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ABSTRACT

Real world complex networks such as social networks, biological networks usually

exhibit inhomogeneity, resulting in densely interconnected nodes, communities,

which play an important functional role in the original system. Analyzing such

communities in large networks has rapidly become one of the major topics in

complex networks. In this thesis, we study four different aspects related to com-

munities: (i) analyzing dependency of existing community detection algorithms

on vertex ordering, (ii) quantifying the extent of belongingness of nodes in a

community; (iii) unfolding the evolution dynamics of communities in a real-world

network; (iv) designing different community-based applications.

While observing the variability in the outputs obtained from community finding

algorithms, we notice that some groups of vertices always remain together despite

any vertex ordering. We call these groups constant communities. We characterize

constant communities and show that prior detection of such constant communities

improves the performance of a community detection algorithm and reduces the

variability of the output.

Then we quantify the membership of a vertex within a community by formulating

two vertex-centric metrics: permanence (Perm) for non-overlapping communities

and overlapping permanence (OPerm) for overlapping communities. We show

the effectiveness of these metrics by comparing the results with the ground-truth

community structure. We also design two algorithms, MaxPerm and MaxOPerm,

to detect non-overlapping and overlapping communities respectively.

We crawl a massive publication dataset of computer science domain constituting

more that 1.5 million scientific articles. We tag each paper by its related research

field(s) that act as ground-truth communities. Then we study the temporal
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interactions of these communities through citations over the last fifty years and

unfold the landscape of scientific paradigms. Moreover, we quantify the degree

of interdisciplinarity of each field and describe the evolutionary landscape of the

interdisciplinary fields over the years.

Finally, we study the citation growth of a paper after publication and discover six

distinct categories of citation profile. This observation leads us to adopt stratified

learning approach in a prediction task, whereby, we propose a two-stage model

to predict the future citation count of a paper after a certain time period of its

publication. We also design FeRoSA, a framework of faceted recommendation for

scientific articles that apart from ensuring quality retrieval also efficiently arranges

the recommended papers into different facets (categories) that indeed show how

these recommendations are related to the query paper.

Keywords: Community analysis, Permanence, Community detection algorithms,

Community evolution, Citation networks, Faceted recommendation system
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Chapter 1

Introduction

A complex network is a graph-based representation of the interactions amongst entities that

take place in the real world. Examples include social networks such as acquaintance net-

works [6], collaboration networks [157], technological networks such as the Internet [63]

and the World Wide Web [4], and biological networks such as neural networks [220],

and metabolic networks [107]. Real networks are not random and they usually exhibit

inhomogeneity [13], indicating the coexistence of order and organization. Furthermore,

the distribution of links also shows inhomogeneity, both globally and locally, describing

the phenomenon that nodes naturally cluster into groups and links are more likely to

connect nodes within the same group. This phenomenon tells us that the organization

of such complex network is modular. Network scientists call this organization as the

community structure of networks. Though there is a lack of consensus in the definition

of communities, most popular and well-accepted definition suggests that: communities

are the subsets of vertices within which vertex-vertex connections are dense, but between

which connections are less dense [78]. A figurative sketch and a real-world community

structure are shown in Figure 1.1. Analysis of such communities is essential to understand

the structural and the functional organizations of the network.

1
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(a) (b)

Figure 1.1: (a) A schematic representation of a network with community structure. (b)
Real-world community structure of American collage football team network [78]. The
communities are represented by different colors.

1.1 Major Challenges

Detecting communities is of prime importance in sociology, biology and computer science

disciplines where systems are often represented as graphs. This problem is very hard and

not yet satisfactorily solved, despite the huge effort of a large interdisciplinary community

of scientists working on it over the past one and half decades (see [66] for the reviews).

Besides this, several other challenges have been encountered during the analysis of

community structure in large networks, some of which are as follows:

• Most community detection algorithms are based on optimizing a combinatorial

parameter (for example, modularity [26, 163]). This optimization is generally

non-deterministic [31], thus merely changing the vertex order can alter the vertex-to-

community assignments. Therefore, a crucial question about the variance of results

in community assignment remains unanswered – what does the invariance of the

results tell us about the network structure?

• The goodness of community detection algorithms (see [69] for a review) is often

objectively measured according to how well they achieve the optimization. Mod-

ularity [163] is a widely accepted metric for measuring the quality of community

structure identified by various community detection algorithms. However, a growing
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body of research have begun to explore the limitations of maximizing modularity for

community identification and evaluation; three such limitations include – resolution

limit [81], degeneracy of solutions and asymptotic growth of the modularity value.

Therefore, a new goodness measurement metric needs to be formulated that can

overcome (or minimize) such limitations.

• Due to the limitations of the goodness measures (such as modularity) described

above, researchers often rely on manual inspection in order to evaluate the detected

communities. For each detected community an effort is made to interpret it as a

“real” community by identifying a common property or external attribute shared by

all the members of the community. Such anecdotal evaluation procedures require

extensive manual effort; therefore these are non-comprehensive and are limited to

small networks. Therefore, a possible solution would be to find a reliable definition

of explicitly labeled ground-truth communities.

• Although there is a large volume of research on community detection, systematic

post-hoc analysis of the communities, which can unfold interesting characteristic

properties of various real systems, is missing in the literature. For instance, temporal

community interactions on a longitudinal scale (i.e, with the progress of time) often

unveil the opportunity to analyze the rise and fall of dominant clusters in different

time points. This analysis might be helpful in detecting the trending topics in

Twitter, identifying major research fields in different scientific domains, information

diffusion among scientific communities [199] etc.

Given this scenario, it is clear that we need to develop a better understanding of community

structure in various types of large networks. The goal of our research is to study different

aspects of community analysis in complex networks that mainly focus on two major

directions – (i) identification of realistic communities in different large networks and (ii)

leveraging such community structure for developing various applications.
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1.2 Objectives

To deal with all the challenges mentioned above, we identify four major issues mentioned

below that contribute to different chapters of the thesis.

(i) Investigating the dependence of community detection algorithms on vertex order-
ing: Here we intend to study the variation of results produced by the algorithms due to

different vertex orderings. Moreover, we posit that despite any vertex ordering, there exist

some invariant groups in each network whose constituent vertices always remain together.

In particular, we ask the following questions – what does the invariance of the results tell

us about the network structure? what is the significance of these invariant substructures in

a network? how are they related with the actual community structure of a network?

(ii) Formulating a new metric for community analysis: Most of the community scoring

functions are global, thus do not imply anything about the vertices of a network. We believe

that the individual constituent vertices in a community do not belong to the community

with equal strength. Further, there is a lack of a proper quantitative indicator that would

entail the true modular structure of a network. For instance, the highest modularity in the

Jazz network is 0.45 and that of the Western USA power grid is 0.98 [156]. However,

it has been observed that Jazz has a much stronger community structure than the power

grid [156]. Therefore, formulation of a vertex-centric measure for community analysis that

correctly indicates the presence of community structure in a network is needed.

Here we intend to ask few fundamental questions pertaining to the community analysis of a

network – is the membership of vertices in a community homogeneous (which has been the

common consensus so far)? do we need to check the eligibility of a network for community

detection prior to running the community detection algorithm? can one formulate a metric

that suitably reduces the limitations of the existing metrics for community detection?

(iii) Analyzing real-world community structure: Several works on detecting and track-

ing communities in a temporal environment have been conducted [69]. However, the in-

teractive patterns of detected communities over a temporal scale still remain unexplored

mainly due to the lack of standard ground-truth community structure of a network. The

availability of ground-truth communities allows to explore a range of interesting charac-
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teristics of a time-varying systems. For example, deep understanding of the connectivity

structure in and across ground-truth communities could lead to realistic community detec-

tion methods. Here, we focus on a typical real network, citation network, whose nodes

correspond to scientific articles and links correspond to the citations from citing papers to

cited papers. We aim at investigating different aspects of this network such as – how do the

communities form in this network? what do the topological features of citation network

tell us? what can we learn from them? what kind of trends are observed over-time in these

networks? how often do authors publish and collaborate?

(iv) Developing community based applications: Once the community structure is de-

tected from a network, an immediate question might arise that how this information can

help us in building real applications. Citation profiles over time can be shown to group in

different communities, which can be further used to develop more accurate citation predic-

tion models. Further, it is possible to arrange citations into semantic communities which

can facilitate developing a full-fledged faceted recommendation system of scientific arti-

cles.

1.3 Constant Communities in Networks

An automatic way of detecting the communities from networks has attracted much

attention in recent years and many community detection algorithms have been proposed.

Most of these algorithms are based on the maximization of a quality function known

as modularity, which measures difference between the fraction of edges in the network

that connect vertices of the same type (within community type) and the expected value

of the same quantity in a network with the similar community divisions but random

connection between vertices (see Section 2.1.1). Modularity maximization is an NP-hard

problem [31], and most algorithms use heuristics. For several reasons related to the

modularity, as well as the non-determinism of the algorithms or randomness in initial

configuration, such algorithms often produce different partitions of similar quality, and

there is no reason to prefer one above another. Besides, such approaches may produce

communities with a high modularity in networks which have no community structure, e.g.,

random networks. This is related to the instability of algorithms: small perturbations of
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the input graph can significantly influence the output.

Here, we investigate the effect of input ordering on two non-deterministic agglomera-

tive methods for modularity maximization – (i) CNM algorithm [48] and (ii) Louvain

method [26]. Both these methods are based on combining appropriate pairs of vertices

to increase modularity. Based on these results, we posit that the permutation of the vertices

is a key point for obtaining high modularity. A bad permutation can lead to sub-optimal

combination of vertex pairs that in turn can affect the communities obtained. The notion of

stability is governed by the inherent compartmental structure of the nodes in a network. Our

intuition is based on the fact that some vertices always persist within same communities de-

spite any combinatorial ordering of input edge sequence. Those vertices may have some

intrinsic connectivity property that forces them not to share other communities under any

circumstance. We call such groups of vertices as constant communities and the constituent

vertices as constant vertices. We observe that if these constant vertices are grouped together

in the pre-processing step, it significantly improves the accuracy of hierarchical clustering

technique by increasing the modularity. We further analyze the properties of constant com-

munities in order to identify the characteristic that keep them together independent of the

order of the vertices in which the community detection algorithm is fed in. In particular,

we observe that constant vertices experience minimum “pull” from external nodes in the

network. Further, we present a case study on phoneme network and illustrate that constant

communities, quite strikingly, form the core functional units of the larger communities.

1.4 Permanence and Network Communities

Community detection algorithms primarily deal with identifying densely-connected units

from within large networks. So far, the common consensus in the analysis of the commu-

nity structure is that the community membership is homogeneous, i.e., each node belongs

to one or more communities with equal extent. Therefore, less attention has been paid in

analyzing individual vertices in a community, and a community is mostly considered as a

whole. Here we argue that the community membership of vertices is heterogeneous; where

few vertices have more involvement into the community and others have less. To quantify

the membership of a vertex, we need a proper local vertex-based metric. Modularity is a
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widely accepted global metric for measuring the quality of community structure identified

by various community detection algorithms. However, a growing body of research have

begun to explore the limitations of maximizing modularity for community identification

and evaluation; three such limitations include – resolution limit [67], degeneracy of

solutions [81] and asymptotic growth of the modularity value [81].

To address these issues, we here propose a novel vertex-level metric called permanence

(Perm) for analyzing disjoint communities which is built on the notion of relative pull

experienced by a vertex from its neighbors that lie external to its own community. The

value of permanence indicates the extent to which a vertex belongs to a community.

We show that this metric as compared to other standard measures, namely modularity,

conductance and cut-ratio qualifies as a better community scoring function for evaluating

the detected community structures from both synthetic and real-world networks. We

demonstrate that the process of maximizing permanence produces communities that

concur with the ground-truth structure of the networks more accurately than the modularity

based and other approaches. Finally, we show that maximizing permanence (named as

MaxPerm) can effectively reduce the limitations associated with modularity maximization

as well as can indirectly help in inferring the community quality of a network.

Further, we formulate a generalized version of this metric called overlapping permanence

(abbreviated as OPerm) that, although is developed for overlapping community, translates

to the non-overlapping case under special boundary conditions. Note that this is one of

the rarest formulations which can be useful for both non-overlapping and overlapping

community analysis. Since every vertex gets scored by this metric, it can be used to rank

the vertices within a community as well as can give an overview of the belongingness of

nodes in the community. Detailed experimentation demonstrates OPerm’s superiority over

other state-of-the-art scoring metrics in terms of performance as well as its resilience to

minor perturbations. We also present an algorithm, MaxOPerm, to detect communities

based on maximizing OPerm. Over a test suite of synthetic and six large real-world

networks we show that MaxOPerm outperforms six state-of-the-art algorithms in terms

of accurately predicting the ground-truth labels. We also demonstrate that MaxOPerm is

resistant to degeneracy of solution. Further, we introduce the resolution limit problem in

the context of overlapping communities and show that an algorithm which can maximize

OPerm can effectively tackle the problem.
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1.5 Analyzing Ground-truth Communities

Most of the existing works on community analysis have concentrated on developing and

improving the algorithms for discovering communities. Evaluating the performance of

such algorithms is incomplete without comparing the detected output with the actual

ground-truth community structure of the network under investigation. However, such

ground-truth community structure is limited in number. Moreover, availability of such

community structure of a labeled network would unveil the opportunity to investigate its

characteristics and functionality thoroughly. To this purpose, we particularly focus on a

scientific network, called citation network, whose nodes indicate scientific articles and

links correspond to the citations. We gather all the papers in computer science domain

published in the last fifty years and indexed by Microsoft Academic Search1. Each paper

comes along with various bibliographic information – the title of the paper, a unique index

number, its author(s) etc. Each individual community in a citation network is naturally

defined by a research field – i.e., acting as ground-truth. Then we study the interactions

among these communities through citations in real time which unfold the landscape of

dynamic research trends in the computer science domain over the last fifty years. We

quantify the interaction in terms of a metric called inwardness that captures the effect

of local citations to express the degree of authoritativeness of a community (research

field) at a particular time instance. Several arguments to unfold the reasons behind the

temporal changes of inwardness of different communities are put forward using exhaustive

statistical analysis. The measurements (importance of field) are compared with the project

funding statistics of NSF and it is found that the two agree to a considerable extent.

As a second step we quantify the interdisciplinarity of a research field through four

indicative measures. Three of the indicators, namely Reference Diversity Index (RDI),

Citation Diversity Index (CDI) and Membership Diversity Index (MDI) are directly related

to the topological structure of the citation network. The last feature called the Attraction

Index of a field is based on the propensity of the new researchers to start research in

a particular field. Further, to check the significance of these features in characterizing

interdisciplinarity, we rank the fields based on the value of each of the features separately.

Next, we propose an unsupervised classification model that can efficiently cluster the core

1http://academic.research.microsoft.com/

http://academic.research.microsoft.com/


1.6 Community-based Applications 9

and the interdisciplinary fields based on the similarity of the feature sets mentioned above.

To understand the evolutionary landscape of a core field vis-a-vis an interdisciplinary field,

we conduct a case study on one popularly accepted interdisciplinary field (WWW) and one

core field (Programming Languages). The results attest to the conclusion that the inter-

disciplinarity occurs through cross-fertilization of ideas between the fields that otherwise

have little overlap as they are studied independently. The conclusion that popularity of

the interdisciplinary research now-a-days overshadows the core fields is strengthened on

analyzing the core-periphery organization of the citation network at different time periods.

We observe that the core region of a domain is gradually dominated by the more applied

fields with interdisciplinary fields steadily accelerating towards the core.

The rich citation dataset further allows us to conduct an author-centric analysis. In par-

ticular, we analyze the diverse scientific careers of researchers in order to understand the

key factors that could lead to a successful career. Essentially, we intend to answer some

specific questions pertaining to a researcher’s scientific career – what are the local and the

global dynamics regulating a researcher’s decision to select a new field of research at dif-

ferent points of her entire career? what are the suitable quantitative indicators to measure

the diversity of a researcher’s scientific career? We propose two entropy-based metrics to

measure a researcher’s choice of research topics. Experiments with large computer science

bibliographic dataset reveal that there is a strong correlation between the diversity of the ca-

reer of a researcher and her success in scientific research in terms of the number of citations.

We observe that while most of the researchers are biased toward either adopting diverse re-

search fields or concentrating on very few fields, a majority of the highly cited researchers

tend to follow a typical “scatter-gather” policy – although their entire careers are immensely

diverse with different types of fields selected at different time periods, they remain focused

primarily in at most one or two fields at any particular time point of their career.

1.6 Community-based Applications

The group of homogeneous entities can be useful in several applications. Here we

particularly focus on two major applications that are built on the citation networks and

publication datasets. Prior to that, we study another important aspect of a scientific article,
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its growth of citation counts over time after the publication. A common consensus in the

literature is that the citation profile of published articles in general follows a universal

pattern – an initial growth in the number of citations within the first two to three years

after publication followed by a steady peak of one to two years and then a final decline

over the rest of the lifetime of the article. This observation has long been the underlying

heuristic in determining major bibliometric factors such as the quality of a publication, the

growth of scientific communities, impact factor of publication venues etc. We study the

citation network once again and notice that the citation count of the articles over the years

follows a remarkably diverse set of patterns – a profile with an initial peak (PeakInit),

with distinct multiple peaks (PeakMul), that exhibits a peak late in time (PeakLate),

that is monotonically decreasing (MonDec), that is monotonically increasing (MonIncr)

and that cannot be categorized into any of the above (Oth)). The papers following same

citation profile are assumed to form separate community. We systematically investigate

the important characteristics of each of these categories.

Then we leverage this category information in order to develop a prediction model that

predicts future citation count of a scientific article after a given time interval of its publica-

tion. We propose to categorize the complete set of data samples into different subparts each

of which corresponds to one type of citation pattern mentioned earlier. This approach is

commonly termed as stratified learning in the literature where the members of the stratified

space are divided into homogeneous subgroups (aka strata) before sampling. We develop

a two-stage prediction model – in the first stage, a query paper is mapped into one of the

strata using a Support Vector Machine (SVM) approach that learns from a bunch of fea-

tures related to the author, the venue of the publication and the content of the paper; in the

second stage, only those papers corresponding to the strata of the query paper are used to

train a Support Vector Regression (SVR) module to predict the future citation count of the

query paper. For the same set of features available at the time of publication, the two-stage

prediction model remarkably outperforms (to the extent of 50% overall improvement) the

well-known baseline model. Our two-stage prediction model produces significantly better

accuracy in predicting the future citation count of the highly-cited papers that might serve

as an useful tool in early prediction of the seminal papers that are going to be popular in the

near future. We also show that including the first few years of citations of the paper into the

feature set can significantly improve the prediction accuracy especially in the long term.
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Finally, we arrange citations into semantic communities based on the relation of a

cited paper with the citing paper. We use this grouping to propose for the first time a

framework of faceted recommendation for scientific articles, FeRoSA which apart from

ensuring quality retrieval of scientific articles for a particular query paper, also efficiently

arranges the recommended papers into different facets (categories). Our methodology is

based on a principled framework of random walks where both the citation links and the

content information are systematically taken into account in recommending the relevant

results. First, citation links are categorized into four classes/facets, namely Background,

Alternative Approaches, Methods and Comparison. Following this, for a particular query

paper, we collect an initial pool of papers containing nearest citation-based neighborhoods

and papers having high content-similarity with the query paper, and make an induced

graph individually for each facet. Next, a random walk with restarts is performed from

the query paper on each of the induced subgraphs and a ranked list of papers is obtained.

We further prepare another ranked list of papers based on the content similarity. The final

ranking is obtained in a principled way by combining multiple ranked lists. Our method

is easy to implement and has very elegant and principled way of retrieving the relevant

results irrespective of the choice of the facets. Human experts are asked to judge the

recommendations of the competing systems. Experimental results show that our system

outperforms the baseline systems with respect to different standard measures which are

used to evaluate a recommendation system. In terms of overall precision, FeRoSA achieves

an improvement of 29.5% compared to the best competing system. We also evaluate and

compare the results separately for different facets (average overall precision of 0.65) and

model parameters to have a thorough understanding of the performance of the system.

1.7 Contributions

In this thesis, we consider community analysis in complex network as a prime objective,

which has been one of the active research topic for quite some time in different branches

of science including computer science, physics, mathematics and biology. Despite a large

volume of research in this area, few fundamental problems have remained unanswered or

have not been solved satisfactorily. Here we attempt to analyze such problems. Moreover,
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we focus on citation network and study different structural and functional aspects of this

network. Finally, we design two applications based on the publication dataset which

leverage the community information of the underlying network. A brief report (which

we shall elaborate in the forthcoming chapters) on these studies and the results obtained

thereby, are presented below.

1.7.1 Constant Communities in Networks

Although enormous effort has been devoted to design efficient community detection

algorithms, most of these algorithms follow a general framework – these algorithms try

to optimize certain objective functions (such as modularity) by grouping vertices, which

results in the partitioning of the vertices in the network. However, most of these algorithms

are highly dependent on the ordering in which the vertices are processed as a result of

which the algorithms produce different outputs in different iterations for a particular

network. An exhaustive study of this phenomenon reveals the following interesting results:

(a) We conduct this experiment on a set of scale-free networks and observe that while the

vertex orderings produce very different set of communities, some groups of vertices

are always allocated to the same community for all different orderings. We define the

group of vertices that remain invariant as constant community and the vertices that are

part of the constant communities as constant vertices.

(b) Although constant communities are detected using the outputs obtained from certain

community detection algorithms, we notice that these groups are the invariant part of

a network, irrespective of the heuristic being used to detect the communities.

