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Ramsey Number R(a, b)

R(a, b) is the minimum number n such that any bicoloring of the edges of
the n-vertex complete undirected graph Kn would contain a
monochromatic Ka or a monochromatic Kb.

R(1, 1) = 1,R(1, b) = 1
R(2, 2) = 2,R(2, b) = b

R(3, 3) = 6 R(4, 4) = 18 R(4, 5) = 25

R(6, 6) = 102− 165
R(10, 10) = 798− 23556
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Ramsey Number R(a, b)

R(a, b) is the minimum number n such that any bicoloring of the edges of the n-vertex

complete undirected graph Kn would contain a monochromatic Ka or a monochromatic

Kb.

Traditional Ramsey searches for complete structures ( like Ka or Kb ), but
what happens if we try to find complete bipartite structures?
Solving this basic question is the area of my research.
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Definition of R ′(a, b)

R ′(a, b) is the minimum number n such that any
bicoloring of the edges of the n-vertex complete
undirected graph Kn would contain a monochromatic Ka,b.

In other words, R ′(a, b) is the minimum number n so that any n-vertex
simple undirected graph G or its complement G ′ must contain the
complete bipartite graph Ka,b.
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R′(a, b) is the minimum number n such that any bicoloring of the edges of the n-vertex

complete undirected graph Kn would contain a monochromatic Ka,b.

R ′(1, 1) =?
any bicoloring of the edges of the R ′(1, 1)-vertex complete undirected
graph would contain a monochromatic K1,1.

Figure 1 : monochromatic K1,1 in bicoloring using red and blue.

R ′(1, 1) = 2
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R′(a, b) is the minimum number n such that any bicoloring of the edges of the n-vertex

complete undirected graph Kn would contain a monochromatic Ka,b.

R ′(1, 2) =?
any bicoloring of the edges of the R ′(1, 2)-vertex complete undirected
graph would contain a monochromatic K1,2.

V1

V2 V3

V1

V2 V3

V1

V2 V3

Figure 2 : monochromatic K1,2 in bicoloring using red and blue.

R ′(1, 2) = 3
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Figure 3 : K2,2 free graphs with n = 4 and n = 5 vertices.

R ′(1, 3) ≥ 6, observe that we need at least 4 vertices and neither a 4-cycle
nor it complement has a K1,3. Further, observe that neither a 5-cycle in
K5, nor its complement (also a 5-cycle) has a K1,3.

Non-constructive

Monotonically increasing

Grows exponentially

R ′(7, 7) ≤ 125500
R ′(8, 8) ≤ 7456621
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Results

1 R ′(1, b) = 2b, if b is odd.
R ′(1, b) = 2b − 1, if b is even.

2 R ′(2, b) > 2b + 1, for all integers b ≥ 2.

3 R ′(a, b) >
(2π)( 1

a+b ) ∗ a
(

a+ 1
2

a+b

)
∗ b

(
b+ 1

2
a+b

)
e

∗ 2( ab−1
a+b )

4 If e ∗ 21−ab ∗
(
ab
( n−2
a+b−2

)(a+b−2
b−1

)
+ 1
)
≤ 1, R ′(a, b) > n

5 For all n ∈ N and 0 < p < 1, if(n
a

)(n−a
b

)
pab +

(n
c

)(n−c
d

)
(1− p)cd < 1, then

R ′(a, b, c , d) > n.
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Results Continued..

6 R ′(p, q) ≤ R(p + q, p + q).

7 R ′(a, b) ≤ 2a ∗ R ′(a− 1, b), a < b.

8 if
n (n − 1)

2
≥ 2 ∗ a

2
∗ a

√
b − 1

a!
∗ n2− 1

a + 1,R ′(a, b) < n.

9 R ′(a, b, c) >

(2π)

(
3

2(a+b+c)

)
∗a

(
a+ 1

2
a+b+c

)
∗b

(
b+ 1

2
a+b+c

)
∗c

(
c+ 1

2
a+b+c

)
e ∗ 2( abc−1

a+b+c ).

10 If e ∗ 21−abc ∗
(
abc
( n−3
a+b+c−3

)(a+b+c−3
b−1

)(a+c−2
c−1

)
+ 1
)
≤ 1,

R ′(a, b, c) > n.

11 (Conjecture)R ′(1, 1, b) = b + 2.
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Theorem

2b − 1 ≤ R ′(1, b) ≤ 2b.

R ′(1, b) ≤ 2b : n = 2b vertices:
for any vertex x , there are exactly 2b− 1 possible neighbours, so by pigeon
hole principle, x must contain b neighbours in atleast one of G or G ′.
Those b neighbours combined with x forms the K1,b.

x

2b− 1 possible neighbours
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2b − 1 ≤ R ′(1, b) ≤ 2b.

