
 Semantic Web

1

SEMANTIC WEB

SUBMITTED BY

TAPAS KUMAR MISHRA

11CS60R32

DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

 Semantic Web

2

ACKNOWLEDGEMENT

I express my profound gratitude to Dr. Jayanta

Mukhopadhyay (Professor & HOD), Dipanwita Roy

Chowdhury (Professor), Department of Computer Science &

Engineering for the valuable help and guidance in the

preparation of this report ―SEMANTIC WEB‖.

I would like to extend my sincere thanks to Dr. Rajib Mall,

(Professor) and all other staff members of M.Tech, Computer

Science & Engineering.

Finally I would also wish to record my gratefulness to all my

friends and classmates for their help.

TAPAS KUMAR MISHRA

 Semantic Web

3

ABSTRACT

The word semantic stands for the meaning of. The semantic of something is the

meaning of something. The Semantic Web is a web that is able to describe things in a

way that computers can understand.

 What is birthplace of Sachin Tendulkar?

 On which date, Sachin was born?

 The record "Hey Jude" was recorded by the Beatles.

Sentences like these can be understood by people. But these cannot be understood by

the computers in the current representation of data on web. To make computer

understand, Statements are built with syntax rules. The syntax of a language defines

the rules for building the language statements. This is what the Semantic Web is all

about - Describing things in a way that computer applications can understand. The

Semantic Web is not about links between web pages. The Semantic Web describes the

relationships between things (like A is a part of B and Y is a member of Z) and the

properties of things (like size, weight, age, and price).

 Semantic Web

4

CONTENTS

1. INTRODUCTION 5

1.1 What is Semantic Web? 5

1.2 WWW Vs Semantic Web 6

1.3 Metadata 7

2. COMPONENTS OF SEMANTIC WEB 8

2.1 Identifiers: Uniform Resource Identifier(URI) 9

2.2 Documents : Extensible Markup Language(XML) 9

2.3 Statements : Resource Description Framework (RDF) 11

2.4 Schemas for RDF: RDF Schemas 14

2.5 Ontology 17

2.6 Proof 19

2.7 Trust: Digital Signatures and Web of Trust 19

3. PROJECTS 20

4. CONCLUSION 21

5. REFERENCES 22

 Semantic Web

5

1.INTRODUCTION

The Web was designed as an information space, with the goal that it should be useful

not only for human-human communication, but also that machines would be able to

participate and help. One of the major obstacles to this has been the fact that most

information on the Web is designed for human consumption, and even if it was

derived from a database with well defined meanings for its columns, that the structure

of the data is not evident to a robot browsing the web. Humans are capable of using

the Web to carry out tasks such as finding the Finnish word for "car", to reserve a

library book, or to search for the cheapest DVD and buy it. However, a computer

cannot accomplish the same tasks without human direction because web pages are

designed to be read by people, not machines.

The Semantic Web is a vision of information that is understandable by computers, so

that they can perform more of the tedious works involved in finding, sharing and

combining information on the web. For example, a computer might be instructed to

list the prices of flat screen HDTVs larger than 40 inches with 1080p resolution at

shops in the nearest town that are open until 8pm on Tuesday evenings. Today, this

task requires search engines that are individually tailored to every website being

searched. The semantic web provides a common standard (RDF) for websites to

publish the relevant information in a more readily machine-processable and

integratable form.

1.1 What is Semantic Web?

The Semantic Web is an evolving extension of the World Wide Web in which the

semantics of information and services on the web is defined, making it possible for the

web to understand and satisfy the requests of people and machines to use the Web

content. It derives from W3C director Tim Berners -Lee vision of the Web as a

universal medium for data ,information and knowledge exchange.

Tim Berners-Lee originally expressed the vision of the semantic web as follows –

 Semantic Web

6

―I have a dream for the Web [in which computers] become capable of analysing all

the data on the Web – the content, links, and transactions between people and

computers. A ‗Semantic Web‘, which should make this possible, has yet to emerge,

but when it does, the day-to-day mechanisms of trade, bureaucracy and our daily lives

will be handled by machines talking to machines. The ‗intelligent agents‘ people have

touted for ages will finally materialize‖

1.2 WWW Vs Semantic Web

Current web contains a hypermedia, a digital library,a library of documents

called (web pages) interconnected by a hypermedia of links,a database, an application

platform,a common portal to applications accessible through web pages, and

presenting their results as web pages,a platform for multimedia,a naming scheme and

Unique identity for those documents.

