data bits while p_1, p_2 and p_3 are the parity bits. Assume that at most one of the bits that are received may be corrupted (i.e. \bar{b} received instead of b).

Association of parity bits to the data bits may be done according to the table below.

Bits positions	7	6	5	4	3	2	1
(starting at 1)							
Binary	111	110	101	100	011	010	001
Received	d_4	d_3	d_2	p_3	d_1	p_2	p_1
data/parity bit							
Association	p_3, p_2, p_1	p_3, p_2	p_3, p_1	p_3	p_2, p_1	p_2	p_1
Recomputed bit	$d_4^{ m r}$	$d_3^{ m r}$	$d_2^{ m r}$	$p_3^{ m r}$	$d_1^{ m r}$	$p_2^{ m r}$	$p_1^{ m r}$
name							

Let e_i be the Boolean value that is 1 if and only if the parity condition involving bit p_i is violated. Fill up the following table to present the Boolean expression (using $\cdot, +, \oplus, \leftrightarrow, '$) for e_i in terms of the received bits.

Parity violation indicator	Boolean exp	Truth value	
$ e_1 $	$e_1 =$	$p_1 \oplus d_1 \oplus d_2 \oplus d_4$	1
e_2	$e_2 = _{__}$	$p_2 \oplus d_1 \oplus d_3 \oplus d_4$	0
e_3	$e_3 = $	$p_3 \oplus d_2 \oplus d_3 \oplus d_4$	1

Fill up the following table to present the Boolean expression (using $\cdot, +, \oplus, \leftrightarrow, '$) to capture that an error has occured in the indicated bit, as error flags (EF); your expressions should be in terms of e_1, e_2, e_3 .

Bit	Value	EF	Boolean expression to compute error flag	EF value
p_1	1	f_1	$f_1 = e_1 \cdot e_2' \cdot e_3'$	0
p_2	1	f_2	$f_2 = $ $e_1' \cdot e_2 \cdot e_3'$	0
p_3	1	f_3	$f_3 = e_1' \cdot e_2' \cdot e_3$	0
d_4	1	g_4	$g_4 = e_1 \cdot e_2 \cdot e_3$	
d_3	1	g_3	$g_3 = e_1' \cdot e_2 \cdot e_3$	_0_
d_2	0	g_2	$g_2 = e_1 \cdot e_2' \cdot e_3$	_1_
d_1	1	g_1	$g_1 = e_1 \cdot e_2 \cdot e_3'$	0

Finally, fill up the following table to present the Boolean expression (using \cdot , +, \oplus , \leftrightarrow ,') in terms of received bits and the computed flag bits that will allow the correct bits to be recovered.

Recomputed bit	Boolean expression to recompute the bit	Recomputed value
$p_1^{ m r}$	$p_1^{ m r}= \qquad \qquad p_1\oplus f_1$	_1_
$p_2^{ m r}$	$p_2^{ ext{r}} = p_2 \oplus f_2$	1
$p_3^{ m r}$	$p_3^{ ext{r}} = p_3 \oplus f_3$	1
$d_4^{ m r}$	$d_4^{ ext{r}} = \underline{\qquad \qquad d_4 \oplus g_4}$	1
$d_3^{ m r}$	$d_3^{ ext{r}} = \underline{\qquad \qquad \qquad } d_3 \oplus g_3$	1
$d_2^{ m r}$	$d_2^{ extsf{r}} = \qquad \qquad$	
$d_1^{ m r}$	$d_1^{ ext{r}} = \underline{\qquad \qquad d_1 \oplus g_1}$	1