R ′(1, b) ≥ 2b − 1 : n = 2b − 2(i.e < 2b − 1) vertices:
To show that R ′(1, b) ≥ 2b − 1, we need to give a general construction
with 2b − 2 vertices graphs G and G ′ free from K1,b. So our construction
would generate a graph G that is (b − 1)-regular(that will be obviously
free from K1,b), such that the number of possible neighbours for any
vertex in G ′ cannot exceed b − 1.

Construction of G :If b − 1 = 2m is even, put all the vertices around a
circle, and join each to its m nearest neighbors on either side.

Figure 4 : b − 1(= 2m) is even, m = 2 in here
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R ′(1, b) ≥ 2b − 1

Construction of G :If b − 1 = 2m is even, put all the vertices around a
circle, and join each to its m nearest neighbors on either side.
If b− 1 = 2m + 1 is odd (and as n = 2b− 2 is even), put the vertices on a
circle, join each to its m nearest neighbors on each side, and also to the
vertex directly opposite.

Figure 5 : b − 1(= 2m + 1) is odd, m = 2 here

This will result in a (b − 1)-regular graph G such that G and its
complement G ′ are free from K1,b.
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Theorem

R ′(1, b) = 2b, if b is odd.
R ′(1, b) = 2b − 1, if b is even.
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R ′(2, 2) > 5

Figure 6 : G and G ′ with n = 4 and n = 5 free from a K2,2

R ′(2, 2) = 6.
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R ′(2, 3) > 7

V1

V2

V3

V4 V5

V6

V7

V1

V2

V3

V4 V5

V6

V7

Figure 7 : G and G ′ with n = 7 without a K2,3
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Theorem

R ′(2, b) > 2b + 1, for all integers b ≥ 2.

v1

v2

vb+1

v2b−1

v2b

v2b+1
B1 B2

vb

B1 B2

v1

v2

v3

vb−1

vb

v2b

v2b−2

vb+2

vb+1

v2b−1

v1

v2

v3

vb−1

vb
vb+1

vb+2

v2b−2

v2b−1

v2b

v2b+1

B1 B2

Figure 8 : Construction of G (left two): generation of B1, B2 and addition of
edges. Resulting G ′(rightmost): In G ′, B1 and B2 become Kb, and only edges
between B1 and B2 is a matching.
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Theorem

R ′(3, 3) > 11.

V1 V1

V2 V2

V3 V3

V4 V4

V5 V5

V6 V6V7 V7

V8 V8

V9

V9

V10 V10

V11 V11

Figure 9 : G and G ′ with n = 11 without a K3,3
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Probabilistic lower bounds for R ′(a, b)

we want some (ideally as large as possible) n so that we can somehow
colour the edges of Kn using two colors (say red and blue) in such a way
that we get neither a red Ka or a blue Kb.

non-constructive, but shows such examples exist!

Earlier works..

The best known lower bound on R ′(a, b) due to Chung and Graham [4] is

R ′(a, b) >
(

2π
√
ab
)( 1

a+b )
∗
(
a + b

e2

)
∗ 2

ab−1
a+b (1)
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Probablistic Lower Bound

Theorem

R ′(a, b) >
(2π)

(
1

a + b

)
∗ a

a + 1
2

a + b


∗ b

b + 1
2

a + b


e

∗ 2

(
ab − 1

a + b

)

Proof: Let n be the number of vertices of graph G . Then the total
number of distinct Ka,b possible is(

n

a

)
∗
(
n − a

b

)

Each Ka,b has exactly ab edges. Each edge can be either of color 1 or
color 2 with equal probability. So probability of a particular Ka,b of color 1

is

(
1

2

)ab

. So probability that a particular Ka,b of either color 1 or color 2

exists is

2 ∗
(

1

2

)ab

= 21−ab (2)
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Probablistic Lower Bound

So probalility p of any monochromatic Ka,b =(
n

a

)
∗
(
n − a

b

)
∗ 21−ab (3)

Our objective is to choose as large n as possible with p < 1. So choosing

n =
2π

(
1

a + b

)
∗ a

a + 1
2

a + b


∗ b

b + 1
2

a + b


e

∗ 2

(
ab − 1

a + b

)
, we get p < 1.

This guarantees the existence of an n-vertex graph for which some edge
bicoloring would not result in any monochromatic Ka,b.
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A lower bound for R ′(a, b) using Lovász’ local lemma

Objective: existence of a monochromatic Ka,b in any bicoloring of the
edges of Kn.

Since the same edge may be present in many distinct Ka,b’s, the colouring
of any particular edge may effect the monochromaticity in many Ka,b’s.
This gives the motivation of use of Lovász’ local lemma (see [9]) in this
context.