 Finding information involving background knowledge such as ―animals that

use sonar but are not either bats or dolphins‖ is not possible to the current web.

Similarly locating information in data repositories such as Travel enquiries, Prices of

goods and services, Results of human genome experiments is also not possible.

The World Wide Web is based mainly on documents written in HyperText

Markup Language(HTML), a markup convention that is used for coding a body of text

interspersed with multimedia objects such as images and interactive forms. The

semantic web involves publishing the data in a language, Resource Description

Framework (RDF) specifically for data, so that it can be manipulated and combined

just as can data files on a local computer. The HTML language describes documents

and the links between them.RDF, by contrast, describes arbitrary things such as

people, meetings, and airplane parts.

For example, with HTML and a tool to render it (perhaps Web browser

software, perhaps another user agent), one can create and present a page that lists

items for sale. The HTML of this catalog page can make simple, document-level

assertions such as "this document's title is 'Widget Superstore'". But there is no

capability within the HTML itself to assert unambiguously that, for example, item

number X586172 is an Acme Gizmo with a retail price of €199, or that it is a

consumer product. Rather, HTML can only say that the span of text "X586172" is

something that should be positioned near "Acme Gizmo" and "€ 199", etc. There is no

way to say "this is a catalog" or even to establish that "Acme Gizmo" is a kind of title

or that "€ 199" is a price. There is also no way to express that these pieces of

 Semantic Web

7

information are bound together in describing a discrete item, distinct from other items

perhaps listed on the page.

The semantic web addresses this shortcoming, using the descriptive

technologies Resource Description Framework (RDF) and Web Ontology Language

(OWL), and the data-centric, customizable Extensible Mark-up Language (XML).

These technologies are combined in order to provide descriptions that supplement or

replace the content of Web documents. Thus, content may manifest as descriptive data

stored in Web-accessible databases, or as mark-up within documents (particularly, in

Extensible HTML (XHTML) interspersed with XML, or, more often, purely in XML,

with layout/rendering cues stored separately). The machine-readable descriptions

enable content managers to add meaning to the content, i.e. to describe the structure of

the knowledge we have about that content. In this way, a machine can process

knowledge itself, instead of text, using processes similar to human deductive

reasoning and inference, thereby obtaining more meaningful results and facilitating

automated information gathering and research by computers.

1.3 Metadata

The first form of semantic data on the Web was metadata :

―information about information‖. These basically include:

 Means of creation of the data

 Purpose of the data

 Time and date of creation

 Creator or author of data

 Placement on a computer network where the data was created

 Standards used

Example :

A meta element specifies name and associated content attributes describing aspects of

the HTML page.

<meta name="keywords"content="wikipedia,encyclopedia">

Default charset for plain text is simply set with meta:

<meta http-equiv="Content-Type" content="text/html charset=UTF-8" >

 Semantic Web

8

2. COMPONENTS OF SEMANTIC WEB

Several formats and languages form the building blocks of the semantic web. Some of

these include Identifiers: Uniform Resource Identifier(URI), Documents : Extensible

Markup Language(XML), Statements : Resource Description Framework (RDF), a

variety of data interchange formats (e.g. RDF/XML, N3) and notations such as RDF

Schemas(RDFS) and the Web Ontology Language (OWL), all of which are intended

to provide a formal description of concepts, terms and relationships within a given

knowledge domain , Logic, Proof and Trust.

FIGURE 1-SEMANTIC WEB STACK

 Semantic Web

9

2.1 Identifiers: Uniform Resource Identifier(URI)

To identify items on the Web, we use identifiers. Because we use a uniform

system of identifiers, and because each item identified is considered a "resource," we

call these identifiers "Uniform Resource Identifiers" or URIs for short. We can give a

URI to anything, and anything that has a URI can be said to be "on the Web": you, the

book you bought last week, the fly that keeps buzzing in your ear and anything else

you can think of -- they all can have a URI.

One can classify URIs as locators (URLs), or as names (URNs), or as both. A

Uniform Resource Name (URN) functions like a person's name, while a Uniform

Resource Locator (URL) resembles that person's street address. In other words: the

URN defines an item's identity, while the URL provides a method for finding it.