(c) Another issue that has not been studied earlier is whether a network at all contains

community structure or not. For instance, a random network or a grid network does not

have strong community structure as compared to the ring of cliques. Therefore, we pro-

pose a metric, called sensitivity (based on the number of constant communities within

a network) which efficiently demonstrates how community-like a network is. Later in

Chapter 4, we use this metric to measure the degeneracy of solutions of an algorithm,

which although has been studied several times, is quantified here for the first time.
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(d) Constant communities are quite different from the actual community structure of

a network. For instance, constant communities do not always have more internal

connections than external connections. Rather, the strength of the community is

determined by the number of different external communities to which it is connected.

Therefore, we characterize constant vertices by a metric called relative pull, which

indicates that the constant vertices do not experience a significant “pull” from any

of the external communities that will cause them not to migrate, and, therefore, their

propensity to remain within their own communities is high.

(e) Further, we show that if these constant communities are identified prior to any

community detection, and each constant community is combined into a super-vertex,

it not only increases the efficiency of any community detection algorithm, but also

reduces the variability of the final output.

(f) Finally, we conduct a case study on a specific type of labeled linguistic network

constructed from the speech sound inventories of the world’s languages. We discover

constant communities from this network and observe that each such graph represents

a natural class, i.e., a set of consonants that have a large overlap of the features. Such

groups are frequently found to appear together across languages.

1.7.2 Permanence and Network Communities

Motivated by the earlier study on constant communities, we further investigate the

community structure of real-world networks. Since many real-world communities are

based on subjective measurements (as opposed to a formal definition), often the optimum

value of the parameters are successful in identifying only a fraction of the “ground-truth”

communities. Moreover, as observed in the phenomena of resolution limit [67] and

degeneracy of solutions [81], the optimum parameter value sometimes produces intuitively

incorrect solutions in ideal networks. As a response to these issues, new metrics are

being regularly proposed [96, 231], that either produce more accurate results on a certain

subclass of networks and/or can address some of these inherent problems.

Despite the on-going research in this area, an important question is whether it is always rea-
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sonable to assign every individual vertex to a community. Not all networks possess commu-

nity structures of equal strength. For example, a network composed of several sparsely con-

nected dense cliques will have strong communities whereas a grid will not have any com-

munity structure at all, and between these two extremes there exist communities of different

strength as per the network structure. As of now, there is no community detection metric

that can measure to what extent a vertex is a part of a community. One of the reasons for

this deficiency is that the optimum value of the parameters such as modularity is not exactly

related to whether the network possesses a strong community, but rather tries to identify the

best community assignment, for any given network. Indeed, most algorithms output a set

of communities regardless of whether the network (such as a grid) possesses a community

structure or not. A corollary to this problem is that given a suboptimal answer we cannot

estimate how close we are to the correct result and in the absence of ground-truth commu-

nity structure, we cannot even judge whether the obtained answer is reliable or not. These

are serious limitations for a field that regularly encounters new applications and datasets.

Here, we attempt to address some of the above issues by introducing permanence (Perm),

which is a metric that measures the propensity of a vertex in its assigned community. The

values range from 1 (the vertex is perfectly assigned to the community) to -1 (the vertex

is absolutely incorrectly assigned). The values of permanence provide an estimate of how

much a vertex belongs to its assigned community and the extent to which it is “pulled” by

the neighboring communities. For example, if the permanence is zero, this indicates that

the vertex is pulled equally by all its neighboring communities. In these cases, it might

be better to assign the vertices to a singleton community (i.e., community containing only

one vertex), rather than assigning it to one of the (larger size) neighboring communities.

Similarly, we propose a generalized metric, called overlapping permanence (abbreviated

as OPerm) which although is developed for overlapping community, can self-tune itself

for the non-overlapping case.

The sum of the Perm (OPerm) of all vertices, normalized by the number of vertices,

provides the overall Perm (overall OPerm) of the network. These values indicate to what

extent, on an average, the vertices of a network are in their correct communities. This ap-

proach of combining the microscopic (vertex-level) information to obtain the mesoscopic

(community-level) information provides a more fine-grained view of the modular structure

of the network. Specifically, Perm (OPerm) of a graph produces high values only if the
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network possesses an inherent community structure across most of its vertices. As the com-

munity structure of the networks degrades, so does the value of Perm (OPerm) of the entire

network. As we shall demonstrate in Chapter 4, the principal benefits of our approach are:

(a) The proposed metrics are found to be remarkably suitable for evaluating the good-

ness of the community structure obtained from different community identification

algorithms.

(b) Perm (OPerm) is appropriately sensitive to the different perturbations of the network

which should be an ideal property of a community scoring metric.

(c) OPerm is one of the rare formulations which can self-tune itself for both non-

overlapping and overlapping communities depending on the network structure.

(d) OPerm provides a deep understanding of how vertices are organized within a commu-

nity; specifically, OPerm values follow a Gaussian distribution and the medium-valued

vertices are maximally overlapped and have the highest degree.

(e) We identify a precise rank order among the vertices within a community by arranging

them into a core-periphery structure based on OPerm; this rank order can be further

used as an input for various other applications (e.g., initiator selections in message

spreading).

(f) Maximizing Perm (maximizing OPerm) is more successful in finding ground-truth

communities as compared to state-of-the-art algorithms.

(g) Community detection using maximizing Perm (maximizing OPerm) can overcome the

problem related to resolution limit, degeneracy of solutions, in many networks. More-

over, the value of Perm (OPerm) is relatively independent of the size of the network.

1.7.3 Analyzing Ground-truth Communities

Even though modeling network communities is a fundamental problem, our understanding

of networks at the level of these communities has been relatively less. Moreover, the lack

of reliable ground-truth makes the evaluation of such models extremely difficult. Here we
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study the connectivity structure of ground-truth communities of a real network, citation

network of computer science domain whose nodes correspond to the scientific articles and

links correspond to the citations. Our work is based on a large scale citation network where

we can reliably define the notion of ground-truth communities. In this network, each paper

(node) is marked by its relevant research field; thus citation interactions among papers

within a same research field are relatively higher than across fields. These fields therefore

act as ground-truth communities in the network. The availability of the reliable ground-

truth communities has a profound effect, such as it allows us to understand the connectivity

structure of the ground-truth communities and the interaction among these communities

that has the potential to portray a significantly better picture of the underlying systems.

(a) To start with, we first study the temporal interaction among communities in citation

network by defining a metric called “authoritativeness” which measures the impact of

a community in a particular time period. These patterns of interaction, when analyzed

carefully, reveal various interesting elements that are either directly or indirectly

related to the overall decline in the interest in a field followed by the rise of interest

in another. One of the most striking observations is that in almost all cases, the field

constituting the current “hottest” area of research within the domain is overtaken in

the immediate future by its strongest competitor.

(b) We further investigate the cause of such focus shifts from different and possibly or-

thogonal directions and observe that (a) the density of high impact publications within

a field plays a pivotal role in pulling as well as sustaining the field at the forefront, (b)

certain fields produce a huge number of citations (i.e., act as hubs) for a particular field

and, thereby, push it to the forefront; an abrupt fall in the number of such received cita-

tions, in many cases, triggers the decline of the field currently at the forefront, (c) incep-

tion of seminal papers in a field might trigger the emergence of a field at the forefront,

and (d) the extent of team work (both within and across continents) in the form of joint

publications seem to significantly contribute to the shape of the evolutionary landscape.

(c) A careful analysis of the funding trends by NSF (National Science Foundation of the

United States of America) shows that our results correlate very well with the number

of proposals submitted in each field while they correlate moderately well with the

actual funding decisions.
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A common consensus among researchers is that interdisciplinarity is one of the key factors

in doing research at current times. However, a pertinent question deals with identifying

appropriate indicators of interdisciplinarity. Using a set of citation based indicators, here

we investigate the evolution of the extent of interdisciplinary research in computer science.

For this, we study the citation network from different orthogonal directions, namely cita-

tion and reference patterns of a paper, overlapping membership of the papers in different

research communities, inclination of the researchers to adopt new fields, and propose

several indices to quantify the degree of interdisciplinarity of a field. The new indices of

interdisciplinarity corroborate with the hypothesis that the emergence of interdisciplinarity

occurs through cross-fertilization of ideas between the sub-fields that otherwise have little

overlap as they are studied independently. At the end, we analyze the core-periphery

organization of citation networks and arrive to the conclusion that with the advancement

of interdisciplinary research, the core part of the network is also changing from theoretical

towards more applied fields of research. Some of our observations are as follows.

(a) The practice of interdisciplinarity in citations occurs mainly between related scientific

communities, and this phenomenon has been witnessed to tremendously increase over

the last few years.

(b) Few fields such as Data Mining, WWW, Natural Language Processing, Computa-

tional Biology, Computer Vision, Computer Education provide clear indications of

interdisciplinarity in terms of all the metrics proposed here.

(c) Core-periphery analysis on the citation network shows that the interdisciplinary fields

are accelerating steadily toward the core of computer science domain.

(d) For already very interdisciplinary fields, such as Data Mining, the indicators may have

a certain “saturation” effect forcing it towards the core region of the computer science

domain.

Finally, we conduct an author-level analysis where we particularly investigate the research

field adaptation process of a researcher in order to understand the key factors that could

lead to a successful career. To start with, we quantify the diversity of a scientific career by

proposing two entropy-based measures. Then several analyses are conducted to understand

the career of researchers. Major contributions here are as follows.
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(a) The average behavior indicates that a researcher tends to adopt few research fields in

her entire research career, and she seems to prefer to work simultaneously on all of

them together.

(b) A highly-cited researcher tends to work in many fields over her entire career but

remains confined to one or few fields in each time window. However, the number of

such researchers is very less in our dataset.

(c) The researchers who have tried various fields in the entire career as well and in each

successive time period, get low citations.

1.7.4 Community-based Applications

Once the community structure of a network is detected, a natural question would be as to

how can we use this information in designing real systems. We use publication dataset,

citation network and the community structure, and design two applications – future citation

count prediction of a paper after publication and faceted recommendation system for

scientific articles. The major contributions from this study are mentioned below.

1. We first start analyzing the citation profile of the papers and reveal six different

patterns – a profile with an initial peak (PeakInit), with distinct multiple peaks

(PeakMul), that exhibits a peak late in time (PeakLate), that is monotonically

decreasing (MonDec), that is monotonically increasing (MonIncr) and that can not

be categorized into any of the above (Oth)).

2. While analyzing the characteristic of these categories, we observe that most of

the papers in PeakInit (64.35%) and MonDec (60.73%) categories are published

in conferences, whereas papers belonging to PeakLate (60.11%) and MonIncr

(74.74%) categories are mostly published in journals. Hence, if a publication starts

receiving greater attention or citations at a later part of its lifetime, it is more likely

to be published in a journal and vice versa.

3. We observe that papers in MonDec are vastly affected by the self-citation phe-

nomenon, i.e., around 35% of papers in MonDec would have been in the ‘Oth’
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category had it not been due to the self-citations. The result also agrees with the

observation that MonIncr category is least affected by self-citations, followed by

PeakLate, PeakMul and PeakInit in that order.

4. We study the stability of each category by analyzing the migration of papers from

one category to others over time. We observe that apart from the Oth category,

MonDec seems to be the most stable, which is followed by PeakInit. However,

papers which are assumed to fall in Oth category quite often turn out to be MonIncr

papers in the later time periods.

5. We analyze the core-periphery organization of the citation network and observe

that PeakMul category gradually leaves the peripheral region over time and mostly

occupies the innermost shells. PeakInit and MonDec show almost similar behavior

with a major proportion of papers in inner cores in the initial year but gradually

shifting towards peripheral regions. On the other hand, MonIncr and PeakLate show

expected behavior with their proportion increasing in the inner shells over time

indicating their rising relevance as time progresses.

6. Our proposed framework for future citation count prediction incorporates a stratified

learning approach in the traditional framework which in turn remarkably enhances

the overall performance of the prediction model.

7. Our two-stage model produces significantly better accuracy in predicting the future

citation count of the highly-cited papers that might serve as an useful tool in early

prediction of the seminal papers that are going to be popular in the near future.

8. The faceted recommendation system, FeRoSA is primarily built on the semantic

annotation of citations in citation network. While evaluating the system based on

expert judgment, FeRoSA achieves an overall precision (OP) of 0.65, 29.5% higher

than the next best system. Thus, the recommendations generated by our framework

are found to be of high quality even if the method is very simple to implement.

9. FeRoSA also achieves a reasonably high precision for the query papers with low

citations (OP of 0.57 with the next best system having an OP of 0.46).
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1.8 Organization of the Thesis

The thesis is organized into seven chapters.

Chapter 2 presents a detailed literature survey on the state-of-the-art in community analy-

sis for different networks and their usage in different applications.

Chapter 3 centers around our first objective of constant communities in complex networks.

We detect constant communities in a brute-force manner and study their structural prop-

erties. We show that identifying constant communities prior to any community detection

enhances the performance of any community detection algorithms.

Chapter 4 investigates in detail our second objective, i.e., formulation of permanence and

overlapping permanence for community analysis. We further develop two community de-

tection algorithms using these metrics.

Chapter 5 explains our third objective of analyzing the ground-truth community structure

of citation network. We study three subproblems pertaining to citation network. First, we

unfold the rise and fall of scientific research in computer science domain over last fifty

years. Second, we propose four metrics to quantify the degree of interdisciplinarity of a

research field. Third, we study the field adoption process of a researcher over her entire

research career.

Chapter 6 presents our final objective of designing different community-based applica-

tions. In particular, we design two systems: (i) future citation count prediction of a scien-

tific article after publication, and (ii) a faceted paper recommendation system for scientific

articles.

Chapter 7 concludes the thesis by summarizing the contributions and pointing to a few

topics of future research that have opened up from this work.
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Related Work

In this chapter, we discuss relevant studies related to the objectives of this thesis. Partic-

ularly, the literature review is conducted in two broad directions: first, we shall describe

the metrics and methods used in community detection, and second, we shall elaborate the

analysis of community structure and its usage in various applications.

2.1 Survey on Community Detection and Evaluation

In this section, we survey the current literature on the community identification problem

and other closely related problems. First, we review the work on identifying non-

overlapping and overlapping communities in different networks. Following this, we

present various metrics used to evaluate the community structures.

2.1.1 Non-overlapping Community Detection

A wide spectrum of community detection methods have been proposed to detect disjoint

communities from static networks. Interested readers are encouraged to read the following

survey papers: Fortunato [66], Lancichinetti, Fortunato [121], Harenberg et al. [90]. All

21
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these algorithms can be roughly divided into the following categories.

Traditional Methods

(i) Graph partitioning: The problem of graph partitioning consists of dividing the vertices

in different groups of predefined size, such that the number of edges lying between the

groups is minimal. The number of edges running between clusters is called cut size. There

are several algorithms that can do a good job, even if their solutions are not necessarily

optimal [109,181]. Another popular technique is the spectral bisection method [15], which

is based on the properties of the spectrum of the Laplacian matrix. Graphs can be also

partitioned by minimizing measures that are affine to the cut size, like conductance [29],

ratio cut [221] and normalized cut [198]. Algorithms for graph partitioning are not good

for community detection, because it is necessary to provide as input the number of groups

and in some cases even their sizes, about which in principle has no prior information.

(ii) Hierarchical clustering: Most of the real-world graphs have a hierarchical structure,

i.e., display several levels of grouping of the vertices, with small clusters included within

large clusters, which are in turn included in larger clusters, and so on. In such cases, one

may use hierarchical clustering algorithms [93], i.e. clustering techniques that reveal the

multilevel structure of the graph. Hierarchical clustering techniques can be classified in two

categories: Agglomerative (bottom-up) and Divisive (top-down) algorithms. Hierarchical

clustering has the advantage that it does not require a prior knowledge of the number and

size of the clusters. However, it does not provide a way to discriminate between many

partitions obtained by the procedure, and to choose that or those partitions which better

represent the community structure of the graph. The results of the method depend on the

specific similarity measure adopted. The procedure also yields a hierarchical structure by

construction, which is rather artificial in most cases, since the graph at hand may not have

a hierarchical structure at all [160].

(iii) Partitional clustering: Partitional clustering assumes that the number of clusters is

predefined, say k. The points are embedded in a metric space, so that each vertex is a point

and a distance measure is defined between pairs of points in the space. The distance is a

measure of dissimilarity between vertices. The goal is to separate the points in k clusters
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so as to maximize/minimize a cost function based on distances between points and/or from

points to centroids. Few such functions include minimum k-clustering, k-clustering sum,

k-center, k-median. The most popular partitional technique in the literature is k-means

clustering [141]. Extensions of k-means clustering to graphs have been proposed by some

authors [22, 100]. The limitation of partitional clustering is the same as that of the graph

partitioning algorithms: the number of clusters must be specified at the beginning, the

method is not able to derive it.

(iv) Spectral clustering: Spectral clustering includes all methods and techniques that

partition the set of vertices into clusters by using the eigenvectors of matrices or other

matrices derived from it. In particular, the objects could be points in some metric space,

or the vertices of a graph. Spectral clustering consists of a transformation of the initial set

of objects into a set of points in space, whose coordinates are elements of eigenvectors.

The set of points is then clustered via standard techniques, like k-means clustering. The

first contribution on spectral clustering was by Donath and Hoffmann [55]. There are

three popular methods of spectral clustering: unnormalized spectral clustering and two

normalized spectral clustering techniques, proposed by Shi and Malik [198] and by Ng et

al. [165] respectively. However, Nadler and Galun [152] discussed the limitations of this

method such as it cannot successfully cluster datasets that contain structures at different

scales of size and density.

Divisive Algorithms

The philosophy of divisive algorithms is to detect the edges that connect vertices of

different communities and remove them, so that the clusters get disconnected from each

other. The most popular algorithm is the one proposed by Girvan and Newman [163]. The

method is historically important, because it marked the beginning of a new era in the field

of community detection. Here edges are selected according to the values of edge between-

ness centrality. Tyler et al. proposed a modification of the Girvan-Newman algorithm, to

improve the speed of the calculation [211]. Another fast version of the Girvan-Newman

algorithm has been proposed by Rattigan et al. [185]. Here, a quick approximation of the

edge betweenness values is carried out by using a network structure index, which consists

of a set of vertex annotations combined with a distance measure. In this line, gradually
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two community detection algorithms have been proposed for overlapping community

detection, namely the concept of vertex splitting [179] and CONGA (Cluster Overlap

Newman-Girvan Algorithm) [83].

Modularity-based Algorithms

Modularity (introduced by Newman and Girvan [163]) is by far the most used and best

known quality function. It is based on the idea that a random graph is not expected to have

a cluster structure, so the actual strength of clusters is revealed by the comparison between

the actual density of edges in a subgraph and the density one would expect to have in the

subgraph if the vertices of the graph were attached regardless of community structure.

This expected edge density depends on the chosen null model, i.e., a copy of the original

graph retaining some of its structural properties but not community structure. Modularity

can then be written as follows:

Q =
1

2m

∑
ij

(Aij −
kikj
2m

)δ(Ci, Cj) (2.1)

where the sum runs over all pairs of vertices, A is the adjacency matrix, m the total number

of edges of the graph, ki the degree of vertex i, the δ-function yields one if vertices i and

j are in the same community (Ci = Cj), zero otherwise. By assumption, high values

of modularity indicate good partitions. All clustering techniques that require modularity,

directly and/or indirectly can be classified as follows.

(i) Greedy techniques: The first algorithm devised to maximize modularity was a greedy

method proposed by Newman [161]. It is an agglomerative hierarchical clustering method,

where groups of vertices are successively joined to form larger communities such that

modularity increases after the merging. Later on, Clauset et al. [48] proposed more

efficient data structure like max-heaps to make Newman’s algorithm faster. Danon et

al. [52] suggested to normalize the modularity variation ∆Q produced by the merger of

two communities by the fraction of edges incident to one of the two communities, in order

to favor small clusters. Wakita and Tsurumi [217] noticed that, due to the bias towards

large communities, the fast algorithm by Clauset et al. is inefficient, because it yields
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very unbalanced dendrograms. Another trick to avoid the formation of large communities

was proposed by Schuetz and Caflisch [193]. A different greedy approach has been

introduced by Blondel et al. [26] (mostly known as Louvain algorithm), for the general

case of weighted graphs. The method consists of two phases. First, it looks for “small”

communities by optimizing modularity locally. Second, it aggregates nodes of the same

community and builds a new network whose nodes are the communities obtained in the

first stage. These steps are repeated iteratively until a maximum of modularity is attained.

The modularity maxima found by the method are better than those found with the greedy

techniques by Clauset et al. [48] and Wakita and Tsurumi [217].

(ii) Simulated annealing: Simulated annealing [113] is a probabilistic procedure for

global optimization used in different fields and problems. It was first employed for

modularity optimization by Guimera et al. [87]. Its standard implementation combines two

types of moves: local moves, where a single vertex is shifted from one cluster to another,

taken at random; global moves, consisting of mergers and splits of communities. Splits can

be carried out in several distinct ways. The best performance is achieved if one optimizes

the modularity of a bipartition of the cluster, taken as an isolated graph. Global moves

reduce the risk of getting trapped in local minima and they have proven to lead to much

better optima than using simply local moves [144].