Theorem (Lovász’ local lemma Corrolary)

If every event Ei , 1 ≤ i ≤ m is dependent on at most d other events and
Pr [Ei ] ≤ p, and if ep(d + 1) ≤ 1, then Pr

[⋂n
i=1 Ei

]
> 0.
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Improved bound using LLL

Theorem

If e ∗ 21−ab ∗
(
ab
( n−2
a+b−2

)(a+b−2
b−1

)
+ 1
)
≤ 1, R ′(a, b) > n

Proof: Let S be the set of edges of an arbitrary Ka,b, and let ES be the
event that all edges in this Ka,b are coloured monochromatically.

For each
such S , the probability of ES is P (ES) = 21−ab.
We enumerate the sets of edges of all possible Ka,b’s as S1,S2,...,Sm,
where m =

(n
a

)(n−a
b

)
.

Each event ESi is mutually independent of all the events ESj from the set

{ESj : |Si ∩ Sj | = 0} (4)

since for any such Sj , Si and Sj share no edges.
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Improved bound using LLL Cont..

Theorem

If e ∗ 21−ab ∗
(
ab
( n−2
a+b−2

)(a+b−2
b−1

)
+ 1
)
≤ 1, R ′(a, b) > n

For each ESi , the number of events outside this set satisfies the inequality
|{ESj : |Si ∩ Sj | ≥ 1}| ≤ ab

( n−2
a+b−2

)(a+b−2
b−1

)
as every Sj in this set shares at least one edge with Si , and therefore such
an Sj shares at least two vertices with Si .

We can choose the rest of the a + b − 2 vertices of Sj from the remaining
n − 2 vertices of Kn, out of which we can choose b − 1 for one partite of
Sj , and the remaining a− 1 to form the second partite of Sj , yielding a
Ka,b that shares at least one edge with Si .
We apply Corollary 6 to the set of events ES1 ,ES2 ,...,ESm , with

p = 21−ab , d = ab

(
n − 2

a + b − 2

)(
a + b − 2

b − 1

)
, (5)
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Ka,b that shares at least one edge with Si .
We apply Corollary 6 to the set of events ES1 ,ES2 ,...,ESm , with

p = 21−ab , d = ab

(
n − 2

a + b − 2

)(
a + b − 2

b − 1

)
, (5)
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Improved bound using LLL Cont..

Theorem

If e ∗ 21−ab ∗
(
ab
( n−2
a+b−2

)(a+b−2
b−1

)
+ 1
)
≤ 1, R ′(a, b) > n

We apply Corollary 6 to the set of events ES1 ,ES2 ,...,ESm , with
p = 21−ab , d = ab

( n−2
a+b−2

)(a+b−2
b−1

)
,

e ∗ 21−ab ∗
(
ab

(
n

a + b − 2

)(
a + b − 2

b − 1

)
+ 1

)
≤ 1 => Pr

[
m⋂
i=1

ESi

]
> 0

(6)

This non-zero probability (of none of the events ESi occuring, for
1 ≤ i ≤ m) implies the existence of some bicolouring of the edges of Kn

with no monochromatic Ka,b, thereby establishing the theorem.
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Table 1 : Lower bounds for R ′(a, b) from Inequality 1(left), Theorem 5 (middle)
and Theorem 7 (right)

b 3 4 5 6 7 8 14 15 16
a
1 2,3,3 2,3,4 3,4,5 3,5,6 3,5,7 3,6,8 5,10,17 5,11,18 6,12,19
2 3,4,4 3,5,6 4,6,7 5,7,9 5,8,10 6,9,12 9,17,23 10,18,24 10, 19, 26
3 4,5,6 5,7,8 6,8,9 7,10,12 8,12,14 9,14,16 16,26,32 17,29,35 18,31,37
4 6,9,10 8,11,12 10,14,15 12,16,18 14,19,22 26,41,46 28,45,50 30,49,55
5 11,14,16 13,18,20 16,22,24 19,27,29 40,60,65 43,67,72 47,74,80
6 17,23,25 21,29,31 26,35,38 59,87,93 66,98,104 72,109,116
7 27,37,39 34,46,48 86,123,129 96,139,147 106,156,165
8 43,58,61 119,168,178 136,193,204 152,219,232

14 556,755,820 678,922,1005 817,1113,1219
15 836,1136,1246 1019,1385,1525
16 1254,1704,1886
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Off-diagonal Ramsey-like numbers for complete bipartite
subgraphs

R ′(a, b, c , d) as the minimum number n so that any n-vertex simple
undirected graph G must contain a Ka,b or its complement G ′ must
contain the complete bipartite graph Kc,d .