The ISBN system for uniquely identifying books provides a typical example of

the use of URNs. ISBN 0486275574 (urn: isbn: 0-486-27557-4) cites, unambiguously,

a specific edition of Shakespeare's play Romeo and Juliet. To gain access to this

object and read the book, one needs its location: a URL address. A typical URL for

this book on a Unix-like operating system would be a file path such as

file:///home/username/RomeoAndJuliet.pdf, identifying the electronic book saved in a

file on a local hard disk. So URNs and URLs have complementary purposes.

Because the Web is far too large for any one organization to control it, URIs are

decentralized. No one person or organization controls who makes them or how they

can be used. While some URI schemes (such as http:) depend on centralized systems

(such as DNS), other schemes (such as freenet:) are completely decentralized.

This means that we don't need anyone's permission to create a URI. We can even

create URIs for things we don't own. While this flexibility makes URIs powerful, it

brings with it more than a few problems. Because anyone can create a URI, we will

inevitably end up with multiple URIs representing the same thing. Worse, there will

be no way to figure out whether two URIs refer to exactly the same resource. Thus,

we'll never be able to say with certainty exactly what a given URI means. But these

are trade-offs that must be made if we are to create something as enormous as the

Semantic Web.

2.2 Documents : Extensible Markup Language(XML)

XML was designed to be a simple way to send documents across the Web. It

allows anyone to design their own document format and then write a document in that

format. These document formats can include markup to enhance the meaning of the

 Semantic Web

10

document's content. This markup is "machine-readable," that is, programs can read

and understand it. By including machine-readable meaning in our documents, we

make them much more powerful.

Consider a simple example: if a document contains certain words that are

marked as "emphasized," the way those words are rendered can be adapted to the

context. A Web browser might simply display them in italics, whereas a voice

browser (which reads Web pages aloud) might indicate the emphasis by changing the

tone or the volume of its voice.

Each program can respond appropriately to the meaning encoded in the

markup. In contrast, if we simply marked the words as "in italics", the computer has

no way of knowing why those words are in italics. Is it for emphasis or simply for a

visual effect? How does the voice browser display this effect? Here's an example of a

document in plain text:

I just got a new pet dog.

As far as our computer is concerned, this is just text. It has no particular meaning to

the computer. But now consider this same passage marked up using an XML-based

markup language (we'll make one up for this example):

<sentence>

<person href="http://aaronsw.com/"> I </person> just got a new pet <animal> dog

</animal>.

</sentence>

Notice that this has the same content, but that parts of that content are labelled. Each

label consists of two "tags": an opening tag (e.g., <sentence>) and a closing tag (e.g.,

</sentence>). The name of the tag ("sentence") is the label for the content enclosed by

the tags. We call this collection of tags and content an "element." Thus, the sentence

element in the above document contains the sentence, "I just got a new pet dog." This

tells the computer that "I just got a new pet dog" is a "sentence," but -- importantly – it

does not tell the computer what a sentence is. Still, the computer now has some

information about the document, and we can put this information to use.Similarly, the

computer now knows that "I" is a "person" (whatever that is) and that "dog" is an

"animal."

Sometimes it is useful to provide more information about the content of an

element than we can provide with the name of the element alone. For example, the

 Semantic Web

11

computer knows that "I" in the above sentence represents a "person," but it does not

know which person. We can provide this sort of information by adding attributes to

our elements. An attribute has both a name and a value. For example, we can rewrite

our example thus:

<sentence>

<person href="http://aaronsw.com">I</person> just got a new pet<animal type="dog"

href="http://aaronsw.com/myDog">dog</animal>.

</sentence>

 A problem with this is that we've used the words "sentence," "person," and "animal"

in the markup language. But these are pretty common words. What if others have used

these same words in their own markup languages? What if those words have different

meanings in those languages? Perhaps "sentence" in another markup language refers

to the amount of time that a convicted criminal must serve in a penal institution.

To prevent confusion, we must uniquely identify my markup elements. And

what better way to identify them than with a Uniform Resource Identifier? So we

assign a URI to each of our elements and attributes. We do this using something called

XML namespaces. This way, anyone can create their own tags and mix them with tags

made by others. A namespace is just a way of identifying a part of the Web (space)

from which we derive the meaning of these names. I create a "namespace" for my

markup language by creating a URI for it.

