An Introduction to Ramsey Theory
OUTLINE

• History
• Pigeonhole
• Ramsey Number
• Other Ramsey Theory
• Thinking about Ramsey
History

• Frank Plumpton Ramsey 1903–1930
• British mathematician
• Ramsey is a **BRANCH** of theory
• Ramsey theory ask: "how many elements of some structure must there be to guarantee that a particular property will hold?"
Pigeonhole

- Pigeonhole is a **simple** theory
 - m objects divide into n classes
 - at least \([m/n]\) objects appears
- Application can be **subtle**
- Pigeonhole and Ramsey are closely linked
 - Some Ramsey can be proved by Pigeonhole
 - They both satisfy “how many elements can guarantee a property”
• Ramsey numbers part of mathematical field of graph theory

• k_m is defined as a graph containing m nodes and all possible line between the nodes

• Ramsey functions notated as $K(r, b)=n$
 – K is Ramsey function
 – r, b are independent variables
 – n is result of Ramsey function; called Ramsey number

• Ramsey function gives smallest graph size that when colored in any pattern of only two colors, will not contain sub-graphs of size r or b (i.e. does not contain a k_r or k_b)
• The Ramsey number $R(m,n)$ gives the solution to the party problem, which asks the minimum number of guests $R(m,n)$ that must be invited so that at least m will know each other or at least n will not know each other.

• $R(X,1)=R(1,X)=1$

• $R(2,X)=X$

• $R(3,3)=??$
Ramsey Number

Example: $R(3,3) = 6$

- Is the 3rd Ramsey number 5?

 ![No](image)

 Possible to create a mapping without a k_3 in a 5-node graph (a k_5)

- Is the 3rd Ramsey number 6?

 ![Yes](image)

 Not possible to create a coloring without a k_3 in a 6-node graph (a k_6) and this $R(3,3) = 6$
Ramsay Theorem

• In the language of graph theory, the Ramsey number is the minimum number of vertices $v=R(m,n)$, such that all undirected simple graphs of order v contain a clique of order m or an independent set of order n.

• Ramsey theorem states that such a number exists for all m and n.
Existence Proof of $R(r,s)$

- for the 2-colour case, by induction on $r + s$
- Existance proof by proving a explicit bound
- base: for all n, $R(n, 1) = R(1, n) = 1$
- By the inductive hypothesis $R(r - 1, s)$ and $R(r, s - 1)$ exist.
- **Claim:** $R(r, s) \leq R(r - 1, s) + R(r, s - 1)$
Existence Proof of $R(r, s)$

1. Consider a complete graph on $R(r - 1, s) + R(r, s - 1)$ vertices.
2. Pick a vertex v from the graph, and partition the remaining vertices into two sets M and N, such that for every vertex w, w is in M if (v, w) is blue, and w is in N if (v, w) is red.
3. Because the graph has $R(r - 1, s) + R(r, s - 1) = |M| + |N| + 1$ vertices, it follows that either
 $$|M| \geq R(r - 1, s) \text{ or } |N| \geq R(r, s - 1)$$
4. In the former case, if M has a red K_s then so does the original graph and we are finished.
5. Otherwise M has a blue K_{r-1} and so $M \cup \{v\}$ has blue K_r by definition of M. The latter case is analogous.
6. $R(4, 3) =$??

Jan 30, 2012
Small Ramsey Numbers

- $R(4,3) \leq R(3,3) + R(4,2) \\ \leq 6 + 4 = 10$
- $R(4,3) = 9$

<table>
<thead>
<tr>
<th>M</th>
<th>N</th>
<th>R(M,N)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>Greenwood and Gleason 1955</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>9</td>
<td>Greenwood and Gleason 1955</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>36</td>
<td>Grinstead and Roberts 1982</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>[43, 49]</td>
<td>Exoo 1989b, McKay and Radziszowski 1995</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>[102, 165]</td>
<td>Kalbfleisch 1965, Mackey 1994</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>[17885, 9075135299]</td>
<td>Luo et al. 2002</td>
</tr>
</tbody>
</table>
A generalized Ramsey number

- A generalized Ramsey number is written
 \[r = R(M_1, M_2, \ldots, M_k; n) \]
- It is the smallest integer \(r \) such that, no matter how each \(n \)-element subset of an \(r \)-element sets is colored with \(k \) colors, there exists an \(i \) such that there is a subset of size \(M_i \), all of whose \(n \)-element subsets are color \(i \).
A generalized Ramsey number

- \(R(M_1, M_2, \ldots, M_k; n) \)
- when \(n > 2 \), little is known.
 - \(R(4,4,3)=13 \)

- When \(k > 2 \), little is known.
 - \(R(3,3,3)=14 \)

- Ramsey number tell us that \(R(m_1, m_2, \ldots, m_k; n) \) always exist!
Other Ramsey Theory

- Graph Ramsey Number
- Ramsey Polygon Number
- Ramsey of Bipartite graph
-
Graph Ramsey Number

• Given simple graphs G_1, \ldots, G_k, the graph Ramsey number $R(G_1, \ldots, G_k)$ is the smallest integer n such that every k-coloring of $E(K_n)$ contains a copy of G_i in color i for some i.
For any integers m and c, and any integers n_1, \ldots, n_c, there is an integer $R(n_1, \ldots, n_c; c, m)$ such that if the hyperedges of a complete m-hypergraph of order $R(n_1, \ldots, n_c; c, m)$ are coloured with c different colours, then for some i between 1 and c, the hypergraph must contain a complete sub-m-hypergraph of order n_i whose hyperedges are all colour i.

Jan 30, 2012
Ramsey Theory Applications

• Number Theory: Schur’s theorem

 if N *is partitioned into a finite number of classes, at least one partition class contains a solution to the equation* $x + y = z$.

• Computational geometry: Erdos-Szekeres theorem

 $2^{n-2} + 1 \leq g(n) \leq \binom{2n-4}{n-2}$

 where $g(n)$ denotes the smallest number such that any set of at least $g(n)$ points in general position in the plane contains n points in convex position. The Erdos-Szekeres theorem is the consequence of the finite Ramsey theorem.
Final Thoughts

• Results in Ramsey theory typically have two primary characteristics:
 – **non-constructive**: exist but non-constructive
 • This is same for pigeonhole
 – **Grow exponentially**: results requires these objects to be enormously large.
 • That’s why we still know small ramsey number
 • Computer is useless here!
The reason behind such Ramsey-type results is that: “The largest partition class always contains the desired substructure”.

REFERENCES

• Ramsey Theory and Related Topics (Fall 2004, 2.5 cu) J. Karhumaki
• Introduction to Graph Theory by Douglas B. West, 2-ed
• Applications of Discrete Mathematics by John G. Michaels, Kenneth H. Rosen
• http://en.wikipedia.org/wiki/Ramsey%27s_theorem
• Noga Alon and Michael Krivelevich [The Princeton Companion to Mathematics]
• Ramsey Theory Applications: Vera Rosta

Jan 30, 2012
Questions
Thank you