(iii) Extremal optimization: Extremal optimization is a heuristic search procedure pro-

posed by Boettcher and Percus [28], in order to achieve an accuracy comparable with simu-

lated annealing, but with a substantial gain in computer time. It is based on the optimization

of local variables, expressing the contribution of each unit of the system to the global func-

tion being studied. This technique was used for modularity optimization by Duch and Are-

nas [56]. Generally, this technique maintains a good trade-off between accuracy and speed,

although it sometimes leads to poor results on large networks with many communities [66].

(iv) Other optimization strategies: Agarwal and Kempe [2] suggested maximization of

modularity within the framework of mathematical programming. Chen et al. [44] used

integer linear programming to transform the initial graph into an optimal target graph con-

sisting of disjoint cliques, which effectively yields a partition. Berry et al. [19] formulated

the problem of graph clustering as a facility location problem, that attempts to minimize

a cost function based on a local variation of modularity. Lehmann and Hansen [131]
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optimized modularity via mean field annealing [176]. Genetic algorithms [102] have also

been used to optimize modularity.

Modifications of Modularity

In the most recent literature on graph clustering, several modifications and extensions

of modularity can be found. Modularity can be easily extended to graphs with weighted

edges [159], directed graphs [132]. Kim et al. [111] proposed a different definition based

on diffusion on directed graphs, inspired by Google’s PageRank algorithm. Rosvall and

Bergstrom raised similar objections [191]. Gaertler et al. [73] introduced quality measures

based on modularity’s principle of the comparison between a variable relative to the

original graph and the corresponding variable of a null model. Another generalization

of modularity was recently suggested by Arenas et al. [7]. Expressions of modularity

for bipartite graphs were suggested by Guimera et al. [88] and Barber [14]. However,

community detection using modularity has certain issues including resolution limit,

degeneracy of solutions and asymptotic growth [81]. To address these issues, multi-

resolution versions of modularity [8] were proposed to allow researchers to specify a

tunable target resolution limit parameter. He et al. [96] considered different community

densities as good quality measures for community identification, which do not suffer

from resolution limits. Furthermore, Lancichinetti and Fortunato [122] stated that even

those multi-resolution versions of modularity are not only inclined to merge the smallest

well-formed communities, but also to split the largest well-formed communities; some of

these problems have been addressed and partially resolved by Chan et al. [41] recently.

Dynamic Algorithms

Here we describe methods employing processes running on the graph, focusing on

spin-spin interactions, random walks and synchronization.

(i) Spin models: The Potts model is among the most popular models in statistical me-

chanics [224]. It describes a system of spins that can be in different states. Based on this

idea, Reichardt and Bornholdt [186] proposed a method to detect communities that maps
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the graph onto a zero-temperature q-Potts model with nearest-neighbor interactions. In

another work, Son et al. [201] presented a clustering technique based on the Ferromagnetic

Random Field Ising Model (FRFIM).

(ii) Random walk: Random walks [106] can also be useful to find communities. If a graph

has a strong community structure, a random walker spends a long time inside a community

due to the high density of internal edges and consequent number of paths that could be

followed. Zhou [239] used random walks to define a distance between pairs of vertices:

the distance dij between i and j is the average number of edges that a random walker

has to cross to reach j starting from i. A different distance measure between vertices

based on random walks was introduced by Latapy and Pons [180] where the distance is

calculated from the probabilities that the random walker moves from a vertex to another in

a fixed number of steps. Hu et al. [103] designed a graph clustering technique based on a

signaling process between vertices, somewhat resembling diffusion. Dongen, in his PhD

thesis, described the Markov Cluster Algorithm (MCL) [214].

Statistical Inference based Methods

Statistical inference aims at deducing properties of data sets, starting from a set of obser-

vation and model hypotheses. If the data set is a graph, the model, based on hypotheses on

how vertices are connected to each other, has to fit the actual graph.

(i) Generative models: Most of the methods adopted Bayesian inference [223], in

which the best fit is obtained through the maximization of a likelihood (generative

models). Hastings [94] chose a planted partition model of network with communities.

Newman and Leicht [164] proposed a similar method based on a mixture model and

the expectation-maximization technique. Another technique similar to that by Newman

and Leicht was designed by Ren et al. [188] based on the group fractions. Maximum

likelihood estimation was used by C̆opic̆ et al. [50] to define an axiomatization of the

problem of graph clustering and its related concepts. Hofman and Wiggins [101] proposed

a general Bayesian approach to the problem of graph clustering. The main limitation of

these methods comes from high memory requirements.
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(ii) Information theoretic approach: The modular structure of a graph can be considered

as a compressed description of the graph to approximate the whole information contained

in its adjacency matrix. Rosvall and Bergstrom [189] envisioned a communication process

in which a partition of a graph in communities represents a synthesis of the full structure

that a signaler sends to a receiver, who tries to infer the original graph topology from it.

The same idea is the basis of an earlier method by Sun et al. [206], which was originally de-

signed for bipartite graphs evolving in time. In a recent paper, Rosvall and Bergstrom [191]

pursued the same idea of describing a graph by using less information than that encoded

in the full adjacency matrix. The goal is to optimally compress the information needed

to describe the process of information diffusion across the graph. Chakrabarti [38] has

applied the minimum description length principle to put the adjacency matrix of a graph

into the (approximately) block diagonal form representing the best trade-off between

having a limited number of blocks, for a good compression of the graph topology, and

having very homogeneous blocks, for a compact description of their structure.

Other Methods

Here we describe some algorithms that do not fit in the previous categories. Raghavan

et al. [183] designed a simple and fast method based on label propagation. The main

advantage of the method is the fact that it does not need any information on the number

and the size of the clusters. It does not need any parameter, either. In a recent paper, Tibély

and Kertész [210] showed that the method is equivalent to finding the local energy minima

of a simple zero-temperature kinetic Potts model. A recent methodology introduced by

Papadopoulos et al. [172], called Bridge Bounding, is similar to the L-shell algorithm,

but here the cluster around a vertex grows until one “hits” the boundary edges. Another

method, where communities are defined based on a local criterion, was presented by

Eckmann and Moses [57]. Long et al. [138] devised an interesting technique that is

able to detect various types of vertex groups, not necessarily communities. Zarei and

Samani [235] remarked that there is a symmetry between community structure and

anti-community (multipartite) structure, when one considers a graph and its complement,

whose edges are the missing edges of the original graph.
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2.1.2 Overlapping Community Detection

There has been a class of algorithms for network clustering, which allow nodes belonging

to more than one community. As discussed in [226], we shall discuss the proposed

algorithms by categorizing them into five classes.

Clique Percolation Algorithms

The clique percolation method (CPM) is based on the assumption that a community

consists of overlapping sets of fully connected subgraphs and detects communities by

searching for adjacent cliques. CFinder is the implementation of CPM, whose time

complexity is polynomial in many applications [169]. However, it also fails to terminate

in many large social networks. Following this, CPMw [64] introduces a subgraph intensity

threshold for weighted networks. Only k-cliques with intensity larger than a fixed

threshold are included into a community. Instead of processing all values of k, SCP [117]

finds clique communities of a given size. Despite their conceptual simplicity, an usual

criticism is that CPM-like algorithms are more like pattern matching rather than finding

communities since they aim to find specific, localized structure in a network.

Link Partitioning Algorithms

On the other hand, few algorithms trying to partition links instead of nodes to discover

community structure have also been explored. A node in the original graph is called

overlapping if links connected to it are put in more than one cluster. Ahn et al. [3] pro-

posed a method where links are partitioned via hierarchical clustering of edge similarity.

Evans [61] projected the network into a weighted line graph, whose nodes are the links of

the original graph, then applied the node partitioning algorithm. CDAEO [225] provides

a post-processing procedure to determine the extent of overlapping. Kim and Jeong [110]

extended the map equation method [191] to the line graph, which encodes the path of the

random walk on the line network under the Minimum Description Length principle.
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Local Expansion and Optimization Algorithms

Algorithms utilizing local expansion and optimization rely on growing a natural community

or a partial community [124]. Baumes et al. [16] proposed a two-step process: first, nodes

are ranked according to some criterion, then the process iteratively removes highly ranked

nodes until small, disjoint cluster cores are formed. Lancichinetti et al. [121] proposed an

algorithm called LFM which expands a community from a random seed node to form a nat-

ural community until a fitness function becomes locally maxima. Havemann et al. proposed

MONC [95] which uses the modified fitness function of LFM that allows a single node to be

considered a community by itself. Lancichinetti et al. further proposed OSLOM [125] that

tests the statistical significance of a cluster [23] with respect to a global null model (i.e., the

random graph generated by the configuration model [148] during community expansion).

Chen et al. [39] proposed selecting a node with maximal node strength based on two

quantities: belonging degree and the modified modularity. Cazabet et al. [37] proposed

iLCD which is capable of detecting both static and temporal communities. Given a set of

edges created at some time step, iLCD updates the existing communities by adding a new

node if its number of second neighbors and number of robust second neighbors are greater

than expected values.

Seeds are very important for many local optimization algorithm. A clique has been shown

to be a better alternative over an individual node as a seed. Shen et al. [197] in their

algorithm EAGLE used the agglomerative framework to produce a dendrogram. Similar to

EAGLE, GCE [128] identifies maximum cliques as seed communities.

Fuzzy Detection

Fuzzy community detection algorithms quantify the strength of association between all

pairs of nodes and communities. Nepusz [155] modeled the overlapping community

detection as a nonlinear constrained optimization problem which can be solved by simu-

lated annealing methods. Zhang et al. [236] proposed an algorithm based on the spectral

clustering framework [162]. There is another algorithm called FOG [54] which tries to

infer groups based on link evidence. Similar mixture models can also be constructed as
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a generative model for nodes [72]. In SSDE [142], the network is first mapped into a

d-dimensional space using the spectral clustering method. A Gaussian Mixture Model

(GMM) is then trained via Expectation-Maximization algorithm. The number of communi-

ties is determined when the increase in log-likelihood of adding a cluster is not significantly

higher than that of adding a cluster to random data which is uniform over the same space.

Non-negative Matrix Factorization (NMF) is a feature extraction and dimensionality reduc-

tion technique in machine learning that has been adapted to community detection. Zhang

et al. [237] replaced the feature vector used in NMF with the diffusion kernel, which is a

function of the Laplacian of the network. Later Zarei et al. [234] showed that the result

would be better if the matrix is defined by the correlation matrix of the columns of the

Laplacian. Recently, Yang and Leskovec [232] proposed BIGCLAM which is also based

on NMF approach.

Ding et al. [54] extended the affinity propagation clustering algorithm [71] for overlapping

community detection, in which clusters are identified by representative exemplars. First,

nodes are mapped as data points in the Euclidean space via the commute time kernel (a

function of the inverse Laplacian). The similarity between nodes is then measured by the

cosine distance.

Agent-based and Dynamical Algorithms

The label propagation algorithm [183] in which nodes with same label form a community,

has been extended to overlapping community detection by allowing a node to have

multiple labels. Gregory proposed COPRA [85] in which each node updates its belonging

coefficient by averaging the coefficients from all its neighbors at each time step in a

synchronous fashion. Xie et al. [227] developed SLPA which is a general speaker-listener

based information propagation process. A game-theoretic framework was proposed by

Chen et al. [43], in which a community is associated with a Nash local equilibrium.

A process in which particles walk and compete with each other to occupy nodes is

presented by Breve et al. [34]. Different from SLPA and COPRA, this algorithm takes a

semi-supervised approach. It requires at least one labeled node per class.
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Other Methods

CONGO [83] extends Girvan and Newman’s divisive clustering algorithm [78] by allowing

a node to split into multiple copies. Gregory [84] also proposed to perform disjoint detec-

tion algorithms on the network produced by splitting the node into multiple copies using

the split betweenness. Zhang et al. [238] proposed an iterative process that reinforces the

network topology and propinquity that is interpreted as the probability of a pair of nodes

belonging to the same community. The propinquity between two vertices is defined as the

sum of the number of direct links, number of common neighbors and the number of links

within the common neighborhood. Kovács et al. [114] proposed an approach focusing on

centrality-based influence functions.

2.1.3 Community Scoring Metrics

Another important aspect of community detection is to evaluate the detected community

structure. If we know the actual community structure of a network, it would be easier

to evaluate the detected communities just by comparing them with the actual community

structure. However, most of the time, collecting the actual ground-truth community

structure is difficult, and therefore we rely on the structural property of the community

structure. In this section, we first describe such topology-based community evaluation

metrics and then briefly mention few popular validation metrics that are used to compare

the detected community with the ground-truth structure.

Topology-based Community Evaluation Metric

Several metrics for evaluating the quality of community structure have been introduced.

The most popular and widely accepted is Modularity [163] (see Equation 2.1). Recently,

Fortunato and Barthelemy [68] presented a resolution limit problem of modularity, essence

of which is that optimizing modularity will not find communities smaller than a threshold

size, or weight [20]. The threshold depends on the total number (or total weight) of edges

in the network and on the degree of interconnectedness between communities. Moreover,
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Good et al. [81] showed another problem of modularity called degeneracy of solutions that

this measure admits an exponential number of high-modularity but structurally distinct

solutions from a single graph. They also studied the limiting behavior of maximizing

modularity for one model of infinitely modular networks (asymptotic growth), showing

that it depends strongly both on the size of the network and on the number of modules

it contains, i.e., as we add more modules to the network, the height of the modularity

function converges to 1. To address the resolution limit problem, multi-resolution versions

of modularity [8] were proposed to allow researchers to specify a tunable target resolution

limit parameter. Lambiotte [119] proposed different types of multi-resolution quality

functions to tackle resolution limit problem. Dongxiao et al. [96] considered different

community densities as good quality measures for community identification, which do not

suffer from resolution limits.

In the context of overlapping community evaluation, people attempted to redefine modu-

larity for overlapping community structure. Shen et al. [197] introduced EQ, an adaptation

of Newman’s modularity function designed to support overlapping communities. The

equation for EQ strongly resembles the original modularity function as follows:

EQ =
1

2m

∑
c∈C

∑
i∈c,j∈c

1

OiOj

[
Aij −

kikj
2m

]
(2.2)

where m is the number of edges in the graph, C is the set of communities, and Ov is the

number of communities to which the node v belongs. The presence of an edge between two

nodes v and w is represented as the value in the corresponding position of the adjacency

matrix Avw.

On the other hand, recently Lázár et al. [127] provided a more complex and potentially

more accurate evaluation of the goodness of an overlapping community structure as

follows:

Qov =
1

K

K∑
r=1

[ ∑
i∈cr

∑
j∈cr,i 6=j

Aij−
∑
j /∈cr

Aij

di·si

ncr
·

necr(
ncr
2

)] (2.3)

where K is the number of communities, ncr is the number of nodes and necr is the number

of edges that the rth cluster cr contains respectively, di is the degree of node i, si denotes

the number of clusters where i belongs to and A is the adjacency matrix. Note that since
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the density of clusters containing one single node (when ncr = 1) is not defined (because(
1

2

)
is undefined), the modularity value is set to be zero.

Ahn et al. [3] described two simple measures to quantify the quality of a community struc-

ture. The first one is Community Coverage which simply counts the fraction of nodes that

belong to at least one community of three or more nodes. A size of three is chosen since it is

the smallest nontrivial community. This measure provides an estimate of how much of the

network is analyzed. The second measure is Overlap Coverage which counts the average

number of memberships in nontrivial communities (size at leas three) that nodes are given.

Ground-truth Based Community Validation Metrics

Evaluating the quality of a detected partitioning or cover is nontrivial, and extending

evaluation measures from disjoint to overlapping communities is rarely straightforward.

In this section, we discuss some of the popular evaluation metrics which are often used to

compare the detected partition with the ground-truth communities.

(i) Purity (PU): The Purity measure [143] is historically the first one used in the context

of community detection. Let us assume that X = {x1, x2, ..., xI} and Y = {y1, y2, ..., yJ}
be the two partitions of the same set. To denote the cardinalities, we use n for the total

number of elements in the partitioned set, and nij = |xi ∩ yj| for the intersection of two

parts. We also note ni+ = |xi| and n+j = |yj| the part size. The purity of a part xi relative

to the other partition Y is expressed as PU(xi, Y ) = max
j

nij
ni+

. The total purity of partition

X relative to partition Y is obtained as follows: PU(X, Y ) =
∑

i
ni+
n
PU(xi, Y ).

It is important to notice that purity is not a symmetric measure. Therefore, the usual

approach is to take the harmonic mean of PU(X, Y ) and PU(Y,X). The upper bound

is 1, it corresponds to a perfect match between the partitions. The lower bound is 0 and

indicates the opposite.

(ii) Rand Index (RI): The Rand Index [184] is a way of comparing disjoint clustering

solutions that is based on pairs of the objects being clustered. Two solutions are said to

agree on a pair of objects if they each put both objects into the same cluster or each into
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different clusters. The Rand Index can then be formalized as follows:

RI =
(a+ d)

N
(2.4)

where N is the number of pairs of objects, a is the number of times the solutions agree

on putting a pair in the same cluster and d is the number of times the solutions agree on

putting a pair in different clusters. That is, the Rand Index is the number of pairs that are

agreed on by the two solutions divided by the total number of pairs.

An improvement to the Rand Index is the Adjusted Rand Index (ARI) [105] which adjusts

the level of agreement according to the expected amount of agreement based on chance.

(iii) Omega Index: The Omega Index [49] builds on both the Rand Index and Adjusted

Rand Index by accounting for disjoint solutions and correcting for chance agreement.

The Omega Index considers the number of clusters in which a pair of objects is to-

gether. The observed agreement between two partitions S1 and S2 is calculated by:

Obs(S1, S2) =
∑min(J,K)

j=0 Aj/N , where J and K represent the maximum number of

clusters in which any pair of objects appears together in partitions 1 and 2 respectively, Aj
is the number of the pairs agreed by both partitions to be assigned to number of clusters

j, and N is again the number of pairs of objects. The expected agreement is given by:

Exp(S1, S2) =
∑min(J,K)

j=0 Nj1Nj2/N
2, where Nj1 is the total number of pairs assigned to

number of clusters j in partition 1, and Nj2 is the total number of pairs assigned to number

of clusters j in partition 2. The Omega Index is then calculated as

Omega(S1, S2) =
Obs(S1, S2)− Exp(S1, S2)

1− Exp(S1, S2)
(2.5)

The highest possible score of 1 indicates that two solutions perfectly agree on how each

pair of objects is clustered.

(iv) Normalized Mutual Information (NMI): The problem of comparing different

community structures can be overcome by computing the Normalized Mutual Information

(NMI) [215]. Let C be the confusion matrix. Also let Nij (elements of the confusion

matrix C) be the number of nodes in the intersection of the original community i and the

generated community j. If CA denotes the number of the communities in the ground truth,

CB the number of the generated communities by an arbitrary approach, Ni the sum of
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row i, Nj the sum of column j, and N the sum of all elements in C, then the NMI score

between the ground truth partition A, and the generated partition B can be computed as

shown in the following equation.

NMI(A,B) =

−2
CA∑
i=1

CB∑
j=1

Nijlog
NijN

NiNj

CA∑
i=1

Nilog
Ni
N

+
CB∑
j=1

Njlog
Nj
N

(2.6)

The values of NMI range between 0 and 1 where 0 refers to no match with the ground truth

and 1 refers to a perfect match. Recently, McDaid et al. [147] also provided a modified

version of NMI, called ONMI for evaluating overlapping community structures.

However, Labatut [118] argued that these measures are not completely relevant in the

context of network analysis, because they ignore the network connectivity. He proposed

the modified versions of these measures where misplacing high degree vertices would incur

higher penalty compared to low degree vertices. The modified formulations of NMI, ARI

and Purity are the weighted versions, namely Weighted-NMI (W-NMI), Weighted-ARI

(W-ARI) and Weighted-Purity (W-PU).

2.2 Survey on Post-hoc Analysis of Communities

In this section, we survey the current literature pertaining to the analysis of detected

communities and how this community information can be used in the development of

various systems.

2.2.1 Tracking Communities over Time

In real world, the membership of communities tend to change gradually. Backstrom et

al. observed this on the communities of LiveJournal users and communities of conference

publications on DBLP [10]. So it is important not only to detect communities but also

to track the changes in membership over time. The questions are: which community in
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one snapshot metamorphoses into anther in the next snapshot? How and what fraction of

membership changes in between? The problem of tracking communities is motivated by a

problem in behavioral ecology in studying animals that live in fission-fusion societies such

as zebra and the Asiatic wild ass [207]. A natural question is which group that we observe

today is the same as that was previously observed. Groups in this setting are manifestations

of perpetual communities. Inversely, a community is a consistent string of groups seen on

different days. This is the problem of tracking communities over time. Loosely speaking,

it is about how to string different groups from the same day into communities which span

over multiple days.

There is a handful of work specifically on the problem of tracking communities over

time. Berger-Wolf and Saia [18] proposed a framework which defines communities as

independent local patterns. There, a community (or, metagroup) is a sequence of groups

which have sufficiently high similarity. The similarity between two groups is the number

of common members normalized by the sizes of the two groups. Characteristics of

communities are studied via community-based statistical measures such as number of all

possible communities, their sizes and life spans. Also, they proposed an approach to study

the survival of the communities via finding a critical set of groups whose removal leaves

only short-lived communities.

Spiliopoulou et al. [202] proposed a framework, called MONIC, for tracking communities

over time. The framework utilizes a similarity function of groups at different time steps.

The function takes into account the number of common members, the sizes of the groups,

and the time decay between the groups. Then, two groups are strung together as being in

the same community if their similarity is above a certain threshold. The framework not

only strings groups into communities but also detects splitting and merging of communities

by a separate set of threshold parameters.