Since everyone's tags have their own URIs, we don't have to worry about tag names

conflicting. XML, of course, lets us abbreviate and set default URIs so we don't have

to type them out each time.

2.3 Statements : Resource Description Framework (RDF)

The most fundamental building block is Resource Description

Framework(RDF), a format for defining information on the web. RDF is a markup

language for describing information and resources on the web. Putting information

into RDF files, makes it possible for computer programs ("web spiders") to search,

discover, pick up, collect, analyze and process information from the web. The

Semantic Web uses RDF to describe web resources. RDF provides a model for data,

and a syntax so that independent parties can exchange and use it. It is designed to be

read and understood by computers. It is not designed for being displayed to people.

 Semantic Web

12

RDF is really quite simple. An RDF statement is a lot like a simple sentence,

except that almost all the words are URIs. Each RDF statement has three parts: a

subject, a predicate and an object. Let's look at a simple RDF statement:

<http://aaron.com/>

<http://love.example.org/terms/reallyLikes>

<http://www.w3.org/People/Berners-Lee/Weaving/> .

The first URI is the subject. In this instance, the subject is aaron. The second

URI is the predicate. It relates the subject to the object. In this instance, the predicate

is "reallyLikes." The third URI is the object. Here, the object is Tim Berners-Lee's

book "Weaving the Web." So the RDF statement above says that aaron really like

"Weaving the Web."

Once information is in RDF form, it becomes easy to process it, since

RDF is a generic format, which already has many parsers. XML RDF is quite a

verbose specification, and it can take some getting used to (for example, to

learn XML RDF properly, you need to understand a little about XML and

namespaces beforehand...), but let's take a quick look at an example of XML

RDF right now:-

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns:foaf="http://xmlns.com/0.1/foaf/" >

<rdf:Description rdf:about="">

<dc:creator rdf:parseType="Resource">

<foaf:name>Sean B. Palmer</foaf:name>

</dc:creator>

<dc:title>The Semantic Web: An Introduction</dc:title>

</rdf:Description>

</rdf:RDF>

 Semantic Web

13

This piece of RDF basically says that this article has the title "The Semantic

Web: An Introduction", and was written by someone whose name is "Sean B.

Palmer". Here are the triples that this RDF produces:-

<> <http://purl.org/dc/elements/1.1/creator> _:x0 .

this<http://purl.org/dc/elements/1.1/title> "The Semantic Web: An

Introduction". _:x0

<http://xmlns.com/0.1/foaf/name> "Sean B. Palmer" .

This format is actually a plain text serialization of RDF called "Notation3",

which we shall be covering later on. Note that some people actually prefer using XML

RDF to Notation3, but it is generally accepted that Notation3 is easier to use, and is of

course convertable to XML RDF anyway. RDF triples can be written with XML tags,

and they are represented graphically as shown below:

The simple RDF assertion triple looks like:

Advantage of RDF over XML

 Firstly, the benefit that one gets from drafting a language in RDF is that the

information maps directly and unambiguously to a model, a model which is

decentralized, and for which there are many generic parsers already available. This

means that when you have an RDF application, you know which bits of data are the

semantics of the application, and which bits are just syntactic fluff. And not only do

you know that, everyone knows that, often implicitly without even reading a

specification because RDF is so well known.

The second part of the twofold answer is that we hope that RDF data will become a

part of the Semantic Web, so the benefits of drafting your data in RDF now draws

parallels with drafting your information in HTML in the early days of the Web.

The answer to "do we use XML Schema in conjunction with RDF?" is almost as brief.

XML Schema is a language for restricting the syntax of XML applications. RDF

 Semantic Web

14

already has a built in BNF that sets out how the language is to be used, so on the face

of it the answer is a solid "no". However, using XML Schema in conjunction with

RDF may be useful for creating data-types and so on. Therefore the answer is

"possibly", with a caveat that it is not really used to control the syntax of RDF. This is

a common misunderstanding, perpetuated for too long now.

2.4 Schemas of RDF: RDFS

A "schema" (plural "schemata") is simply a document or piece of code that controls a

set of terms in another document or piece of code. It's like a master checklist, or

definition grammar. A schema is a way to describe the meaning and relationships of

terms. This description (in RDF, of course) helps computer systems use terms more

easily, and decide how to convert between them.