Theorem

For all n ∈ N and 0 < p < 1, if(
n

a

)(
n − a

b

)
pab +

(
n

c

)(
n − c

d

)
(1− p)cd < 1 (7)

na, then R ′(a, b, c , d) > n.
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Existence of R ′(a, b)

Existance proof is achieved by proving following explicit bound.

Theorem

R ′(p, q) ≤ R(p + q, p + q).

Proof: From Ramsey theorem we know that for any positive integers p
and q, R(p, q) always exist.

Hence R(p + q, p + q) also exists. R(p + q, p + q) is the minimum
number such that any bicoloring of the graph with this number of vertices
always contain a monochromatic Kp+q.
As Kp+q always contains a subgraph Kp,q, hence the number that
guarantees a monochomatic Kp+q always guarantees a monochomatic
Kp,q.
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Upper Bounds on of R ′(a, b)

Theorem

R ′(a, b) ≤ 2a ∗ R ′(a− 1, b), a < b.

Theorem

if
n (n − 1)

2
≥ 2 ∗ a

2
∗ a

√
b − 1

a!
∗ n2− 1

a + 1,R ′(a, b) < n

Table 2 : Upper bounds on R ′(a, b) from Theorem 13

b 1 2 3 4 5 6 7 8
a
1 2 4 6 8 10 12 14 16
2 11 19 27 35 43 51 59
3 75 111 147 183 219 255
4 516 687 858 1028 1199
5 3339 4172 5005 5839
6 20742 24890 29037
7 125500 146415
8 7456621
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Lower bounds for Ramsey like numbers for complete
tripartite 3-uniform subgraphs

An r -uniform hypergraph is a hypergraph where every hyperedge has
exactly r vertices. (Hyperedges of a hypergraph are subsets of the
vertex set. So, usual graphs are 2-uniform hypergraphs.)

R ′(a, b, c) is the minimum number n such that any n-vertex 3-uniform
hypergraph G (V ,E ), or its complement G ′(V ,E ) contains a Ka,b,c .

Ka,b,c is defined as the complete tripartite 3-uniform hypergraph with
vertex set A ∪ B ∪ C , where the A, B and C have a, b and c vertices
respectively, and Ka,b,c has abc 3-uniform hyperedges {u, v ,w},
u ∈ A, v ∈ B and w ∈ C .
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Lower bounds for Ramsey like numbers for complete
tripartite 3-uniform subgraphs

R ′(1, 1, 1) = 3;

with 3 vertices, there is one possible 3-uniform hyperedge
which either is present or absent in G .

R ′(1, 1, 2) = 4.
R ′(1, 1, 3) = 5.
R ′(1, 1, 4) = 6.

Conjecture.

R ′(1, 1, b) = b + 2.
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Probabilistic lower bound for R ′(a, b, c)

Theorem

R′(a, b, c) >
(2π)

(
3

2 (a + b + c)

)
∗ a

 a + 1
2

a + b + c


∗ b

 b + 1
2

a + b + c


∗ c

 c + 1
2

a + b + c


e

∗ 2

(
abc − 1

a + b + c

)
(8)

Theorem

If e ∗ 21−abc ∗
(
abc
( n−3
a+b+c−3

)(a+b+c−3
b−1

)(a+c−2
c−1

)
+ 1
)
≤ 1, R ′(a, b, c) > n
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Table 3 : Lower bounds for R ′(a, b, c) by Inequality 14(left) and Theorem
15(right)

a=2 a=3 a=3 a=3 a=4 a=4 a=5 a=6 a=6 a=6 a=6
c 5 3 4 5 4 5 5 2 3 4 5
b
2 9,13 8,11 11,16 16,22 18,25 26,36 40,58 11,16 21,29 36,52 59,87
3 16,22 14,19 23,32 35,50 41,61 68,107 124,208 50,74 107,175 209,371
4 26,36 41,61 68,107 84,138 159,281 334,653 277,521 643,1354
5 40,58 124,208 334,653 800,1765 1740,4194
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Significance

it gives us the minimum number of vertices needed in a graph so that
two mutually disjoint subsets of vertices with cardinalities a and b can
be guaranteed to have the complete bipartite connectivity property.

In the analysis of social networks it may be worthwhile knowing
whether all persons in some subset of a persons share b friends.

In the analysis of transaction systems where either there are many
dependent transactions and we need to achieve consistency that
either all transactions take place or none of them occur.
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Conclusion

The reason behind such Ramsey-type results is that: ”The largest partition
class always contains the desired substructure”.

Whether R ′(2, b) is equal to 4b − 2 .

Whether R ′(3, b) is non exponential.

Constructive tighter lower bound for R ′(a, b).

Application of Lovász Local Lemma to Hypergraph Covering Problem.
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