Tantipathananandh et al. [209] proposed the first framework which rigorously formulates

the problem of tracking communities as an optimization problem. Although the appealing

aspect of this framework is the social costs model which has its roots in the social sciences

view of group dynamics [174], the framework has a strong assumption that all time steps

must have the same length. Tantipathananandh et al. [208] further introduced an improved

framework which can handle data with time steps of variable length.
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2.2.2 Analyzing Community Evolution in Networks

Slightly different from the task of community tracking is the study of the evolution of com-

munities over time. This problem attracts a lot of research interest due to its enormous

applications in real-world scenario. For example, in a blog network we might wish to de-

tect which communities of blogs are relatively stable in size over a period of time [136]. In

a mobile phone network, changes in community size over a timeframe can reveal calling

patterns and customer churns [82, 168]. In other contexts such as scientific collaboration

networks, communities of researchers that span many years suggest long-term research col-

laboration [168]. Such communities can be further investigated to identify researchers in

particular fields who are consistently productive over a period of time [136]. Previous work

along this line analyzed community changes using a life-cycle model comprising events

such as birth, death, expand, contract, merge, and split [82,168]. Asur et al. [9] emphasized

the life-cycle of nodes, an emphasis that is impractical in networks with millions of nodes

and irrelevant when an overview of how communities evolve is required. Palla et al. [168]

used the above events to quantify the evolution of a phone call network and a coauthorship

network, whereas Greene et al. [82] used the events to investigate community evolution in

a phone call network. Except for [168], little attention has been paid to modeling an event

as a function of time. Recently, Luz̈ar et al. [139] studied interdisciplinarity of research

communities detected in the coauthorship network of Slovenian scientists over time.

2.2.3 Community Structure in Link Prediction

The information of community of nodes can also be leveraged in the task of link prediction.

Clauset et al. [47] proposed a method to determine the hierarchical structure of a network by

using MCMC sampling to create a binary dendrogram that joins nodes into groups. Since

this method got introduced, a variety of similar methods and models have been proposed.

Valverde-Rebaza and de Andrade Lopes [212] described experiments to analyze the viabil-

ity of applying the within and inter cluster (WIC) measure for predicting the existence of

a future link on a large-scale online social network. They further proposed three measures

for the link prediction task which take into account all different communities that users be-

long to [213]. Sachan and Ichise [192] proposed to build a link predictor in a co-authorship
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network, and showed that the knowledge of a pair of researchers lying in the same dense

community can be used to improve the accuracy of our predictor further. Recently, Fenhua

et al. [134] proposed a link prediction method based on clustering and global information.

2.2.4 Community Structure in Information Diffusion

Communities are vehicles for efficiently disseminating news, rumors, and opinions in

human social networks. Several approaches studied this phenomenon using the com-

munity structure of the network. Belak et al. [17] studied information diffusion across

communities and showed that one can achieve high community-based spreading using an

efficient targeting strategy. Nematzadeh et al. [154] used the linear threshold model to sys-

tematically study how community structure affects global information diffusion. Kimura

et al. [112] used community analysis to find influential nodes for information diffusion

on a social network under the independent cascade model. Weng et al. [222] focused

on understanding interactions between community structures and information diffusion,

and developed predictive models of information diffusion based on community structure.

Chen et al. [40] employed the network to investigate the impact of overlapping community

structure on susceptible-infected-susceptible (SIS) epidemic spreading process. Similarly,

Xiangwei et al. [46] studied epidemic spreading in weighted scale-free networks with

community structure. Recently, Shang et al. [195] classified vertices into overlapping and

non-overlapping ones, and investigated in detail how they affect epidemic spreading.

2.2.5 Community Structure in Recommendation Systems

Community detection algorithms and clustering functions constitute a powerful tool in the

development of network based recommendation system. Zhuhadar et al. [240] used the

community detection method to design a visual recommender system to recommend learn-

ing resources to cyberlearners within the same community. Lisboa et al. [137] proposed

a method to improve recommendation systems by taking into consideration changes in

the behavior of users over time. For that, communities are first detected using a network

analysis method and recommendations are made for each community using Naïve Bayes
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modeling. Kamahara et al. [108] proposed a recommendation method in which a user can

find new interests that are partially similar to the user’s taste, where partial similarity is

an aspect of the user’s preference which is projected by the community in which the user

belongs. Musto et al. [151] particularly studied user community behavior in OSN and

developed STaR to suggest a set of relevant keywords for the resources to be annotated.

Fatemi and Tokarchuk [65] proposed novel community based social recommender system,

CBSRS which utilizes the social data to provide personalized recommendations based on

communities constructed from the users’ social interaction history with the items in the

target domain.



Chapter 3

Constant Communities in Networks

In this chapter we address our first objective – studying the dependence of community

detection algorithms on the vertex ordering that leads to the variability in the final output

obtained.

3.1 Introduction

A fundamental problem in understanding the behavior of complex networks is the ability

to correctly detect communities. Mathematically, this question can be translated to

a combinatorial optimization problem with the goal of optimizing a given metric of

interrelation, such as modularity or conductance. The goodness of community detection

algorithms (see [70] for a review) is often objectively measured according to how well

they achieve the optimization.

However, these algorithms can be applied to any network, regardless of whether it

possesses a community structure or not. Furthermore when the optimization problem is

NP-hard, as in the case of modularity [163], the order in which the vertices are processed

as well as the heuristics can change the results. These inherent fluctuations of the results

associated with modularity have long been a source of concern among researchers.

Indeed the goodness of modularity as an indicator of community structure has also been

41
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questioned, and there exist examples [81] which demonstrate that high modularity does

not always indicate the correct community structure.

Research in addressing the fluctuations in the results due to modularity maximization

heuristics include identifying stability among communities from the consensus networks

built from the successive iterations of a non-deterministic community detection algorithm

(such as by Seifi et al. [194]). Lancichinetti et al. [123] proposed consensus clustering by

reweighting the edges based on how many times the pair of vertices were allocated to the

same community, for different identification methods. Ovelgonne et al. [167] pointed out

an ensemble learning strategy for graph clustering. Gfeller et al. [76] investigated the in-

stabilities in the community structure of complex networks. Finally, several pre-processing

techniques [56, 187] have been developed to improve the quality of the solution. These

methods form an initial estimate of the community allocation over a small percentage of

the vertices and then refine this estimate over successive steps.

3.2 Defining Constant Communities

All combinatorial optimization algorithms focus on compiling the differences in the results

to arrive at an acceptable solution, and despite these advances a crucial question about the

variance of results remains unanswered – what does the invariance of the result tell us about

the network structure? In this chapter, we focus on the invariance in community detection

as obtained by modularity maximization. Our results, on a set of scale-free networks, show

that while the vertex orderings produce very different set of communities, some groups of

vertices are always allocated to the same community for all different orderings. We define

the group of vertices that remain invariant as constant community and the vertices that

are part of the constant communities as constant vertices. Figure 3.1 shows a schematic

diagram of constant communities. In this figure, two colors (red and green) indicate two

communities of the network formed in each iteration. Combined results of two algorithms

produce two constant communities (rectangular and circular vertices). Remaining one

vertex (hexagonal shaped) is not included since it switches its community between the two

algorithms. Note that not all vertices in the network belong to constant communities. This

is a key difference of constant communities with the consensus methods [123] described
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Figure 3.1: Schematic illustration of the formation of constant communities.

earlier. Consensus methods attempt to find the best (most stable or most similar) commu-

nity among all available results and thus include all the vertices. Constant communities, on

the other hand, focus on finding subgraphs where the cohesive groups can be unambigu-

ously identified. As discussed earlier, communities obtained by modularity maximization

may include vertices that can move from one group to another depending on the heuristic or

the vertex ordering. The vertex groups obtained using constant communities are invariant

under these algorithmic parameters and, thereby, provide a lower bound on the number of

uniquely identifiable communities in the network. Although trivially each vertex can be

considered to be a constant community by itself, our goal is to identify the largest number

of vertices (i.e., at least three or more) that can be included in an invariant group.

The presence of such invariant structures can be used to evaluate the accuracy of the

communities obtained when other independent methods of verifications are unavailable.

However in many networks, constant communities constitute only a small percentage of

the total number of vertices. To understand how other non-constant vertices are allocated

to communities, we show that by using constant communities we can significantly reduce

the variations in results (see Section 3.6). Thus, building from the more accurate results

reduces the variance over the larger network.
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3.3 Experimental Setup

3.3.1 Datasets

We conduct our experiments on networks obtained from real-world data as well as on a

set of synthetically generated networks using the LFR model [120]. The set of real-world

networks is obtained from the instances available at the 10th DIMACS challenge web-

site [1]. The networks, which are undirected and unweighted, include – Jazz (network

of jazz musicians; |V | = 198, |E| = 2742) [80], Polbooks (network of books on USA

politics; |V | = 105, |E| = 441) [115], Chesapeake (Chesapeake bay mesohaline network;

|V | = 39, |E| = 340) [12], Dolphin (Dolphin social network; |V | = 62, |E| = 159) [140],

Football (American college football; |V | = 115, |E| = 1226) [79], Celegans (Metabolic

network of C. elegans; |V | = 453, |E| = 2025) [56], Power (topology of the Western States

Power Grid of the USA; |V | = 4941, |E| = 6594) [220] and Email (e-mail interchanges

between members of the Univeristy Rovira i Virgili; |V | = 1133, |E| = 5451) [86] (note

that |V | refers to the number of vertices and |E| refers to the number of edges).

Networks generated using the LFR model are associated with a mixing parameter µ that

represents the ratio of the external connections of a node to its total degree. We create LFR

networks based on the following parameters [123]: number of nodes = 500, average degree

= 20, maximum degree = 50, minimum community size = 10, maximum community size

= 50, degree exponent for power law = 2, community size exponent = 3. We vary the value

of µ from 0.05 - 0.90. Low values of µ correspond to well-separated communities that

are easy to detect and consequently these networks contain larger percentage of constant

communities. As µ increases, communities get more ambiguous and community detection

algorithms provide more varied results leading to fewer vertices being in significantly

sized constant communities.

3.3.2 Community Detection Algorithms

We select two popular agglomerative modularity maximization techniques – the method

proposed by Clauset et al. [48] (henceforth referred to as the CNM method) and the method
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proposed by Blondel et al. [26] (henceforth referred to as Louvain method). Both these

methods initially start by assigning one vertex per community. Then at each iterative step,

two communities whose combination most increases the value of modularity are joined.

This process of joining community pairs is continued until the value of modularity no

longer increases. The Louvain method generally produces a higher value of modularity

than CNM, because it allows vertices to migrate across communities if that leads to a more

optimum value.

3.3.3 Degree Preserving Order

Ideally, the total number of different orderings to be tested should be equal to the factorial

of the number of vertices in the network. However, even for the smallest network in our

set (Chesapeake with 39 vertices) this value is astronomical. We therefore restrict our

permutations to maintain a degree-preserving order. The vertices are ordered such that if

degree of vi is greater than the degree of vj , then vi is processed prior to vj .

In addition, to reducing the number of vertex permutation, degree-preserving permutation

also has another important advantage. Recall that the networks in the test suite have few

vertices with high degrees and a lot with low degrees. Therefore, arranging the high degree

vertices earlier pushes most of the fluctuations towards the later part of the agglomeration

process. This ensures that the sub-communities formed initially are relatively constant

and only later do the divergence in community memberships take place. Clearly, such

orderings based on decreasing degrees are geared towards facilitating low variance in

communities. If this ordering does not produce constant structures, it makes a very strong

case about the inherent fluctuations that underlie modularity maximization methods.

3.4 Identifying Constant Communities

In order to identify constant communities from a network, we permute the order of

the vertices, and then apply a community detection algorithm to each of the permuted

networks. The results vary across permutations. We select the groups of vertices that
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Table 3.1: Comparison of the constant communities obtained from Louvain (LVN) with
those obtained from CNM and Infomap (INFO) algorithms using NMI.

Networks Jazz Chesapeake Dolphin Football Polbooks Celegans Email Power

NMI
LVN vs. CNM 0.8856 0.8429 0.8663 0.8765 0.8950 0.9232 0.8103 0.8097

LVN vs. INFO 0.8235 0.7928 0.9722 0.8824 0.8239 0.9144 0.8072 0.7856

are always allocated together across all the permutations and mark them as constant

communities. The rationale behind this process is that these vertices must have some

intrinsic connectivity properties that force them to stay together under all orderings.

To implement the vertex permutation, we adopt a stochastic degree-preserving scheme as

discussed in Section 3.3.3 that can arrange the vertices based on the descending order of

their degrees. The ordering of the set of vertices with the same degree is permuted. By

applying this method we preserve the relative ordering of the degrees of the vertices since

it is well-known that node-degrees constitute a fundamental network property. Thus, our

permutations prevent us from the possibility of getting confined in a local maximum of the

modularity.

In order to identify these communities, for each network in the test suite, we apply CNM

(and Louvain) method over different permutations of the vertices and then isolate the

common groups that are preserved across the different orderings. These common groups

of vertices are marked as the constant communities for the respective network.

We further observe based on the high (> 0.80) Normalized Mutual Information

(NMI) [143] (see Section 2.1.3) values that the overlap between the constant communities

obtained from the two methods is considerable [205] (see Table 3.1). One might argue

that the constant communities are highly dependent on the underlying optimization

functions (such as modularity) or the methods (such as agglomerative method) used in the

community detection algorithms. To cross-check this, we further detect the constant com-

munities using another very popular non-deterministic community finding algorithm called

Infomap [190] which is not an agglomerative method but tries to minimize the minimum

description length of the bit sequence generated by a random walk. We observe a similar

high overlap between the constant communities obtained from Louvain and Infomap (see

Table 3.1). Therefore, in the interest of space and clarity we confine our discussion about

the properties of constant communities to those obtained from the Louvain method.
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Figure 3.2: Sensitivity of each network across 5000 permutations. X-axis is rescaled by
a constant factor of 100 for better visualization.

3.5 Characteristics of Constant Communities

In this section, we identify some interesting characteristic properties of constant

communities observed in the real-world networks.

3.5.1 Sensitivity of Community Structure to Vertex Perturbations

In our first experiment, we study how the community structures of the networks change

under vertex perturbations. Since constant communities are the groups of vertices that

remain invariant, we measure the change in community structure based on the number

of constant communities. We define sensitivity (φ) as the ratio of the number of constant

communities to the total number of vertices. If φ is 1 then each vertex by itself is a constant

community (the trivial case), thus there is no consensus over the set of communities

obtained over different permutations. The higher the sensitivity metric, the fewer the

vertices in each constant community and, therefore, this metric is useful for identifying

networks that do not have a good community structure under modularity maximization.

Note that this metric will be used further in Section 4.13.2 to quantify degeneracy of

solutions of a community detection algorithm.

The sensitivity of each network is given in Figure 3.2. The x-axis indicates the number of

different permutations of the vertices and the y-axis plots the value of the sensitivity. We

observe that for most of the networks the number of constant communities become stable
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within the first 100 permutations, and the sensitivity values are low. This indicates that

there can potentially exist very strong groups in these networks that have to be together

to achieve high modularity. However, for networks such as Power and Email, the number

of constant communities keeps increasing until the values of φ are close to 1. Thus, the

community detection results for these two networks are extremely sensitive to the vertex

perturbations. This implies that the communities (if any) in these two networks are not

tightly knit, i.e., very “amorphous”.

3.5.2 Percentage of Constant Communities

We further define the relative size (ξ) of a constant community as the ratio of the number

of vertices in that constant community to the total number of vertices in the network and

the strength (Θ) as the ratio of the edges internal to the constant community to the edges

external (i.e., one end point of the edge is inside the constant community while the other

is outside) to the constant community. Figure 3.3 plots the relative size (in percentage)

of the constant communities with respect to their strength. If the strength of a constant

community is above 1 (above 0 in log scale) then the number of internal edges in the

community is larger than the number of external edges. The higher the value, the more

tightly connected is the community. We notice that the value of relative size ranges from

0-34, with a larger cluster of values around 0-5. This shows that most of the constant

communities contain very few vertices with respect to the network size. If the relative

size of the constant communities is low then the remaining vertices have more freedom

in migrating across communities, making the community structure weaker. We observe

that, despite there being more constant communities of low relative size, there are some

networks that have multiple constant communities with relative size over 15% of the total

number of nodes indicating that they have a much stronger community structure. These

include Jazz, followed by Dolphin and then Polbooks and Chesapeake.

Relative size and strength together provide an estimate of which networks have good

community structure. If we divide the x-axis at roughly the mid-point of the range and the

y-axis at 1, then we obtain four quadrants each representing different types of community

structures. The first quadrant (upper right) contains communities that have high relative



3.5 Characteristics of Constant Communities 49

Figure 3.3: Comparison between the relative size and strength of the constant communi-
ties. X-axis plots the relative size in percentage, and Y-axis (in logarithmic scale) plots the
strength. The plot is vertically divided at x = 17 that could help systematically analyze the
distribution of the points.

size as well as high strength. Networks containing a large number of such constant com-

munities are less likely to be affected by perturbations. Diagonally opposite is the third

quadrant (lower left), which contains communities of low relative size and low strength.

As discussed earlier, networks having communities predominantly from this quadrant

will produce significantly different results under perturbations and are likely to not have a

strong community structure under modularity maximization. The second quadrant (upper

left) contains the groups of vertices that are strongly connected but have small relative

size. This indicates that there are some pockets of the network with strong community

structure. The fourth quadrant (lower right) represents communities with high relative size

but low strength. In this set of experiments it is empty, and we believe that this area will be

sparsely populated, if at all. This is because networks having such communities will have

a very special structure: strongly connected groups of very few vertices with many spokes

radiating out to account for the high number of external communities.

3.5.3 Pull from External Connections

We note in Figure 3.3 that there are several constant communities whose strength is below

one, i.e., they have more external than internal connections. This is counterintuitive to the

idea that a strong community should have more internal connections. Indeed, modularity

maximization methods always tend to create communities whose strengths are greater than
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Figure 3.4: (Left) Schematic diagram illustrating the computation of the relative
permanence of the vertices; (Right) distribution of relative permanence values.

one. However, the structure of some of the constant communities belies this convention.

We observe that in these cases, the external connections are distributed across different

communities. Furthermore, the number of connections to any one external community is

always lower than the internal connections. Based on this observation, we hypothesize

that a group of vertices are likely to be placed together so long as the internal connection

is greater than the connections to any one single external community. In such a scenario,

the vertices within the community do not experience a significant “pull” from any of the

external communities that can cause them to migrate, and therefore, their propensity to

remain within their own communities is high. We quantify this observation as follows:

Let v be a vertex in a constant community; further, let D(v) denote the degree of v,

and EN(v) and IN(v) denote the number of external and internal neighbors of v re-

spectively (i.e., D(v) = IN(v) + EN(v)). We also assume that the EN(v) external

neighbors are divided into k external groups, and ENG(v) denote a set of k elements

where the ith element in the set represents the number of neighbors of v belonging to

the ith external group. For instance, consider the vertex A in CC1 in Figure 3.4 (left),

D(A) = 9, IN(A) = 3, EN(A) = 6 and ENG(A) = {3, 2, 1} (i.e., three external neigh-

bors in CC2, one external neighbor in CC3, and two external neighbors in CC4). Sim-

ilarly, we calculate ENG(v) for each vertex in the network and form a list DENG(G)

by taking union over all ENG(v), that is, only unique entries across ENG(v) get listed in

DENG(G) (see Figure 3.4 (left)). The list is then ranked in ascending order, i.e., the group

with lowest number of external neighbors is ranked 1, the group with second lowest external
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neighbors is ranked 2 and so on. The intuition behind this ranking is that we are more inter-

ested in how distinct the external neighbor groups are, rather than the absolute size of the

external neighbor groups. Moreover, by ranking, we can reduce the skewness of the range

of external group size. This rank would therefore signify the intensity of the pull of the par-

ticular external community and its inverse signifies the degree of stability of the vertex v.

For a particular vertex, if the inverse rank of each of the external group is equal to one,

it would point to the fact that all its external neighbors are diversely distributed (i.e.,

well-spread), and therefore the pull experienced should be minimum; in contrast, if the

value is much lower than one, it would imply that the vertex experiences a strong pull from

its external neighbors. We define the strength of a vertex v, θ(v), as the ratio of the internal

neighbor (IN(v)) to the external neighbor (EN(v)) of vertex v similar to the strength (Θ)

of a constant community defined earlier. Mathematically, the suitably normalized value of

relative permanence, Ω(v), of a vertex v in a constant community can be expressed as:

Ω(v) = θ(v)×
∑k

i=1
1

Rank(ENGi(v))

D(v)
(3.1)

where Rank(ENGi(v)) denote the rank (retrieved from the DENG(v) list) of the ith

element in ENG(v). This metric indicates the propensity of a vertex to remain in the same

community regardless of any algorithmic parameters.

Figure 3.4 (left) presents a schematic diagram for computing relative permanence of

vertices within the communities. Figure 3.4 (right) plots the cumulative distribution of

the relative permanence over the vertices in all networks. The x-axis indicates the value

of the relative permanence and the y-axis, the cumulative fraction of vertices having

the corresponding relative permanence value. The nature of the cumulative permanence

distribution of the vertices is roughly same for all networks except Email and Power.

The distinguishing nature of the curves for Email and Power graphs compared to the

other graphs indicates that very few number of vertices in these two networks have

higher relative permanence values and therefore experience more “pull” from the external

communities. Another observation is that a high fraction of vertices in Jazz, Polbooks,

Dolphin and Celegans have relative permanence close to one. These vertices are more

“stable” compared to the other vertices in the respective networks.
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Algorithm 1 Modularity maximization using constant communities
Input: A network (graph)G = (V,E); Community detection algorithmA.