RDF Schema

RDF Schema was designed to be a simple datatyping model for RDF. Using RDF

Schema, we can say that "Fido" is a type of "Dog", and that "Dog" is a sub class of

animal. We can also create properties and classes, as well as doing some slightly more

"advanced" stuff such as creating ranges and domains for properties.

The first three most important concepts that RDF and RDF Schema give us are the

"Resource" (rdfs:Resource), the "Class" (rdfs:Class), and the "Property"

(rdf:Property). These are all "classes", in that terms may belong to these classes. For

example, all terms in RDF are types of resource. To declare that something is a "type"

of something else, we just use the rdf:type property:-

rdfs:Resource rdf:type rdfs:Class .

rdfs:Class rdf:type rdfs:Class .

rdf:Property rdf:type rdfs:Class .

rdf:type rdf:type rdf:Property .

This simply says that "Resource is a type of Class, Class is a type of Class, Property is

a type of Class, and type is a type of Property". These are all true statements.

It is quite easy to make up our own classes. For example, let's create a class called

"Dog", which contains all of the dogs in the world:-

:Dog rdf:type rdfs:Class .

Now we can say that "Fido is a type of Dog":-

 Semantic Web

15

:Fido rdf:type :Dog .

We can also create properties quite easily by saying that a term is a type of

rdf:Property, and then use those properties in our RDF:-

:name rdf:type rdf:Property .

:Fido :name "Fido" .

Why have we said that Fido's name is "Fido"? Because the term ":Fido" is a URI, and

we could quite easily have chosen any URI for Fido, including ":Squiggle" or

":n508s0srh". We just happened to use the URI ":Fido" because it's easier to

remember.

However, we still have to tell machines that his name is Fido, because although people

can guess that from the URI (even though they probably shouldn't), machines can't.

RDF Schema also has a few more properties that we can make use of: rdfs:subClassOf

and rdfs:subPropertyOf. These allow us to say that one class or property is a sub class

or sub property of another. For example, we might want to say that the class "Dog" is

a sub class of the class "Animal". To do that, we simply say:-

:Dog rdfs:subClassOf :Animal .

Hence, when we say that Fido is a Dog, we are also saying that Fido is an Animal. We

can also say that there are other sub classes of Animal:-

:Human rdfs:subClassOf :Animal .

:Duck rdfs:subClassOf :Animal .

And then create new instances of those classes:-

:Bob rdf:type :Human .

:Quakcy rdf:type :Duck . And so on.

 RDF schema allows one to build up knowledge bases of data in RDF very very

quickly. The next concepts which RDF Schema provides us, which are important to

mention, are ranges and domains. Ranges and domains let us say what classes the

subject and object of each property must belong to. For example, we might want to

say that the property ":bookTitle" must always apply to a book, and have a literal

value:-

:Book rdf:type rdfs:Class .

 Semantic Web

16

:bookTitle rdf:type rdf:Property .

:bookTitle rdfs:domain :Book .

:bookTitle rdfs:range rdfs:Literal .

:MyBook rdf:type :Book .

:MyBook :bookTitle "My Book" .

rdfs:domain always says what class the subject of a triple using that property belongs

to, and rdfs:range always says what class the object of a triple using that property

belongs to.

RDF Schema also contains a set of properties for annotating schemata, providing

comments, labels, and the like. The two properties for doing this are rdfs:label and

rdfs:comment, and an example of their use is:-

:bookTitle rdfs:label "bookTitle";

rdfs:comment "the title of a book" .

The triples of RDF form webs of information about related things. Because RDF uses

URIs to encode this information in a document, the URIs ensure that concepts are not

just words in a document but are tied to a unique definition that everyone can find on

the Web. For example, imagine that we have access to a variety of databases with

information about people, including their addresses. If we want to find people living

in a specific zip code, we need to know which fields in each database represent names

and which represent zip codes. RDF can specify that "(field 5 in database A) (is a field

of type) (zip code)," using URIs rather than phrases for each term.

Problem with RDFS

The main problem with use of RDFS is the ―SYNONYM problem‖. For

Example - two databases may use different identifiers for what is in fact the

same concept, such as zip code. A program that wants to compare or combine

information across the two databases has to know that these two terms are being

used to mean the same thing. Ideally, the program must have a way to discover

such common meanings for whatever databases it encounters. But there is no

way of finding such concepts with RDFS.