Output: Set of constant communitiesCC1 , . . .CCk ; ModularityQ

procedure FINDING CONSTANT COMMUNITIES

Sort vertices in V in degree descending order

Apply degree preserving permutation P to vertices such that degree(vi)≥ degree(vi+1) in P .

|P | is number of degree preserving permutations applied.

Initialize array V ertex[|V |][|P |] to -1 /* V ertex[|V |][|P |] will store the community membership of the vertices in each permutation */

Set i = 0 /* This variable indicates the permutation index */

for all Pi ∈ P do /* Detect community memberships of the vertices in each permutation usingA and store them in V ertex */

Apply algorithmA to find the communities of the permuted networkGPi
if Vertex v is in community c then
V ertex[v][i] = c /* Vertex v in permutation Pi belongs to community c after applyingA to Pi */

i = i + 1

Set j = 0 /* This variable indicates the index of the constant community */

for all v ∈ V do /* Detecting constant communities using the community information stored in V ertex */

if vertex v is not in a constant community then
Create constant communityCCj
Insert v toCCj /* AllCCjs

′ are the constant communities */

for all u ∈ V \ CCj do
if V ertex[v][i] = V ertex[u][i], ∀ i = 1 to |P | then /* Check for the exact matching of community memberships of u and v */

Insert u toCCj

j = j + 1

procedure COMPUTING MODULARITY

Set of constant communities inCC

for all CCj ∈ CC do /* Create intermediate small, weighted network */

Combine vertices inCCj into a super-vertexXj
Replace edges fromXj to another vertexXi by their aggregate weight /* For the self-loop, i = j */

Sort vertices of collapsed network,G′ , in degree descending order

Apply community detection methodA

Unfold allXj inG′ and compute the modularityQ

3.6 Constant Communities for Improving Modularity

We note that in many networks (such as Football and Celegans) constant communities

form only a small percentage of the vertices. Thus, finding only the constant communities

may not provide adequate information about the relationship amongst the rest of the

vertices. We therefore leverage on the invariant results in the first and second quadrants of

Figure 3.3 as building blocks to identify larger communities.

We first permute the vertices 5000 times in degree-descending order i.e., each of the per-

mutations preserves the constraint that if vertex vi is placed before vj in the sequence then

degree(vi) ≥ degree(vj). Then for each of these permutations, we run Louvain algorithm

and obtain the community structure (and the modularity value). Table 3.2 (left) shows the

mean modularity (and its variance) obtained by averaging the modularity values of all iter-

ations. Next, from these community structures obtained across the different permutations,

we detect the constant communities and combine them into super-vertices. This process
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Table 3.2: Modularity before and after pre-processing for real networks (left) and for
different values of mixing parameter (µ) over LFR graphs (right)

Louvain

Networks Before pre-processing After pre-processing

Mean (mq) Var (σq) Mean (mq) Var (σq)

Jazz 0.448 3.13e-6 0.452 0

Chesapeake 0.301 1.17e-5 0.303 3.36e-33

Polbooks 0.539 1.74e-5 0.557 1.24e-32

Dolphin 0.543 1.76e-5 0.550 0

Football 0.610 2.01e-5 0.623 0

Celegans 0.438 2.89e-5 0.442 1.33e-26

Email 0.542 6.89e-5 0.568 0.95e-12

Power 0.936 1.09e-5 0.937 2.25e-10

Louvain

µ Planted Before After

Modularity pre-processing pre-processing

Mean(mq) Var(σq) Mean(mq) Var(σq)

0.05 0.878 0.834 1.98e-24 0.877 0

0.10 0.817 0.802 2.28e-28 0.817 0

0.20 0.716 0.690 5.74e-7 0.686 0

0.50 0.440 0.385 2.05e-6 0.389 1.58e-28

0.70 0.223 0.298 9.70e-10 0.219 1.04e-28

0.90 0.029 0.225 4.25e-10 0.205 5.64e-28

creates a smaller network as well as ensures that the vertices in the constant communities

always stay together. Then we execute a modularity maximization algorithm over the

entire network. We compute the variance in results by executing the underlying modularity

maximization algorithm individually over 5000 permutations, in each case maintaining

the degree-preserving order (see Algorithm 1). As shown in Table 3.2 (left), combining

constant communities as a pre-processing step both increases the mean modularity value

as well as reduces the variability across permutations for real-world networks.

We also observe that the variance becomes 0 or very low for the networks which have

significant number of constant communities in the first and second quadrants of Figure

3.3. The results obtained from the other networks with high sensitivity, such as Email and

Power, still indicate some variance although the value is less pronounced.

These observations on real-world networks lead us to believe that pre-processing using

constant communities is more effective if a network has strong community structure. To

test this hypothesis, we create LFR graphs with mixing parameters from 0.05 to 0.90. Low

mixing parameters indicate strong community structure. For the LFR graphs, we repeat

the same set of experiments as discussed above and obtain the mean modularity and its

variance. As shown in Table 3.2 (right), pre-processing using constant communities also

helps increase the modularity value and reduces variability of the results in the LFR graphs.

Another advantage of LFR networks is that we know the “ground-truth”, i.e., the correct

distribution of communities (exact number of vertices in each community and the number

of in-community connections between them). We use NMI to compare the obtained com-
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Figure 3.5: Variation of NMI for different values of mixing parameters. The broken line
corresponds to the experiment without the pre-processing step and the solid line to the
experiment after using the pre-processing step.

munities, with and without using the pre-processing step with the ground-truth community

structures of LFR graphs for different mixing parameters. As shown in Figure 3.5, when

the community structure is strong (low mixing parameter), using constant communities

pushes the result towards the ground-truth. In contrast, when the community structure is

not well-defined (high mixing parameter), use of constant communities does not mimic

the community distribution of the ground-truth, because there can be many variations of

community distribution in such networks that lead to high modularity. These results once

again highlight the significance of constant communities.

3.7 Relative Ranking of Constant Communities

A constant community is meaningful if it is large in size (high ξ) or it has high relative

permanence (Ω). We calculate the relative permanence of a constant community by

averaging the relative permanence of its constituent vertices. We experiment to see which

one of these two properties is more important in determining high modularity. To do

so, we order the constant communities according to (a) decreasing order of ξ and (b)

decreasing order of Ω. We combine the constant communities into super-vertices one by

one following the order obtained from (a) and (b) separately. After each combination, we

compute the modularity and compare the value with the average modularity (over 5000

permutations) obtained by using the Louvain method without any pre-processing.
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Figure 3.6: Modularity after partially collapsing the constant communities. The broken
blue lines are in decreasing order of size and the broken green lines are in decreasing order
of relative permanence. The red lines depict the mean modularities without using constant
communities.

Figure 3.6 compares the modularity obtained by collapsing constant communities ac-

cording to the order obtained from (a) (dotted blue line) and (b) (dotted green lines). For

almost all the networks, there is a transition where the modularity values cross over the

mean modularity (solid red line). Once this transition takes place, the modularity values

generally remain above (or at least equal to) the mean modularity. This critical point

indicates the smallest fraction of constant communities required to outperform the original

algorithms. We observe further that the green lines (ordered according to Ω(v)) generally

reach the critical point earlier than the blue lines (ordered according to ξ), indicating that

Ω(v) is a better indicator of constant communities.

Table 3.3: Few constant communities of PhoNet and the features they have in common.
Constant communities Features in common

/ph/, /th/, /kh/ voiceless, aspirated, plosive

/mb/, /nd/, /ng/ prenasalized, voiced, plosive

/p
˜
/, /t

˜
/, /k

˜
/ laryngealized, voiceless, plosive

/t/, /d/, /n/ dental

/í/, /ï/, /ú/, /ã/ retroflex
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3.8 Case Study

The significance of constant community in a network can be further understood if we

consider networks where nodes have specific functionalities associated with them. We

hypothesize that in such a network a constant community would represent indispensable

functional blocks that reflect the defining characteristics of the network. In order to

corroborate this hypothesis we conduct a case study on a specific type of linguistic network

constructed from the speech sound inventories of the world’s languages [150]. The

sound inventory of a language comprises a set of consonants and vowels also sometimes

together known as phonemes. In order to unfurl the co-occurrence principles of consonant

inventories, Mukherjee et al. [150] constructed a network (phoneme-phoneme network or

PhoNet) where each node is a consonant and an edge between two nodes denotes if the

corresponding consonants have co-occurred in a language. The number of languages in

which the two nodes (read consonants) co-occur defines the weight of the edge between

these nodes. Note that each node here has a functional representation since it can be

represented by means of a set of phonetic features (e.g., bilabial, dental, nasal, plosive

etc.) that indicate how it is articulated. Since this is a weighted graph, we suitably define a

threshold to construct the unweighted version. We detect constant communities of PhoNet

and observe that each such graph (see Table 3.3) represents a natural class, i.e., a set of

consonants that have a large overlap of the features [150]. Such groups are frequently

found to appear together across languages, and linguists describe this observation through

the principle of feature economy [150]. According to this principle, the speakers of a

language tend to be economic in choosing the features in order to reduce their learning

effort. For instance, if they have learnt to use a set of features by virtue of learning a

set of sounds, they would tend to admit those other sounds in their language that are

combinatorial variations of the features already learnt – if a language has the phonemes

/p/ (voiceless, bilabial, plosive), /b/ (voiced, bilabial, plosive) and /t/ (voiceless, dental,

plosive) in its inventory then the chances that it will have /d/ (voiced, dental, plosive) is

disproportionately higher compared to any other arbitrary phoneme since by virtue of

learning to articulate /p/, /b/ and /t/ the speakers need to learn no new feature to articulate

/d/. Identification of constant communities therefore systematically unfolds the natural

classes and provides a formal definition for the same (otherwise absent in the literature).

Further, we observe that collapsing the constant communities results either in more dilute
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groups (still with a certain degree of feature overlap) or reproduces the same constant

communities indicating that no valid dilution is possible for these functional blocks.

3.9 Summary of this Chapter

The idea of constant community has been derived by observing the variability of the

community detection algorithms in terms of the results produced. We observe that constant

communities are the most invariant part of the network. Therefore, the extent of presence

of constant community within a network indicates how community-like a network is.

Although we currently detect constant communities by comparing across different permu-

tations, our results have uncovered some interesting facts about the community structure

of networks, which can lead to improved algorithms for community detection.

• Constant communities of a network indicate the core of a community structure, in

which the nodes have high probability of staying together. Moreover, we notice

that constant communities are significantly different from the mere communities of

a network. We characterize these constant communities using a new metric called

relative permanence.

• The proposed metric, “sensitivity” indicates how well the community structure is

within a network. The more the value of sensitivity, the less the extent of presence

of constant communities.

• We show that prior detection of such constant communities eventually improves

any community detection algorithm in discovering meaningful communities from a

network.

• We also demonstrate through a labeled graph that these constant communities indeed

represent the functional blocks of a network, i.e., each constant community corre-

sponds to a functional unit of a network. Therefore, efficient detection of such blocks

can be useful in several applications such as in the study of biological networks.
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Chapter 4

Permanence and Network Communities

In this chapter we address our second objective of analyzing the limitations of state-

of-the-art community evaluation metrics (such as modularity) and community detection

algorithms (such as modularity maximization algorithms).

4.1 Introduction

Community detection algorithms primarily deal with identifying densely-connected units

from within large networks. Often this is done blindly without much attention being paid

toward inferring whether the network at all possesses a community structure. Similarly, a

community detection algorithm targets for full coverage; in contrast, there might be situ-

ations when it should rather not include some of the nodes in any community. Modularity

is a widely accepted metric for measuring the quality of community structure identified

by various community detection algorithms. However, a growing body of research have

begun to explore the limitations of maximizing modularity for community identification

and evaluation; three such limitations include – resolution limit, degeneracy of solutions

and asymptotic growth of the modularity value. To address these issues, we propose a

new vertex-based metric called permanence, that can quantitatively give an estimate of

the community-like structure of the network. The central idea of permanence is based

59
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on the observation that the strength of membership of a vertex to a community depends

upon the following two factors: (i) the distribution of external connectivity of the vertex to

individual communities and not the total external connectivity, and (ii) the strength of its

internal connectivity and not just the total internal edges.

The contributions of this chapter are as follows:

• We define permanence for both disjoint and overlapping community structures.

In contrast to the earlier literature where it is assumed that the constituent nodes

in a community have the same level of belongingness, permanence unfolds the

heterogeneity in the community membership of vertices.

• We show that permanence as compared to other standard measures, namely mod-

ularity, conductance and cut-ratio provides a more accurate estimate of a derived

community structure to the ground-truth community.

• Permanence qualifies to be appropriately sensitive to perturbations in the network.

• We demonstrate that the process of maximizing permanence produces meaningful

communities that concur with the ground-truth structure of the networks more

accurately than the modularity based and other approaches.

• We also provide theoretical results to show that maximizing permanence can

effectively reduce the limitations associated with modularity maximization as well

as can indirectly help in inferring the community quality of a network.

In this chapter, we discuss the permanence measure for both disjoint and overlapping

communities separately.

4.2 Permanence and Disjoint Community Structure

In this section, we explain two heuristics behind the formulation of permanence as follows.

The basic idea builds on the relative permanence measure described in Section 3.5.3.
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Figure 4.1: Toy example depicting permanence of two vertices u and v.

Heuristic I: A vertex should have more number of internal connections than the number

of connections to any one of the neighboring communities.

Most optimization metrics consider the total number of external neighbors of the vertex.

However, earlier in Section 3.5.3 we demonstrated that a group of vertices are likely

to be placed together so long as the number of internal connections is larger than the

number of connections to any one single external community. In other words, the vertex

which has connections to some external communities, experiences “pull” from each of

these external communities, which is proportional to the number of connections to the

external community. For example, in Figure 4.1, the pull that v experiences from each of

its external communities is proportional to 2, whereas u experiences pull proportional to

3 from one community and 1 from the other community. However, we hypothesize that

instead of considering total external connections of a vertex, one should look into how

these external connections are distributed across different communities, which is mostly

determined by the maximum number of external connections to anyone of the neighboring

communities (which in this case is 2 and 3 for v and u respectively).

Heuristic II: Within the substructure of a community, the internal neighbors of the vertex

should be highly connected among each other.

Most optimization metrics consider the internal connections of a vertex within its own

community together as a whole. However, how strongly a vertex is connected to its

internal neighbors may differ. The toy example of Figure 4.2 shows two networks each

having two communities. Both the networks have the same number of edges; and the

modularity, conductance and cut-ratio for the two divisions are exactly the same. However,

the vertices on the left-hand graph are more tightly connected to each other than the
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1−Cut = 0.90, Perm = 0.64

         Mod = 0.36,  1−Con = 0.94    

1−Cut = 0.90, Perm = 0.60

         Mod = 0.36,  1−Con = 0.94    

Figure 4.2: Two networks with same modularity, conductance and cut-ratio, but the left
one has more prominent community structure.

vertices on the right-hand graph. To measure this internal connectedness of a vertex, one

can compute the clustering coefficient of the vertex with respect to its internal neighbors.

The higher this internal clustering coefficient, the more tightly the vertex is connected to

its community. For instance, in Figure 4.1, the internal connectedness of v and u is 1 and 2
3

respectively. We hypothesize that the internal clustering coefficient of a vertex can capture

the connectedness of the vertex within its own community.

Based on these two heuristics together, we formulate permanence of a vertex in its own

community. Permanence is composed of the following two ingredients.

1. The internal connections, I(.), of the vertex v should be more than the maximum

connections to a single external community, Emax(.), which results in more internal

pull than the maximum external pull (indicated by F1 in Equation 4.1). If the vertex

has no external connections, F1 is just the value of the internal connections. We

normalize this value by the total degree of the vertex, D(v) (indicated by F2 in

Equation 4.1), which ensures that the product of F1 and F2 will be between 0 (no

internal connections) and 1 (no external connections).

2. Within a specific community, the internal neighbors of the vertex v should be highly

connected among each other (i.e., its internal clustering coefficient1, cin(v), should

be high). This criteria emphasizes that a vertex is likely to be within a community if it

is part of a near-clique substructure. For computing cin(v), we assume that each com-

munity should have at least three vertices and three internal connections; otherwise,

1Note that, internal clustering coefficient of v is obtained by considering the ratio of the existing connections and the total number

of possible connections among the internal neighbors of v.
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cin(v) is set to 0. When computing permanence, we impose a penalty based on low

internal clustering coefficient (indicated by F3 in Equation 4.1). The less the internal

clustering coefficient, the more the penalty imposed to the final outcome of the com-

munity score. This value also ranges from 0 (no penalty) to 1 (maximum penalty).

We aggregate these two criteria to formulate permanence of a vertex v as follows:

Perm(v) =
[ I(v)

Emax(v)︸ ︷︷ ︸
F1

× 1

D(v)︸ ︷︷ ︸
F2

]
−
[

1− cin(v)︸ ︷︷ ︸
F3

]
(4.1)

Figure 4.1 depicts a toy example for measuring permanence of two vertices u and v. Note

that this formula actually differentiates between the two cases in Figure 4.2 with higher

permanence value for the case (left) where the external pull is uniform.

Boundary conditions of permanence: For vertices that do not have any external con-

nections, Perm(v) is considered to be equal to the internal clustering coefficient (i.e.,

Perm(v) = cin(v)). The maximum value of Perm(v) is 1 and is obtained when vertex v

is an internal node and part of a clique. The lower bound of Perm(v) is close to -1. This is

obtained when I(v)� D(v), such that I(v)
D(v)Emax(v)

≈ 0 and cin(v) = 0. Therefore for every

vertex v, −1 < Perm(v) ≤ 1. The permanence of a graph G(V,E), where V is the set of

vertices andE is the set of edges, is given by Perm(G) = 1
|V |
∑

v∈V Perm(v). For a graph

G(V,E), the range is −1 < Perm(G) ≤ 1. Perm(G) will be closer to 1 as more vertices

have high permanence, that is more vertices are in well-defined communities. This can hap-

pen only if the network has a strong community structure. The maximum value obtained is

when G consists of a series of disconnected cliques. If there is a vertex bridging between

two cliques, then the highest overall permanence will be obtained if each clique acts as a

separate community and bridging vertex forms a singleton community. For a grid, the best

value of Perm(G) will be zero, i.e., each vertex is assigned to a singleton community.
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4.3 Experimental Setup

In this section, we provide a brief overview of the datasets, metrics and comparative

methods that we use for our experiments.

4.3.1 Test Suite of Networks

We use the LFR benchmark model [121] to generate synthetic networks along with their

ground-truth communities. Users can specify the following properties: number of nodes

(n), average (< k >) and maximum (kmax) degree, the degree distribution, the community

size distribution, and the mixing-coefficient (µ). The mixing coefficient represents the

ratio (in average) between the external connections of a node to its degree. Thus the lower

the value of µ, the stronger the community in the network. For our experiments, we set

the number of nodes as 1000, and µ as 0.1, 0.3 and 0.6 (unless mentioned otherwise).

For the rest of the parameters, we use the default values mentioned in the authors’

implementation2 [121].

We also use three real-world networks whose true community structures are known a priori

and whose properties are summarized in Table 4.1. The last column of Table 4.1 shows

that the average internal density of ground-truth communities is high, orders of magnitude

higher than equivalent sized random graphs, and therefore can be considered as valid and

significant communities.

Football network was proposed by Girvan and Newman [78] which contains the network

of American football games between Division IA colleges during regular season Fall of

2000. The vertices in the graph represent teams (identified by their college names), and

edges represent regular-season games between the two teams they connect.

Indian Railway network proposed by Ghosh et al. [77] consists of nodes representing

stations, where two stations si and sj are connected by an edge if there exists at least

one train-route such that both si and sj are scheduled halts on that route. The weight of

the edge between si and sj is the number of train-routes on which both these stations are

scheduled halts. We filter out the low-weight edges and then make the resultant network

2https://sites.google.com/site/santofortunato/inthepress2

https://sites.google.com/site/santofortunato/inthepress2
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unweighted. We tag each station based on the state in India3 to which that station belongs.

The states act as communities since the number of trains within each state is much higher

than the number of trains between two states.

Co-authorship network is derived from the citation dataset mentioned in Section 5.2. This

dataset contains the metadata (title, author(s), related field(s)4 of the paper, publication

venue, year of publication, references and abstract) of all the papers of computer science

published between 1960 to 2009 and archived in Microsoft Academic Search. We build an

aggregated undirected coauthorship network where each node represents an author, and an

undirected edge between a pair of authors is drawn if they were co-authors at least once.

Since each paper is marked by its related field, we assume this field as the research area

of the author(s) writing that paper. Therefore, an author may possess more than one area

of research interests. We resolve this by tagging each author by the major field on which

she has written most of the papers. These fields act as the ground-truth communities.

Besides the aggregated network, we also create some intermediate networks mentioned

in Table 4.6 by cumulatively aggregating all the vertices and edges over different time

windows, e.g., 1960-1970, 1960-1971, 1960-1972 and so on.

Table 4.1: Properties of real-world networks; n and e are the number of nodes and edges,
c is the number of communities, <k> and kmax its average and maximum degree, nminc

and nmaxc the sizes of its smallest and largest communities, <ψ> its average internal
connection density. The <ψ> values for the corresponding random graphs are shown
within parenthesis in the last column.