 Semantic Web

17

2.5 Ontology

A solution to this problem is provided by the third basic component of the

Semantic Web, collections of information called ontologies. In philosophy, an

ontology is a theory about the nature of existence, of what types of things exist;

ontology as a discipline studies such theories. Artificial-intelligence and Web

researchers have co-opted the term for their own jargon, and for them an

ontology is a document or file that formally defines the relations among terms.

An ontology is an explicit description of a domain. It includes

 Concepts

 properties and attributes of concepts

 constraints on properties and attributes

 individuals (often, but not always)

An ontology defines a common vocabulary, a shared understanding.

The most typical kind of ontology for the Web has a taxonomy and a set of

inference rules.

Taxonomy

The taxonomy defines classes of objects and relations among them. For example, an

address may be defined as a type of location, and city codes may be defined to apply

only to locations, and so on. Classes, subclasses and relations among entities are a

very powerful tool for Web use. We can express a large number of relations among

entities by assigning properties to classes and allowing subclasses to inherit such

properties. If city codes must be of type city and cities generally have Web sites, we

can discuss the Web site associated with a city code even if no database links a city

code directly to a Web site.

Inference Rule

Inference rules allows to infer conclusions based on rules and facts available in the

knowledge base. So this increases the power of Semantic web even more. For

example: An ontology may express the rule "If a city code is associated with a state

code, and an address uses that city code, then that address has the associated state

code." A program could then readily deduce, for instance, that a Cornell University

address, being in Ithaca, must be in New York State, which is in the U.S., and

therefore should be formatted to U.S. standards. The computer doesn't truly

 Semantic Web

18

"understand" any of this information, but it can now manipulate the terms much more

effectively in ways that are useful and meaningful to the human user.

With ontology pages on the Web, solutions to terminology (and other)

problems begin to emerge. The meaning of terms or XML codes used on a Web page

can be defined by pointers from the page to an ontology. Of course, the same

problems as before now arise if I point to an ontology that defines addresses as

containing a zip code and you point to one that uses postal code. This kind of

confusion can be resolved if ontologies (or other Web services) provide equivalence

relations: one or both of our ontologies may contain the information that my zip code

is equivalent to your postal code.

Our scheme for sending in the clowns to entertain my customers is partially

solved when the two databases point to different definitions of address. The program,

using distinct URIs for different concepts of address, will not confuse them and in fact

will need to discover that the concepts are related at all. The program could then use a

service that takes a list of postal addresses (defined in the first ontology) and converts

it into a list of physical addresses (the second ontology) by recognizing and removing

post office boxes and other unsuitable addresses. The structure and semantics

provided by ontologies make it easier for an entrepreneur to provide such a service

and can make its use completely transparent.

Ontology can be used in a simple fashion to improve the accuracy of Web

searches—the search program can look for only those pages that refer to a precise

concept instead of all the ones using ambiguous keywords. More advanced

applications will use ontologies to relate the information on a page to the associated

knowledge structures and inference rules.

In addition, this markup makes it much easier to develop programs that can

tackle complicated questions whose answers do not reside on a single Web page.

Suppose you wish to find the Ms. Cook you met at a trade conference last year. You

don't remember her first name, but you remember that she worked for one of your

clients and that her son was a student at your alma mater. An intelligent search

program can sift through all the pages of people whose name is "Cook" (sidestepping

all the pages relating to cooks, cooking, the Cook Islands and so forth), find the ones

that mention working for a company that's on your list of clients and follow links to

Web pages of their children to track down if any are in school at the right place.

 Semantic Web

19

2.6 Proof

Once we begin to build systems that follow logic, it makes sense to use them to prove

things. People all around the world could write logic statements. Then your machine

could follow these Semantic "links" to construct proofs.

Example: Corporate sales records show that Jane has sold 55 widgets and 66

sprockets. The inventory system states that widgets and sprockets are both different

company products. The built-in math rules state that 55 + 66 = 121 and that 121 is

more than 100. And, as we know, someone who sells more than 100 products is a

member of the Super Salesman club. The computer puts all these logical rules together

into a proof that Jane is a Super Salesman.