Networks n e <k> kmax c nminc nmaxc <ψ>

Football 115 613 10.57 12 12 5 13 0.72

(8.1× 10−3)

Railway 301 12,24 6.36 48 21 1 46 0.65

(5.3× 10−3)

Coauthorship 103,677 352,183 5.53 1,230 24 34 14,404 0.31

(6.5× 10−4)

3http://irfca.org/apps/station_codes
4Note that, the different sub-branches like Algorithms, AI, Operating Systems etc. constitute the different “fields” of computer

science domain.

http://irfca.org/apps/station_codes
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4.3.2 Scoring Functions for Evaluating Community Structure

The goodness of a community is often measured by how well certain scoring functions

are optimized. Here we compare the optimal value of permanence for the obtained

communities against three popular scoring functions, namely modularity (Mod) [156],

conductance (Con) [133] and cut-ratio (Cut) [143]. In order to make the higher the better,

we measure (1-Con) and (1-Cut) for conductance and cut-ratio respectively.

4.3.3 Metrics to Compare with Ground-truth

A stronger test of the correctness of the community detection algorithm, however, is by

comparing the obtained community with a given ground-truth structure. We use three

standard validation metrics, namely Normalized Mutual Information (NMI) [53], Adjusted

Rand Index (ARI) [105] and Purity (PU) [143] to measure the accuracy of the detected com-

munities with respect to the ground-truth community structure. Labatut [118] argues that

these measures have certain drawbacks in that they ignore the connectivity of the network.

We therefore also use the weighted versions of these measures, namely Weighted-NMI

(W-NMI), Weighted-ARI (W-ARI) and Weighted-Purity (W-PU) as proposed in [118].

Note that all the metrics are bounded between 0 (no matching) and 1 (perfect matching).

4.3.4 Community Detection Algorithms

We use the following community detection algorithms for comparison with our proposed

algorithm discussed in Section 4.6:

(i) Modularity-based: FastGreedy [161], Louvain [27] and CNM [48].

(ii) Random walk-based: WalkTrap [180].

(iii) Compression-based: InfoMod [189] and InfoMap [191].
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Table 4.2: For football network, the values of the scoring functions on the output obtained
from different algorithms and the scores of the validation metrics with respect to the
ground-truth communities. The ranks of the algorithms (using dense ranking) are shown
within parenthesis. The average ranks of all the normal (weighted) validation measures are
shown in column 9 (column 13).

Algorithms Mod Perm 1-Con 1-Cut NMI ARI PU Avg W-NMI W-ARI W-PU Avg

(N) (W)

Louvain 0.60(1) 0.36(1) 0.77(5) 0.44(5) 0.93(1) 0.99(1) 0.89(2) 1.33 0.99(2) 0.93(2) 0.99(1) 1.67

FastGreedy 0.58(2) 0.25(3) 0.81(3) 0.59(3) 0.93(1) 0.99(1) 0.91(1) 1.00 1.00(1) 0.94(1) 0.99(1) 1.00

CNM 0.55(3) 0.20(4) 0.85(1) 0.86(1) 0.67(4) 0.75(4) 0.42(5) 4.33 0.55(5) 0.63(5) 0.71(3) 4.33

WalkTrap 0.60(1) 0.36(1) 0.82(2) 0.69(2) 0.90(2) 0.98(2) 0.84(3) 2.33 0.98(3) 0.91(3) 0.99(1) 2.33

Infomod 0.60(1) 0.35(2) 0.82(2) 0.69(2) 0.89(3) 0.97(3) 0.82(4) 3.33 0.97(4) 0.89(4) 0.98(2) 3.33

Infomap 0.60(1) 0.35(2) 0.79(4) 0.51(4) 0.89(3) 0.97(3) 0.82(4) 3.33 0.97(4) 0.89(4) 0.98(2) 3.33
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Figure 4.3: Heat maps depicting the pairwise Spearman’s rank correlation between four
scoring functions with six validation measures for six different networks. Avg(N) and
Avg(W) are the averages of the ranks of three normal and three weighted validation
measures respectively as shown in Table 4.2.

4.4 Permanence as a Community Scoring Function

In this section, we demonstrate the effectiveness of permanence as a scoring function for

evaluating the goodness of detected communities, and compare it with Mod, 1-Con and

1-Cut. To do this, we perform the following experiment, on the same lines as that of [204].

The steps in our experiment are as follows: (i) we apply several community detection

algorithms on a specified network and obtain the vertex-to-community assignment as given

by each algorithm; (ii) we compute the values of all the community scoring functions for

these communities; (iii) for each scoring function we rank the algorithms based on which
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one of these produces the most optimal (highest) value; (iv) we then compare the obtained

community structure with the known ground-truth community structure and compute the

respective validation measures, namely NMI, ARI, Purity and their weighted versions;

(v) for each validation metric, we rank the algorithms based on the one that produces the

highest value, i.e., best match with ground-truth.

Table 4.2 shows the results of the experiment performed on football network. Scoring

functions (columns 2-5) are measures of goodness of the community set obtained. The val-

idation metrics (columns 6-8, 10-12) measure the concurrence of the communities with the

ground-truth communities. We posit that since these two types of measures are orthogonal,

and because the validation metrics generally provide a stronger measure of correctness,

the values of a good scoring function should “match" those of the validation metrics. That

is, if a scoring function indeed identifies the correct communities, then when its value is

high (low), the values of the corresponding validation metrics should also be high (low).

To compute this correlation, we compare the relative ranks, because the range of the values

is not commensurate across the quantities and we are more interested in observing the

“up" or “down" direction, rather than the absolute values. For each network, we measure

the Spearman’s rank correlation between all pairs of scoring functions and validation

measures. Note that it is not always possible to assign ranks uniquely. We used different

ranking schemes to break ties. Here, we present the results using dense ranking; we

have also used standard competition ranking and fractional ranking and our results are

consistent across all the different methods.

Results. Table 4.2 shows the values and ranks for the different metrics for football net-

work. For all the networks, the rank correlations of the scoring functions and the validation

metrics are shown as heat maps in Figure 4.3. Lighter color indicates higher correlation

and hence more similarity between the scoring function and the validation metric. For the

networks having distinct community structure such as LFR (µ = 0.1), football and railway

networks, permanence shows comparable performance as that of other scoring functions.

However for LFR network, with the increase of µ, the inter-community connection density

starts increasing, and it is difficult for any community detection algorithm and/or scoring

function to capture the ground-truth communities. Interestingly, we observe that the rank

correlation obtained through the permanence scores and those through validation metrics is
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exceptionally high for LFR (µ = 0.6) and coauthorship networks which seem to have poor

community structure compared to the other networks (see Table 4.1). Since the ground-

truth communities are not well formed, there is a wide variance in the type of community

structures identified by different algorithms. Permanence score can capture this variability

much better than other scoring functions.

4.5 Sensitivity of Permanence

We now evaluate the sensitivity of permanence under different perturbations of the

ground-truth community structure. We posit that a good metric for evaluating communities

should be stable under small perturbations of the ground-truth communities (i.e., groups of

nodes that differ very slightly from the ground-truth communities). This indicates that the

scoring function is robust to noise. However, if the perturbation is beyond a threshold, i.e.,

when the ground-truth community structure is perturbed to such an extent that it resembles

a random set of nodes, then a good scoring function should assign it a low score.

Given a graph G =< V,E > and perturbation intensity p, we start with the ground-truth

community S and then modify it (i.e., change its members) by executing the perturbation

strategy p · m times. The value of m is based on different strategies, as described below.

For our experiments, we adopt three perturbation strategies motivated by the methods

proposed in [231]:

(i) Edge-based perturbation picks a random inter-community edge (u, v) where u ∈ S and

v ∈ S ′ (where S 6= S ′) and then swaps the memberships (i.e., assign u to S ′ and v to S). It

continues until p · |E| iterations are completed (here, m = |E|). This strategy preserves the

size of S. However, if v is not connected to any other nodes in S except u, then it makes S

disconnected.

(ii) Random perturbation takes community members and replaces them with random non-

members. We pick two random nodes u ∈ S and v ∈ S ′ (where S 6= S ′) and then swap

their memberships. It continues until p · |V | iterations are completed (here, m = |V |).
Random perturbation maintains the size of S but may disconnect S. Generally, it degrades
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Figure 4.4: Change in the value of the scoring functions with the increase of perturbation
intensity (p) in, (a) edge-based, (b) random and (c) community-based perturbation
strategies. The values are normalized by the maximum value obtained from each function.

the quality of S faster than edge-based strategy, since edge-based strategy only affects the

“fringe” of the community.

(iii) Community-based perturbation adopts a similar mechanism as in the edge-based

strategy. However, it considers each community S from the ground-truth community struc-

ture one by one and continues the perturbation until p · |S| constituent nodes of the com-

munity are swapped with the other non-constituent nodes (here, m = |S|). This process is

repeated for all the communities separately. This perturbation decreases the quality of the

ground-truth communities the fastest among the three since the number of swaps is much

higher than the others.

We perturb different networks using these three perturbation strategies for values of p

ranging between 0.01 to 0.5. We compute the values of four community scoring functions,

i.e., modularity (Mod), permanence (Perm), 1-Con and 1-Cut. For small values of p, small

change of the original value of the scoring function is desirable since it indicates that the

scoring function is robust to noise. For high perturbation intensities (i.e., for larger values

of p), the value should drop significantly since the communities become more random.

Results. Figure 4.4 shows the results of our experiments. For a commensurate comparison,

we rescale the values of each parameter by normalizing with the maximum value obtained

from that function. For all three strategies, the values of the scoring functions tend to

decrease with the increase of p, and the effect is most prominent in community-based strat-
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egy followed by random and edge-based strategies. For each network, once p has reached

a certain threshold, the decrease is much faster in permanence. On more careful inspec-

tion, we find that this happens because the internal structure of a community completely

breaks down if perturbation is taken beyond a point and thus has an avalanche effect on the

value of the clustering coefficient (cin(v) in Equation (4.1)). This in turn quickly pulls the

value of permanence down. Summarizing, the results indicate that permanence is a better

measure for distinguishing true communities from randomized sets of nodes than the other

parameters.

4.6 Permanence Maximization

Inspired by the effectiveness of permanence as a scoring function and its sensitivity to

perturbations, we develop a community detection algorithm called MaxPerm (pseudocode

in Algorithm 2) that identifies communities by maximizing permanence.

Our algorithm is a heuristic, that strives to obtain a high value of permanence. In this algo-

rithm, we begin by initializing every vertex to a singleton community. A vertex is moved

to a community only if this movement results in a net increase in the number of internal

connections and/or a net decrease in the number of external connections to any of the

neighboring communities. If such a move is not possible, then either the vertex remains as

a singleton (such as in the case where moving to any one of the candidate communities will

give equal permanence) or becomes a part of the community where it is more tightly con-

nected with its neighbors (this causes the vertex to have positive permanence). This process

is repeated for each vertex and the entire relocation of all vertices is repeated over several

iterations until the permanence value converges. Although convergence is not theoretically

guaranteed, we observe that in most cases the algorithm converges with high probability.

4.6.1 Performance Evaluation

Table 4.3 shows results of the improvement of our method (as differences) compared to

the average and best performances of six competing algorithms (given in Section 4.3.4)
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Algorithm 2 MaxPerm: Maximizing permanence for detecting non-overlapping commu-

nities
Input: A graph G.

Output: Permanence of G; Detected communities

procedure MAX PERMANENCE(G(V,E))

Each vertex is assigned to its seed community

Set value of maximum iteration as maxIt

vertices← |V |
Sum← 0

Old_Sum← −1

Itern← 0

while Sum 6= Old_Sum and Itern < maxIt do
Itern← Itern+ 1

Old_Sum← Sum

Sum← 0

for all v ∈ V do
Compute current permanence of v

cur_p← Perm(v)

if cur_p == 1 then
Sum← Sum+ cur_p

continue;

cur_p_neig ← 0

for all u ∈ Neig(v) do /* Neig(v)=set of neighbors of v */

Compute current permanence of u

cur_p_neig ← cur_p_neig + Perm(u)

for all C ∈ Comm(v) do /* Comm(v) is the set of neighboring communities of v */

Move v to community C

Compute permanence of v in community C

n_p← Perm(v)

/* Neighbors of v are affected for this movement */

n_p_neig ← 0

for all u ∈ Neig(v) do
Compute new permanence of u

n_p_neig ← n_p_neig + Perm(u)

if (cur_p < n_p) and (cur_p_neig < n_p_neig) then
cur_p← n_p

else
Replace v to its original community

Sum← Sum+ cur_p

Netw_perm = Sum/vertices /* Permanence of G */

return Netw_perm

based on six ground-truth based validation metrics.

Comparable results – In LFR (µ = 0.1) and football networks, since the communities

are well-separated, most algorithms efficiently capture these partitions and our method is



4.6 Permanence Maximization 73

Table 4.3: Improvement of MaxPerm with respect to the average (left-hand value) and the
best (right-hand value) performances of the six competing algorithms (separated by semi-
colon). Positive (negative) values indicate that MaxPerm outperforms (underperforms) the
corresponding performances of the competing algorithms.

Validation metrics LFR (µ=0.1) LFR (µ=0.3) LFR (µ=0.6) Football Railway Coauthorship

NMI 0.04; 0.00 0.15; 0.05 -0.31; -0.78 0.04; 0.00 0.15; 0.11 0.04; -0.06

ARI 0.06; 0.00 0.21; 0.02 -0.39; -0.76 0.07; 0.00 0.03; 0.04 0.03; -0.08

PU 0.04; 0.00 0.17; 0.00 -0.38; -0.72 0.01; 0.00 0.13; 0.00 0.03; -0.06

W-NMI 0.02; 0.00 0.14; 0.00 -0.41; -0.78 0.09; 0.00 0.26; 0.00 0.05; -0.01

W-ARI 0.05; 0.02 0.19; 0.05 -0.35; -0.72 0.05; 0.00 0.02; -0.15 0.04; -0.06

W-PU 0.03; 0.01 0.17; 0.00 -0.45; -0.79 0.00; 0.00 0.05; -0.04 0.02; -0.15

comparable to the other algorithms as well.

Improved results – In LFR (µ = 0.3) and railway networks, our method significantly

outperforms other algorithms. Moreover in railway network, we observe that our algorithm

detects three singleton communities (i.e., communities each containing only one vertex),

one of which is also present in the ground-truth structure. None of the community detection

algorithms is able to capture this singleton community.

Moderate results – Our method does not work well for the LFR (µ = 0.6) network.

For coauthorship network, we observe that though our algorithm outperforms the aver-

age performance of the competing algorithms, it performs less well than that of the two

information-theoretic approaches (Infomod and Infomap).

4.6.2 Reasons behind Moderate Performance

LFR (µ=0.6) – To understand why our algorithm is not as competitive for LFR (µ = 0.6),

we further observe the quality of the ground-truth communities in three LFR networks. We

observe that while the average internal clustering coefficient of vertices in LFR (µ = 0.1) is

0.78, it deteriorates to 0.36 for LFR (µ = 0.6). Moreover, 97% of vertices in ground-truth

communities of LFR (µ=0.6) have less internal connections than the external connections

(while LFR (µ=0.1) and LFR (µ=0.3) hardly have any such nodes). This indicates that

LFR (µ = 0.6) does not have modular structure in the ground-truth communities.
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To further strengthen this claim, we also measure the similarity of the communities

obtained by different community detection algorithms (as listed in Section 4.3.4) across

different validation measures. The results in Table 4.4 clearly show the degradation of

the similarity values with the increase in µ. The reason is that with the increase in µ,

the communities in LFR network tend to be less well-knit, and thus the agreement of the

outputs of different algorithms is also less. Therefore, the output of a good community

detection algorithm should reflect such absence of modular structure in the network (hence

shows poor performance).

Coauthorship network – To explain the permanence-based results obtained from coau-

thorship network, we further analyze the communities obtained from our algorithm. We

check the title and the abstract of the papers written by the authors in each community of

coauthorship network, and notice that our method splits large ground-truth communities

into denser submodules. This splitting is mostly noticed in older research areas such

as Algorithms and Theory, Databases etc. These submodules are actually the subfields

(sub-communities) of a field (community) in computer science domain.

Table 4.4: Average values among pairwise similarities between outputs of the community
detection algorithms on different LFR networks.

Validation LFR LFR LFR

measures (µ=0.1) (µ=0.3) (µ=0.6)

NMI 0.95 0.82 0.53

ARI 0.98 0.79 0.48

PU 0.99 0.85 0.56

W-NMI 0.94 0.85 0.54

W-ARI 0.97 0.78 0.50

W-PU 0.98 0.83 0.57

Comparison of largest community size. Many optimization algorithms have the tendency

to underestimate smaller size communities (known as the resolution limit problem [81])

and sometimes tend to produce very large size communities. In our test suite, we observe

a similar tendency in all the competing algorithms whereas the communities obtained by

permanence are smaller in size. In Table 4.5, we show for two representative networks that

the size of the largest communities detected by the other algorithms is much larger than

the size of the largest community present in the ground-truth structure. We also measure

the maximum similarity (using Jaccard coefficient) between the largest-size community

detected by each algorithm with the communities in ground-truth structure and notice that
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Table 4.5: Size of the largest communities obtained from different community detection
algorithms and their similarities with the ground-truth structure for two networks (LFR
(µ=0.3, N=1000) and football).

Largest community size Similarity

LFR Football LFR Football

(µ = 0.3) (µ = 0.3)

Ground-truth 49 12 – –

Louvain 62 24 0.70 0.41

FastGreedy 95 18 0.32 0.65

CNM 91 32 0.52 0.31

Walktrap 83 15 0.51 0.57

Infomod 61 16 0.79 0.86

Infomap 59 16 0.74 0.86

MaxPerm 49 13 1 0.92

MaxPerm is able to detect largest size community which is most similar to the ground-truth

structure. Therefore, we hypothesize that our algorithm has the potential to reduce the

effect of resolution limit (see Section 4.7 for theoretical proofs).

4.7 Handling Modularity Maximization Issues

As discussed earlier, modularity maximization algorithms suffer from the issues including

(a) resolution limit, (b) degeneracy of solution and (c) dependence on the size of the

graph [81]. We now discuss how each of these problems are ameliorated by maximizing

permanence.

We demonstrate that community assignments are different in a modularity-based algorithm

vis-a-vis MaxPerm algorithm using the example in Figure 4.5. In this figure, we assume

that apart from the edges through v, there is no connection between the communities A

and B.

As we see in Figure 4.5, two communities A and B are connected via a vertex v. The

vertex v has connections to α nodes in community A and to β nodes in community B, and

these nodes form the set Nα and Nβ respectively. The average internal degree of a vertex,

a ∈ Nα (b ∈ Nβ), before v is added is Iα (Iβ). Similarly, the average internal clustering

coefficient of a vertex, a ∈ Nα (b ∈ Nβ), before v is added is CA (CB). We assume the
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Case 1: [(A+ v) : B] Case 2: [A : (B + v)]

Case 3: [(A+ v +B)] Case 4: [A : B : v]

Figure 4.5: An illustrative example to show the community assignment of vertex v. These
are used to demonstrate four Lemmas.

values of CA and CB to be at least 0.5. Communities A and B have no other connections

except those through v. We also assume that α ≥ β.

When v is added to communities A (B) then the average internal clustering coefficient of

v becomes Cv
A (Cv

B), and the average clustering coefficient of the nodes in Nα(Nβ) become

Cα (Cβ). We consider two extreme values of Cα(Cβ). One case is when the nodes in the

community are tightly connected and adding v does not significantly change the internal

clustering coefficient. In this case, we assume Cα = CA and Cβ = CB. The other case

is when the nodes in the community are not as tightly connected. In this case, adding v

decreases the average internal clustering coefficient.

Let the number of internal connections of nodes in Nα, before v is added, be fx. Therefore

CA = fx
Iα(Iα−1)

. In the second case when the communities are sparse, once v is added we

assume that no new distinct connections among the pair of neighbors of v are formed, but

the internal degree increases by one. Therefore Cα = fx
(Iα+1)Iα

= CAIα(Iα−1)
(Iα+1)Iα

= CA(Iα−1)
(Iα+1)

.

Similarly Cβ =
CB(Iβ−1)

(Iβ+1)
.

The combination of communities A, B and the vertex v can have four cases as follows:
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• Case 1. v joins with community A only. We denote this configuration as [(A + v) :

B], and its total permanence as P(A+v):B. We assume that the combined permanence

of all nodes x 6∈ (Nα ∪ Nβ ∪ v) as Px. This value will not be affected due to the

re-assignments. Therefore, the total permanence is the sum of the following factors:

Px, [αCα] (for the nodes in Nα connected to v), [ α
(α+β)β

− (1 − Cv
A)] (for vertex v)

and [β(
Iβ
Iβ+1
− (1− Cβ))] (for the nodes in Nβ).

P(A+v):B = Px + αCα + α
(α+β)β

− (1− Cv
A) + β(

Iβ
Iβ+1
− (1− CB))

• Case 2. v joins with community B only. We denote this configuration as

[(A : (v + B)], and its total permanence as PA:(v+B). The values of this total perma-

nence is the sum of the following factors: Px, [α( Iα
Iα+1
− (1−Cα))] (for the nodes in

Nα), [ β
(α+β)α

−(1−Cv
B)] (for vertex v) and [βCβ] (for the nodes inNβ connected to v).