While it's very difficult to create these proofs (it can require following thousands, or

perhaps millions of the links in the Semantic Web), It is generally not required as the

information on web does not required to be proved.

2.7 Trust: Digital Signatures and Web of Trust

Now we can say that this whole plan is great, but rather useless if anyone can say

anything. Who would trust such as system? That's where Digital Signature come in.

Based on work in mathematics and cryptography, digital signatures provide proof that

a certain person wrote (or agrees with) a document or statement. So one digitally sign

all of their RDF statements. That way, we can be sure that he wrote them (or at least

vouch for their authenticity). Now, we can simply tell our program whose signatures

to trust and whose not to. Each can set their own levels or trust (or paranoia) the

computer can decide how much of what it reads to believe.

Now it's highly unlikely that you'll trust enough people to make use of most of the

things on the Web. That's where the "Web of Trust" comes in. You tell your computer

that you trust your best friend, Robert. Robert happens to be a rather popular guy on

the Net, and trusts quite a number of people. And of course, all the people he trusts,

trust another set of people. Each of those people trust another set of people, and so on.

As these trust relationships fan out from you, they form a "Web of Trust." And each of

these relationships has a degree of trust (or distrust) associated with it.

Note that distrust can be as useful as trust. Suppose that computer discovers a

document that no one explicitly trusts, but that no one explicitly distrusts either. Most

likely, computer will trust this document more than it trusts one that has been

explicitly labelled as untrustworthy.

This part of semantic web is yet to be implemented.

 Semantic Web

20

3. PROJECTS

FOAF

A popular application of the semantic web is Friend of a Friend(or FOAF), which

describes relationships among people and other agents in terms of RDF. FOAF project

is about creating a Web of machine-readable homepages describing people, the links

between them and the things they create and do.

 SIOC

The SIOC Project - Semantically-Interlinked Online Communities provides a

vocabulary of terms and relationships that model web data spaces. Examples of such

data spaces include, among others: discussion forums, weblogs, blogrolls / feed

subscriptions, mailing lists, shared bookmarks, image galleries.

SIMILE

It stands for ―Semantic Interoperability of Metadata and Information in unLike

Environments‖, Massachusetts Institute of Technologies. SIMILE is a joint project,

conducted by the MIT Libraries and MIT CSALE which seeks to enhance

interoperability among digital assets, schemata/vocabularies/ontologies, meta data,

and services.

Linking Open Data

The Linking Open Data Project is a community lead effort to create openly accessible,

and interlinked, RDF Data on the Web. The data in question takes the form of RDF

Data Sets drawn from a broad collection of data sources. The project is one of several

sponsored by the W3C's Semantic Web Education & Outreach Interest Group

(SWEO).

 Semantic Web

21

4. Conclusion

The searches on web as we see today are based on word for word matching, which

sometimes is not the best strategy. The coming Semantic Web will multiply this

versatility a thousand-fold. For some, the defining feature of the Semantic Web will

be the ease with which one‘s PDA, laptop, desktop, server, and car will communicate

with each other. For others, it will be the automation of corporate decisions that

previously had to be laboriously hand-processed. For still others, it will be the ability

to assess the trustworthiness of documents on the Web and the remarkable ease with

which we'll be able to find the answers to our questions -- a process that is currently

fraught with frustration.

Whatever the cause, almost everyone can find a reason to support this grand vision of

the Semantic Web. Sure, it's a long way from here to there. The implementation of

the ―Trust‖ and ―Crypto‖ layers of the Semantic stack along with refinement of the

ontology techniques is still to be done. The possibilities are endless, and even if we

don't ever achieve all of them, the journey will most certainly be its own reward.

 Semantic Web

22

7. REFERENCES

[1]. Berners-Lee, Tim; James Hendler and Ora Lassila (May 17, 2001). "The Semantic

Web". Scientific American Magazine

[2].www.en.wikipedia.org/wiki/Semantic_Web

[3].Tim Berners-Lee, with Mark Fischetti. Harper San Francisco, 1999.‖Weaving the

Web‖

[4].http://www.w3.org/2001/sw/

[5].www.SemanticWeb.org/

[6].James Farrugia,University of Maine, Orono, ME. ‖ Model-theoretic semantics for

the web‖. ACM New York, NY, USA ©2003