PA:(v+B) = Px + α( Iα
Iα+1
− (1− CA)) + β

(α+β)α
− (1− Cv

B) + βCβ

• Case 3. A, B and v merge together. We denote this configuration as [(A + v + B)],

and its total permanence as P(A+v+B). The values of this total permanence is the

sum of the following factors: Px, [αCα] (for the nodes in Nα), [
α(α−1)CvA+β(β−1)CvB

(α+β)(α+β−1)
]

(for vertex v) and [βCβ] (for the nodes in Nβ connected to v).

P(A+v+B) = Px + αCα +
α(α−1)CvA+β(β−1)CvB

(α+β)(α+β−1)
+ βCβ

• Case 4. A, B and v remain as separate communities. We denote this configuration

as [(A : v : B)], and its total permanence as P(A:v:B). The values of this total

permanence is the sum of the following factors: Px, [α( Iα
Iα+1

− (1 − Cα))] (for the

nodes in Nα), 0 (for vertex v) and [β(
Iβ
Iβ+1
− (1− Cβ))] (for the nodes in Nβ).

P(A:v:B) = Px + α( Iα
Iα+1
− (1− CA)) + β(

Iβ
Iβ+1
− (1− CB))

Lemma 4.1 Given Cα = CA and Cβ = CB, let Z = α−β
αβ

+ (Cv
A − Cv

B) +
(

α
Iα+1
− β

Iβ+1

)
.

The assignment [(A+ v) : B] will have a higher permanence than [A : (v + B)], if Z > 0

and a lower permanence if Z < 0.

Proof. Here we are comparing between Case 1 and Case 2. The difference in total
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permanence between these two assignments by assuming Cα = CA and Cβ = CB is:

P(A+v):B − PA:(v+B) =
α

(α+ β)β
+ CvA + β(

Iβ

Iβ + 1
− 1)

− (α(
Iα

Iα + 1
− 1) +

β

(α+ β)α
+ CvB)

=
α

(α+ β)β
−

β

(α+ β)α
+ (CvA − C

v
B) + (−β

1

Iβ + 1
− α

−1

Iα + 1
)

=
α− β
αβ

+ (CvA − C
v
B) + (

α

Iα + 1
−

β

Iβ + 1
)

(4.2)

If this difference is greater than zero then [(A+ v) : B] will have a higher permanence. If

the difference is less than zero then [A : (v +B)] will have higher permanence.

Lemma 4.2 Merging the communities A, B and v, gives higher permanence than joining v

to community A if Cβ = CB, and γ
(γ+1)β

+
CvA(2γ+1)−CvB

(γ+1)2
− β

Iβ+1
< 1; where γ = α/β, and

also if Cβ = CB
Iβ−1

Iβ+1
, and γ

(γ+1)β
+

CvA(2γ+1)−CvB
(γ+1)2

+ β(2CB−1)
Iβ+1

< 1.

Proof. We are comparing Case 1 and Case 3 and in this caseCβ = CB
Iβ−1

Iβ+1
. The difference

in total permanence is:

P(A+v):B − P(A+v+B) =
α

(α+ β)β
− 1 + CvA + β(

Iβ

Iβ + 1
− 1 + CB)− (

α(α− 1)CvA + β(β − 1)CvB
(α+ β)(α+ β − 1)

+ βCβ)

=
α

(α+ β)β
− 1 + CvA −

β

Iβ + 1
+ β(CB − Cβ)−

α(α− 1)CvA + β(β − 1)CvB
(α+ β)(α+ β − 1)

Substituting γ = α/β and Cβ = CB
Iβ−1

Iβ+1

=
γ

(γ + 1)β
− 1 + CvA −

β

Iβ + 1
+ βCB

2

Iβ + 1
−
γ(γ − 1/β)CvA + (1− 1/β)CvB

(γ + 1)(γ + 1− 1/β)

(4.3)

The value of 1/β will become lower as β increases. We therefore ignore its effect. The
equation then becomes:

P(A+v):B − P(A+v+B) =
γ

(γ + 1)β
− 1 + CvA −

β

Iβ + 1
+ βCB

2

Iβ + 1

−
γ2CvA

(γ + 1)(γ + 1)
−

CvB
(γ + 1)(γ + 1)

=
γ

(γ + 1)β
− 1 +

CvA(2γ + 1)− CvB
(γ + 1)2

+ β
2CB − 1

Iβ + 1

(4.4)

If this difference is less than 0 then higher permanence is obtained by merging. There-

fore, the condition to merge A, B and v altogether rather than v joining with A is:
γ

(γ+1)β
+

CvA(2γ+1)−CvB
(γ+1)2

+ β 2CB−1
Iβ+1

< 1.
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If we consider Cβ = CB, then

P(A+v):B − P(A+v+B) =
γ

(γ + 1)β
− 1 +

CvA(2γ + 1)− CvB
(γ + 1)2

−
β

Iβ + 1
(4.5)

In this case, the condition to merge is:
γ

(γ + 1)β
+
CvA(2γ + 1)− CvB

(γ + 1)2
−

β

Iβ + 1
< 1 (4.6)

Corollary 4.5 If β = 1, Cβ = CB
Iβ−1

Iβ+1
, Cv

A > 1/2 then v will join community A

rather than the three pieces merging.

Corollary 4.6 If CB ≈ 1, Cβ = CB
Iβ−1

Iβ+1
, β ≥ Iβ + 1 and Cv

A ≥ Cv
B/3 then v will join

community A rather than the three pieces merging.

Proof of Corollary 4.5: If β = 1, then

P(A+v):B − P(A+v+B) =
γ

(γ + 1)β
− 1 + CvA −

β

Iβ + 1
+ βCB

2

Iβ + 1
−

(γ(γ − 1/β)CvA + (1− 1/β)CvB
(γ + 1)(γ + 1− 1/β)

=
γ

(γ + 1)
− 1 + CvA +

(2CB − 1)

Iβ + 1
−
γ(γ − 1)CvA
(γ + 1)(γ)

=
−1

(γ + 1)
+ CvA

2γ

γ + 1)γ
+

(2CB − 1)

Iβ + 1

=
2CvA − 1

(γ + 1)
+

(2CB − 1)

Iβ + 1

(4.7)

This value will be positive so long as Cv
A > 1/2. In this case, joining v to community A

is favored.

Proof of Corollary 4.6: If CB ≈ 1, β ≥ Iβ + 1 and Cv
A ≥ Cv

B, then

P(A+v):B − P(A+v+B) =
γ

(γ + 1)β
− 1 + CvA −

β

Iβ + 1
+ βCB

2

Iβ + 1
−
γ(γ − 1/β)CvA + (1− 1/β)CvB

(γ + 1)(γ + 1− 1/β)

Ignore 1/β, because β is high

=
γ

(γ + 1)β
− 1 + CvA + β

2CB − 1

Iβ + 1
−
γ(γ − 1/β)CvA
(γ + 1)(γ + 1)

−
CvB

(γ + 1)(γ + 1)

=
γ

(γ + 1)β
+
CvA(2γ + 1)− CvB

(γ + 1)(γ + 1)
+ (

β

Iβ + 1
− 1)

(4.8)

The first term is positive. Since the smallest value of γ = 1, and Cv
A ≥ Cv

B, the second

term is positive, and since β ≥ Iβ + 1, the third term is also positive. Therefore v will join
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community A rather than merging all the components.

Lemma 4.3 IfCα = CA andCβ = CB then the communities will merge (i.e., [(A+v+B)]),

rather than remain separate (i.e., [A : B : C]). If Cα = CA
(Iα−1)
(Iα+1)

Cβ = CB
(Iβ−1)

(Iβ+1)
and then

the communities will merge if: γ2CvA+CvB
(γ+1)2

> α (2CA−1)
Iα+1

+ β (2CB−1)
Iβ+1

.

Proof: We are comparing Case 3 and Case 4, and the case Cβ = CB
Iβ−1

Iβ+1
. The difference

in total permanence is:

P(A+v+B) − P(A:v:B) = αCα +
α(α− 1)CvA + β(β − 1)CvB

(α+ β)(α+ β − 1)
+ βCβ − (α(

Iα

Iα + 1
− (1− CA)) + β(

Iβ

Iβ + 1
− (1− CB)))

= −α(CA − Cα)− β(CB − Cβ) +
α(α− 1)CvA + β(β − 1)CvB

(α+ β)(α+ β − 1)
+

α

Iα + 1
+

β

Iβ + 1

=
α(α− 1)CvA + β(β − 1)CvB

(α+ β)(α+ β − 1)
+

α

Iα + 1
+

β

Iβ + 1
− (α

2CA

Iα + 1
+ β

2CB

Iβ + 1
)

Substituting γ = α/β

=
γ(γ − 1/β)CvA + (1− 1/β)CvB

(γ + 1)(γ + 1− 1/β)
− (α

(2CA − 1)

Iα + 1
+ β

(2CB − 1)

Iβ + 1
)

(4.9)

The value of 1/β will become lower as β increases. We therefore ignore its effect. The
equation then becomes

P(A+v+B) − P(A:v:B) =
γ2CvA + CvB

(γ + 1)2
− (α

(2CA − 1)

Iα + 1
+ β

(2CB − 1)

Iβ + 1
) (4.10)

If Cα = CA and Cβ = CB, then

P(A+v+B) − P(A:v:B) = αCA +
α(α− 1)CvA + β(β − 1)CvB

(α+ β)(α+ β − 1)
+ βCB − (α(

Iα

Iα + 1
− (1− CA)) + β(

Iβ

Iβ + 1
− (1− CB)))

=
α(α− 1)CvA + β(β − 1)CvB

(α+ β)(α+ β − 1)
+

α

Iα + 1
+

β

Iβ + 1

(4.11)

This value is always positive so the communities will merge.

Lemma 4.4 IfCα = CA andCβ = CB then the communities will remain separate (i.e., [A :

v : B]) rather than v joining with community A (i.e., [(A+ v) : B]), if α( 1
Iα+1

+ 1
(α+β)β

) <

(1 − Cv
A). Otherwise, if Cα = CA

(Iα−1)
(Iα+1)

; Cβ = CB
(Iβ−1)

(Iβ+1)
and then the communities will

remain separate if α(2CA−1
Iα+1

) + (1− Cv
A) ≥ α

(α+β)β

Proof: We are comparing Case 1 and Case 4 for the case Cα = CA
(Iα−1)
(Iα+1)

; Cβ = CB
(Iβ−1)

(Iβ+1)
.
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The difference in total permanence is:

P(A+v):B − P(A:v:B) = αCα +
α

(α+ β)β
− (1− CvA)− (α(

Iα

Iα + 1
− (1− CA))

= α(Cα − CA +
1

Iα + 1
) +

α

(α+ β)β
+ (CvA − 1)

= α(
1− 2CA

Iα + 1
) +

α

(α+ β)β
+ (CvA − 1)

(4.12)

This value will be negative (favor merge) if: α(2CA−1
Iα+1

+ (1− Cv
A)) > α

(α+β)β
.

If we consider the case Cα = CA and Cβ = CB, then

P(A+v):B − P(A:v:B) = αCα +
α

(α+ β)β
− (1− CvA)− (α(

Iα

Iα + 1
− (1− CA))

=
α

Iα + 1
+

α

(α+ β)β
+ (CvA − 1)

= α(
1

Iα + 1
+

1

(α+ β)β
)

+ (CvA − 1)

(4.13)

This value will be negative (favor merge) if: α( 1
Iα+1

) + 1
(α+β)β

) < (1− Cv
A).

Corollary 4.7 If α = β, Cβ = CB
Iβ−1

Iβ+1
, Cv

A = Cv
B then communities A, B and v will

merge, rather than v joining community A, if 1
2β

+
CvA
2

+ β 2CB−1
Iβ+1

< 1.

Corollary 4.8 If α = β, Cβ = CB
Iβ−1

Iβ+1
, then communities A, B and v will remain

separate rather than v joining community A, if α(2CA−1
Iα+1

) + (1− Cv
A) ≥ 1

2α
. If α = β = 1,

then Cv
A = 0 the communities will remain always separated.

Proof of Corollary 4.7: If α = β, Cv
A = Cv

B, Cβ = CB
Iβ−1

Iβ+1
, then comparing Case 1 and

Case 3 we get

P(A+v+B) − P(A:v:B) =
γ

(γ + 1)β
− 1 +

CvA(2γ + 1)− CvB
(γ + 1)2

+ β
2CB − 1

Iβ + 1

=
1

2β
− 1 +

3CvA − C
v
A

4
+ β

2CB − 1

Iβ + 1

=
1

2β
− 1 +

2CvA
4

+ β
2CB − 1

Iβ + 1

(4.14)

This values is negative(favors merging) if 1
2β

+
CvA
2

+ β 2CB−1
Iβ+1

< 1.

Proof of Corollary 4.8: If α = β, Cβ = CB
Iβ−1

Iβ+1
, Cv

A = Cv
B then
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P(A+v):B − P(A:v:B) = α(
1− 2CA

Iα + 1
) +

α

(α+ β)β
+ (CvA − 1)

= α(
1− 2CA

Iα + 1
) +

1

2α
+ (CvA − 1)

(4.15)

This value will be negative (favor merge) if: α(2CA−1
Iα+1

) + (1− Cv
A)) > 1

2α
.

If α = 1, then Cv
A = 0. Then the condition is: 2CA−1

Iα+1
+ 1 > 1

2
, Which is always true.

Degeneracy of solution is a problem where a community scoring function (e.g., modu-

larity) admits multiple distinct high-scoring solutions and typically lacks a clear global

maximum, thereby, resorting to tie-breaking [81]. For our example, when α = β, modu-

larity maximization algorithm will assign v arbitrarily to A or B. However, in the case of

permanence as we see in the earlier proofs, v will remain as a separate community so long

as the following condition is maintained:

Condition. If α = β, Cβ = CB
Iβ−1

Iβ+1
, then communities A, B and v will remain separate

rather than v joining community A, if α(2CA−1
Iα+1

) + (1− Cv
A) ≥ 1

2α
.

We observe that when α = β = 1, then Cv
A = 0 and the communities will always remain

separate. Furthermore, as α increases, the left-hand side of the above condition will

become larger than the right, thus increasing the chance of separate communities.

Resolution limit is a problem where communities of certain small size are merged into

larger ones [81]. A classic example where modularity cannot identify communities

of small size is a cycle of m cliques. Here maximum modularity is obtained if two

neighboring cliques are merged.

In the case of permanence as we see in the earlier proofs, we can determine that whether

two communities A and B would merge (as in modularity) or whether v would join

community A (we select A, but similar analysis can also be done for the case when v joins

B), by the following condition:

Condition. Joining v to community A gives higher permanence than merging the commu-

nities A, B and v if Cβ = CB, and ( γ
(γ+1)β

+
CvA(2γ+1)−CvB

(γ+1)2
− β

Iβ+1
)>1; where γ = α/β and
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Table 4.6: Change in scoring functions with the (near-)symmetric growth of coauthorship
network. N : number of nodes, c: number of communities, < I >: average internal degree,
< k >: average degree, < cin >: average internal clustering coefficient, < Emax >:
average maximum external connectivity. The value of permanence is less affected by the
growth.

C
oa

ut
ho

rs
hi

p Network

n 964 1515 1991 2681 3386 4836 6284 7814 9001 10386

properties

c 24 24 24 24 24 24 24 24 24 24
<I>
<k>

0.082 0.095 0.093 0.091 0.089 0.104 0.111 0.112 0.115 0.113
1

<Emax>
(×10−4) 3.8 3.2 2.9 3.9 2.8 2.11 2.39 2.92 2.69 3.22

< (1− cin) > 0.239 0.248 0.246 0.251 0.251 0.260 0.265 0.269 0.270 0.274

Modularity 0.369 0.374 0.395 0.392 0.421 0.422 0.465 0.471 0.493 0.501

Permanence 0.094 0.092 0.092 0.096 0.095 0.095 0.097 0.097 0.097 0.098

also if Cβ = CB
Iβ−1

Iβ+1
, and ( γ

(γ+1)β
+

CvA(2γ+1)−CvB
(γ+1)2

+ β(2CB−1)
Iβ+1

) > 1.

This result is independent of the size of the communities. Moreover, so long as A and B

are almost cliques (internal clustering coefficients > 0.5), Cv
A is sufficiently high and Cv

B is

sufficiently small (e.g., Cv
A >2/3 and Cv

B=0), v will join community A rather than merging.

Thus, in general, the highest permanence is obtained if v joins the community to which it

is very tightly connected rather than the one to which it is loosely connected.

Asymptotic growth of value of a metric implies a strong dependence on the size

of the network and the number of modules the network contains [81]. Rewrit-

ing Equation 4.1, we get the permanence of the entire network G as follows:

Perm(G) = 1
|V |

∑
v∈V

[
I(v)

D(v)Emax(v)

]
− 1
|V |

∑
v∈V [(1− cin(v))]. We can notice that most of the parame-

ters in the above formula are independent of the network size and the number of communi-

ties. Table 4.6 illustrates that with the symmetric growth of the network size in coauthorship

network, the modularity increases consistently, while permanence remains almost constant.

4.8 Permanence and Overlapping Community Structure

In Section 4.2, we showed that the extent of membership of a vertex to a community de-

pends on the following two factors: (i) the distribution of external connections of the vertex

to individual communities, and (ii) the density of its internal connections. Based on these

observations, we proposed a vertex-based scoring function, called permanence to measure
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the extent to which a vertex belongs to a non-overlapping community. Here, we formulate a

generalized version of this metric called overlapping permanence (abbreviated as OPerm)

that, although is developed for overlapping community, translates to the non-overlapping

case under special boundary conditions. Note that this is one of the rarest formulations

which can be useful for both non-overlapping and overlapping community analysis.

We formulate OPerm for each node as follows: consider a vertex v with degree D(v) that

belongs to a set of communities, C. OPerm is computed by taking into account two factors

that determine the membership of the vertex in the communities.

The first factor measures the extent to which other vertices “pull” v towards their com-

munities. There are two types of pull: internal and external. The internal pull is computed

as Ic(v) =
∑

e∈Γcv

1
xe

, where Γcv denotes the set of internal edges of v in community c,

and xe for an edge e = (u, v) denotes the number of communities that both the vertices

u and v (i.e., the edge e) share. The total internal pull of v, over all the communities in

C is given by I(v) =
∑

c∈C I
c(v). The external pull measures how well the vertex is

connected to vertices in communities not in C. Let Emax(v) be the maximum pull from

an external community. This represents the largest force that can pull v away from its

current community set. The opposing internal and external pulls experienced by the vertex

v appropriately weighted by its degree are represented by Ic(v)
Emax(v)

× 1
D(v)

. If Emax(v) is

zero, we set this factor to 1.

The second factor in deciding community membership is how well the vertex is integrated

within each of its constituent communities. This is given by the internal clustering

coefficient ccin(v) of v in community c ∈ C. If the number of internal vertices is less than

three, we set the internal clustering coefficient to 1. This value is weighted by the fraction

indicating the extent of internal pull and we measure this integration as (1− ccin(v)) · I
c(v)
I(v)

.

Taking these two factors together, we compute overlapping permanence, P c
ov(v) of v in

community c as follows:

P c
ov(v) =

Ic(v)

Emax(v)
× 1

D(v)
− (1− ccin(v)) · I

c(v)

I(v)
(4.16)

Equation 4.16 ensures that the value of P c
ov(v) is between 1 (vertex is completely integrated



4.9 Experimental Setup 85

Figure 4.6: Toy example depicting OPerm of a vertex v which belongs to both C1 and C2

and has two external neighboring communities, C3 and C4. The red-colored edge shares
membership in both C1 and C2.

within a clique) to -1 (vertex is wrongly assigned). A vertex in a singleton community

(i.e., community with only one vertex) will have P c
ov(v) as zero. The total OPerm of v

over all its communities c ∈ C is computed as Pov(v) =
∑

c∈C P
c
ov(v). The total OPerm of

the network, with the vertex set V , is the average of the OPerm values of all the vertices,

i.e., Pov = 1
|V |
∑

v∈V Pov(v). Equation 4.16 indeed reduces to the non-overlapping case

(see Equation 4.1) when the number of internal communities is 1. An example of how

overlapping permanence is computed is presented in Figure 5.16.

4.9 Experimental Setup

In this section, we briefly discuss the state-of-the-art metrics and algorithms that are used

in the experiments presented in the subsequent sections.

4.9.1 Datasets

To study the properties of OPerm, we observe its behavior on LFR5 benchmark

networks [121] that take into account heterogeneity in degree and community size

distributions of a network (as mentioned in Section 4.3.1). Unless otherwise stated, LFR

5http://sites.google.com/site/andrealancichinetti/files.

http://sites.google.com/site/andrealancichinetti/files.
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Table 4.7: Properties of the real-world networks used in the experiments. N : number
of nodes, E: number of edges, C: number of communities, ρ: average edge-density
per community, S: average size of a community, Ōm: average number of community
memberships per node.

Networks Node type Edge type Community type N E C ρ S Ōm Reference

LiveJournal User Friendship User-defined group 3,997,962 34,681,189 310,092 0.536 40.02 3.09 [232]

Amazon Product Co-purchased products Product category 334,863 925,872 151,037 0.769 99.86 14.83 [232]

Youtube User Friendship User-defined group 1,134,890 2,987,624 8,385 0.732 43.88 2.27 [232]

Orkut User Friendship User-defined group 3,072,441 117,185,083 6,288,363 0.245 34.86 95.93 [232]

Flickr User Friendship Joined group 80,513 5,899,882 171 0.046 470.83 18.96 [219]

Coauthorship Researcher Collaborations Research area 391,526 873,775 8,493 0.231 393.18 10.45 [170]

graph is generated with the following configuration: µ = 0.2, N=1000, Om=4, On=5%;

other parameters being set to their default values.

We also use six real networks whose underlying ground-truth community structures are

known a priori. The properties of these networks are summarized in Table 4.7.

Sampling real-world networks. As noted in [232], most of the baseline community

detection algorithms (mentioned in Section 4.9.3) do not scale for networks of large size.

Therefore, we use the following technique proposed by Yan and Leskovec [232] to obtain

several small subnetworks with overlapping community structure from the large real

networks. We pick a random node u in the given graph G that belongs to at least two

communities. We then take the subnetwork to be the induced subgraph of G consisting of

all the nodes that share at least one ground-truth community membership with u. In our

experiments, we create 500 different subnetworks for each of the six real-world datasets

and the results are averaged over these 500 samples.

4.9.2 Overlapping Community Scoring Metrics

The following metrics are often used to quantify the quality of the detected overlapping

community structure.

• Modularity: Shen et al. [89] introduce EQ, an adaptation of Newman’s modularity

function [156] designed to evaluate overlapping communities as follows:
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EQ =
1

2m

∑
c∈C

∑
i∈c,j∈c

1

OiOj

[
Aij −

kikj
2m

]
(4.17)

where, Aij indicates (i, j) entry in the adjacency matrix A, m is the number of edges in

the graph, C is the set of communities, and Oi is the number of communities to which the

node i belongs.

On the other hand, recently Lázár et al. [127] provide a more complex evaluation metric of

the goodness of an overlapping community structure as follows:

Qov =
1

|C|
∑
c∈C

[∑
i∈c

∑
j∈c,i 6=j

Aij−
∑
j /∈c

Aij

di·si

nc
· nec(

nc
2

)] (4.18)

where C is the set of communities, nc and nec are the number of nodes and edges that

community c contains respectively, di is the degree of node i, and si is the number of

communities to which i belongs.

• Community Coverage (CC): As described in [3], this metric counts the fraction of

nodes that belong to at least one community of three or more nodes. A size of three is

chosen since it constitutes the smallest non-trivial community structure.

• Overlap Coverage (OC): As described in [3], this metric counts the average number of

node memberships in non-trivial communities (size at least three).

4.9.3 Baseline Algorithms

We choose the following state-of-the-art overlapping community detection algorithms for

our experiments. The algorithms are chosen such that they are relatively new and can

cover all types of overlapping community detection heuristics mentioned in [226]:
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• Local expansion and optimization: OSLOM 6 [126], EAGLE 7 [89].

• Agent-based dynamical algorithms: COPRA8 [85] and SLPA9 [228].

• Fuzzy detection using mixture model: MOSES10 [146], BIGCLAM11 [232].

4.9.4 Community Validation Metrics

Given the ground-truth community structure of a network, a stronger test for evaluating

the quality of the detected community would be to compare it with the ground-truth

structure. For this purpose, we use the following validation metrics that quantify the level

of correspondence between these two types of communities: (a) Overlapping Normalized

Mutual Information (ONMI) [147], (b) Omega (Ω) Index [85], (c) F-Score [232]. Note that

higher the value of these metrics, the closer is the match with the ground-truth structure.

4.10 Inferences from OPerm Values

Although a community is generally conceived as a homogeneous entity, in reality it is

not so. Within a community, the extent of involvement and activity may not be same

for all members - OPerm precisely captures this heterogeneity. The value of OPerm of

a node v belonging to a community c indicates the extent to which the node belongs to

c. Using this value several inferences can be drawn about the communities present in the

network. For instance, it inherently creates a gradation/ranking of the constituent vertices

in a community. This ranking may be important in many cases; one such perspective is to

explore the core-periphery structure of a community. We also describe the utility of such

ranking through a real-world application – initiator selection during message spreading in

6http://www.oslom.org.
7http://code.google.com/p/eaglepp/
8http://www.cs.bris.ac.uk/~steve/networks/software/copra.html.
9https://sites.google.com/site/communitydetectionslpa.

10http://sites.google.com/site/aaronmcdaid/moses.
11http://snap.stanford.edu

http://www.oslom.org.
http://code.google.com/p/eaglepp/
http://www.cs.bris.ac.uk/~steve/networks/software/copra.html.
https://sites.google.com/site/communitydetectionslpa.
http://sites.google.com/site/aaronmcdaid/moses.
http://snap.stanford.edu
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Figure 4.7: Community-wise average overlapping permanence, < P c
ov > of vertices as a

function of farness centrality d for LFR and real-world networks.

networks. Finally, we provide a general overview discussing the distribution of nodes in

the constituent communities.

4.10.1 Core-periphery Structure of Community

We intend to explore the relation of OPerm of a vertex with its position vis-a-vis core of

a community. To do so, we use farness centrality (d) proposed in [233] as a measure to

locate the position of a vertex within a community. In order to measure farness centrality

for each community, we construct the induced subgraph constituting all the nodes in the

community and measure average shortest path for each vertex within this subgraph12.

Thus, the lower the value of d for a vertex, the closer the vertex is to the core part of the

community. We plot average P c
ov of vertices as a function of d in Figure 4.7. We observe

that for both LFR and real-world networks, average P c
ov decreases with the distance from

the center of the community. Therefore, the value of OPerm can act as a strong indicator

of the position of the vertex in the community. Moreover, we shall see in Figure 4.9(i) -

4.9(j) that nodes exhibiting high P c
ov tend to have low degree. This leads to an interesting

realization that the core of a community is mostly shaped without high-degree nodes.

The next investigation reveals the manner in which the OPerm value of vertices decreases

from the core. A smooth decrease in value would indicate that the nodes in a community

are arranged in layers with each layer of vertices roughly having similar OPerm. In order

12Farness centrality is just the opposite of closeness centrality in a connected component.
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Figure 4.8: Number of time steps required to spread a message in LFR network by
varying the number of nodes.

to understand the mixing pattern of vertices, we measure assortativity (r)13 [158] based

on OPerm to observe the preference for a network’s nodes in a community c to attach to

other nodes that have nearly similar OPerm. We divide the values of P c
ov into 20 bins so

that nodes within a bin are treated to exhibit exactly same P c
ov, and then measure r for the

corresponding community. For comparison, we also measure degree-based assortativity of

vertices in each community. The average of assortativity scores of all the communities per

network is reported in Table 4.8. We observe that both synthetic and real-world networks

are highly assortative in terms of OPerm. This result indeed indicates that in general,

a community is organized into several layers, where each layer is composed of vertices

exhibiting similar OPerm, and vertices tend to be highly connected within each layer than

across different layers. The positive impact of such layer is next illustrated by considering

the task of message spreading.

Table 4.8: Average of the assortativity scores, < r > (degree-based and P c
ov-based) of the

communities per network.
< r > LFR (µ = 0.1) LFR (µ = 0.3) LFR (µ = 0.6)

Degree-based -0.045 -0.018 0.139

P c
ov-based 0.645 0.483 0.421

< r > LiveJournal Amazon Youtube Orkut Flickr Coauthorship

Degree-based 0.037 -0.275 -0.182 0.221 -0.098 0.281

P c
ov-based 0.465 0.497 0.438 0.528 0.402 0.469

13Assortativity (r) lies between -1 and 1. When r = 1, the network is said to have perfect assortative patterns, when r = 0 the

network is non-assortative, while at r = -1 the network is completely disassortative.
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4.10.2 Initiator Selection for Message Spreading

Message spreading is one of the challenging problems in complex networks [45]. Starting

with a set of source nodes/ initiators having a message, the protocol proceeds in a sequence

of synchronous rounds. At every time step, each node in the system having the message

communicates with one node (not having the message) in its neighborhood and transfers

the message. The algorithm terminates when all the nodes in the system have received the

message.

A fundamental issue in message spreading is the selection of initiators. Since OPerm

produces a ranked list of vertices within a community and vertices with higher P c
ov form

the core of the community, we posit that initiator selection based on P c
ov would help in

disseminating the message more quickly. For this, we consider LFR network and vary the

number of nodes from 1,000 to 90,000, keeping the other parameters constant (see Section

4.9.1). We select multiple initiators by picking one node per community present in the

ground-truth structure based on the following criteria separately: (i) random, (ii) highest

degree, (iii) highest P c
ov. Side by side, we detect communities using MaxOPerm (see

Section 4.12) and choose initiators from the communities based on highest P c
ov. For each

network configuration, we run 500 simulations and report in Figure 4.8 the average number

of time steps required for the message to reach all the nodes in the network. We observe

that P c
ov-based initiator selection from ground-truth communities requires minimum time

steps to spread the message compared to the degree-based selection. P c
ov-based initiator

selection for the communities obtained from MaxOPerm performs almost as good as that

selected from ground-truth community (we shall discuss this issue more in Section 4.13).

These results thus highlight the importance of P c
ov-based ranking within a community.

4.10.3 Explaining the Community Structure

In this section, we investigate the distribution of OPerm corresponding to each node-

community pair, which in turn might be effective to explain general characteristics of

the community structure. To do so, we compute P c
ov of each vertex on the ground-truth

communities of the benchmark networks. As shown in Figure 4.9(a) - 4.9(b), we divide the
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Figure 4.9: The relation of average P c
ov with (a)-(b) fraction of vertices, (c)-(d) < Om >,

average community memberships per node, (e)-(f) < Ic(v) >, average internal degree
(normalized by the maximum value), (g)-(h) < ccin(v) >, average internal clustering
coefficient, (i)-(j) < D(v) >, average degree of nodes for LFR and real-world networks.
The value of P c

ov of vertices in each community is equally divided into 20 buckets indicated
in x-axis (bin 1: −1 ≤ P c

ov < −0.9, ..., bin 20: 0.9 ≤ P c
ov ≤ 1).

values of P c
ov ranging from -1 to 1 into 20 bins on x-axis where the low (high) numbered

bins contain nodes with lower (higher) P c
ov, and for each bin, we plot in y-axis the fraction

of vertices present in the network. We observe that this curve follows a Gaussian-like

distribution, i.e., there are few vertices with very high or very low P c
ov values, and majority

have intermediate values. In Figure 4.9(a), the peak shifts from left to right with the

decrease of µ value in LFR network (keeping the other parameters of LFR constant). The

shift in the peak shows that as the structure of the communities gets more well-defined

with the decrease of µ, most vertices move towards higher OPerm zone. The real-world

networks, except Flickr show a similar Gaussian distribution in Figure 4.9(b), where most

of the vertices fall in medium P c
ov range. For Flickr network, we notice in Table 4.7 that

the communities are large in size (high S) and sparse in terms of edge density (low ρ)

compared to those for the other networks. We also observe that most of the vertices in

Flickr network have low internal clustering coefficient (0.12, where the average ccin of

vertices for the other networks is 0.31), thus producing very low P c
ov.
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Figure 4.10: Spearman’s rank correlation between five scoring functions with three valida-
tion measures for (top panel) LFR by varying µ and (bottom panel) six real-world networks.

To investigate further, for a community we enumerate the number of (other) community

memberships of each constituent node vis-a-vis its P c
ov. As shown in Figure 4.9(c) -

4.9(d), this pattern also follows a Gaussian distribution for LFR networks. This indicates

that typically in a community, vertices exhibiting average P c
ov tend to belong to multiple

communities. This is non-intuitive because generally P c
ov of a vertex tends to decrease

with the increase in the magnitude of its belongingness to multiple communities (Ic(v)

becomes lower in Equation 4.16). However surprisingly, here nodes sharing multiple

communities still exhibit medium to high P c
ov value. We speculate that some other factors

in Equation 4.16 might push the value of P c
ov up to a certain extent.

To check this, we further plot in Figure 4.9(e) - 4.9(f) the average value of Ic(v) of vertices

within each P c
ov bin. For each network, the values of Ic(v) are normalized by the maximum

value. We observe the minimum value of Ic(v) in the middle bin; this is because the

nodes participating in many communities contribute a small fraction of internal edges to

each community. Next, we plot another important ingredient of P c
ov, average ccin(v) of the

vertices in each bin. Here we notice that for all the networks, the constituent nodes of a

community with medium P c
ov exhibit significantly high ccin(v). This can be the possible

reason for having P c
ov in a medium range for highly overlapped nodes. We also observe

in Figure 4.9(i) - 4.9(j) that nodes with higher degree exhibit medium P c
ov. Therefore,

comparing all the results in Figure 4.9 together we conclude that the high-degree nodes

are part of more communities, thus most of their connected edges are shared by multiples

groups. In other words, they maintain medium P c
ov in every community they participate.
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4.11 OPerm as Community Scoring Function

In this section, we perform exhaustive experiments to show that OPerm serves as a better

scoring metric compared to those outlined in Section 4.9.2.

4.11.1 Correspondence to Ground-truth Structure

We first adopt the same rank correlation based approach [204] described in Section 4.4

and compare OPerm with the other overlapping community scoring metrics mentioned in

Section 4.9.2.

Figure 4.10 shows the correlation values for different LFR networks (where µ is varied14)

and six real-world networks (the values are reported by averaging over 500 subnetworks in

each case). Each vertical panel in the figure corresponds to a validation measure. Each line

in a panel corresponds to a scoring function. We observe that for all the cases, the lines

corresponding to Pov dominate other scoring metrics, which is followed by Qov and EQ.

The performance of CC and OC are same and worst among the others. Therefore, we

conclude that OPerm can capture the variability much better than other scoring metrics.

4.11.2 Robustness to Perturbations

So far we have examined the ability of different scoring metrics to rank algorithms

according to their goodness. In this section, we further evaluate community scoring

metrics using a set of perturbation strategies for communities. We posit that a metric

is robust to any perturbation if its value under small perturbations to the ground-truth,

changes slightly. However, if the ground-truth labels are highly perturbed such that the

underlying community structure gets highly deformed, then a good community scoring

metric should diminish to a low score.

We adopt three perturbation strategies mentioned in Section 4.5. We perturb different

14Results are same for the other LFR networks obtained by varying Om and On.
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Figure 4.11: Change in the value of five overlapping community scoring functions with the
increase of perturbation intensity p in (a) edge-based, (b) random and (c) community-based
strategies for one LFR (top panel) and one real network (Flickr, bottom panel). The values
of each metric are normalized by the maximum value obtained from that metric. Most
cases, the lines for community coverage (CC) and overlap coverage (OC) are juxtapose
because of their high similarity.

networks using these strategies for values of p ranging between 0.01 to 0.5, and compute

five community scoring metrics, i.e., Pov, EQ, Qov, CC, CC. Figure 4.11 shows the

representative results of our experiments for one LFR and one real-world network (Flickr)

(the results are same for the other cases). For all three strategies, the value of the

scoring metrics tends to decrease with the increase in p; the effect is most pronounced in

community-based strategy. For each network, once p has reached a certain threshold, the

decrease in value is much faster in OPerm. This happens because the internal structure of

a community completely breaks down if the perturbation is taken beyond a point and thus

has an avalanche effect on the value of the clustering coefficient (ccin(v) in Equation 4.16).

This in turn quickly reduces the value of OPerm, thus making it appropriately robust.

4.12 Overlapping Community Detection by Maximizing

OPerm

We develop MaxOPerm (pseudocode in Algorithm 3), a greedy agglomerative algorithm

that iteratively maximizes OPerm and, thereby, detects the overlapping community

structure of a network. It starts with a random community assignment where each edge

is assumed to be a community. Then in every iteration, OPerm of a vertex v is computed
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Algorithm 3 MaxOPerm: Maximizing OPerm for detecting overlapping communities
Input: A connected graph G = (V,E)

Output: Detected overlapping communities and OPerm of G

Assign each edge (two end vertices) to a separate community

V er ← |V |
GOPerm← 0.0, SumOPerm← 0.0

OldOPerm← −1.0

Set the value of maximum iteration as MaxItern

Itern← 0

while Itern < MaxItern and SumOPerm 6= OldOPerm do
Itern← Itern+ 1

OldOPerm← SumOPerm

for each vertex v do
CurComm is the set of communities to which v belongs

Find CurOPerm, the OPerm of v in CurComm

if CurOPerm == 1 then
SumOPerm← SumOPerm+ CurOPerm /* Communities of v are set to CurComm */

continue;
Endif
Determine CNeigh, the set of neighboring communities of v

Find overlapping permanence of v in CNeigh

TempOPerm← 0.0

TempComm← ∅
for each community c in CNeigh do

Temporarily assign v to community c

Calculate v_P cov , OPerm of v in c

if v_P cov > 0 then
TempOPerm← TempOPerm+ v_P cov
TempComm← TempComm ∪ c

Endif
Endfor
if TempOPerm > CurOPerm then

CurComm← TempComm

CurOPerm← TempOPerm
Endif
SumOPerm← SumOPerm+ CurOPerm

Endfor
Endwhile
GOPerm← SumOPerm/V er /* OPerm of the graph */

return GOperm

by temporarily assigning it into each of its neighboring communities. Then, the overall

change in OPerm is computed. A vertex v is assigned to newer communities if there is a

positive gain in OPerm due to this assignment. The algorithm converges either when there

is no improvement in OPerm for all the vertices or the maximum number of allowable

iterations is reached.
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4.13 Evaluation of MaxOPerm

In order to evaluate MaxOPerm, we (a) compare the detected community structure with

the ground-truth community structure and measure the similarity (Section 4.13.1), and (b)

check how sensitive its output is due to the change in the initial vertex ordering (Section

4.13.2).

4.13.1 Comparison with Baseline Algorithms

We run MaxOPerm along with six other algorithms mentioned in Section 4.9.3 and

compare their performance for networks whose ground-truth communities are known.

Since the baseline methods do not scale for large-size real networks, we use the sampled

subnetworks as mentioned in Section 4.9.1. For the LFR benchmark however, the results

are reported on the entire network. The results are shown for the following setting of the

LFR network: n=1000, µ=0.2, On=5% and Om=4. For each real network, we measure the

average value of each validation metric for 500 different samples.

For each validation metric (ONMI, Ω Index, F-Score), we separately scale the scores

of the methods so that the best performing community detection method has the score

of 1. Finally, we compute the composite performance by summing up the 3 normalized

scores. If a method outperforms all the other methods in all the scores, then its composite

performance is 3.

Figure 4.12 displays the composite performance of the methods for different networks.

On an average, the composite performance of MaxOPerm (2.88) significantly outperforms

other competing algorithms: 6.27% higher than that of BIGCLAM (2.71), 18.03% higher

than that of SLPA (2.44), 101.3% higher than that of OSLOM (1.43), 36.4% higher than

that of COPRA (2.11), 48.4% higher than that of MOSES (1.94), and 77.8% higher than

that of EAGLE (1.62). The absolute average ONMI of MaxOPerm for one LFR and six

real networks taken together is 0.85, which is 4.93% and 26.8% higher than the two most

competing algorithms, i.e., BIGCLAM (0.81), and SLPA (0.67) respectively. In terms of

absolute values of scores, MaxOPerm achieves the average F-Score of 0.84 and average Ω
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Figure 4.12: Performance of various competing algorithms (ranging from 0 to 3) to
detect the ground-truth communities. The table shows the performance improvement of
MaxOPerm over BIGCLAM in detecting communities in large real networks.

Index of 0.83. Overall, MaxOPerm gives the best results, followed by BIGCLAM, SLPA,

COPRA, MOSES, EAGLE and OSLOM.

Comparison with BIGCLAM for large networks: As most of the baseline algorithms

except BIGCLAM do not scale for large real networks [232], we separately compare Max-

OPerm with BIGCLAM (which is also the most competing algorithm) on actual large real

datasets. The table in Figure 4.12 shows the percentage improvement of MaxOPerm over

BIGCLAM for different real networks. On average, MaxOPerm achieves 17.67% higher

ONMI, 14.96% higher Ω Index, and 10.78% higher F-Score. Overall, MaxOPerm out-

performs BIGCLAM in every measure and for every network. The absolute values of the

scores of MaxOPerm averaged over all the networks are 0.81 (ONMI), 0.82 (Ω Index),

and 0.81 (F-Score). Therefore, the improvement of MaxOPerm over BIGCLAM is higher

considering the entire network in comparison to that in the sampled networks.

4.13.2 Degeneracy of Solutions

Degeneracy of solutions is the phenomenon where the same optimal value can output dif-

ferent community assignments. Most of the community detection algorithms are based on

optimizing certain functions (such as modularity), and the values are heavily dependent on

the order in which vertices are processed [123].
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An intrinsic goodness of an algorithm can be measured by the number of invariant groups

of vertices (termed as “constant communities” as discussed in Chapter 3) that remain in

the same community across different vertex orderings. To quantify the effect of vertex

ordering, we introduced a metric, called sensitivity (φ), which measures the ratio of the

number of constant communities to the total number of nodes (see Section 3.5.1). In the

worst case, the number of constant communities would be equal to the number of nodes

with each node being a community. Here, we use this metric to measure the degeneracy of

an algorithm. If the value of φ for an algorithm remains constant and small over different

vertex orderings, then the algorithm is less susceptible to degeneracy of solutions.

We plot the value of sensitivity for different vertex orderings for each algorithm in

Figure 4.13 (one LFR and one real-world network are considered to illustrate the results).

The x-axis indicates the number of different vertex orderings and the y-axis plots the

normalized value of φ. We observe that MaxOPerm is the most consistent algorithm. This

result demonstrates that by producing lesser number of competing solutions our algorithm

is able to significantly reduce the problem of degeneracy of solutions. We emphasize that

this is the first time a metric has been proposed to quantify the degeneracy of solutions, and

this metric can be used for evaluating any newly proposed community detection algorithm.

Another example of the advantage of MaxOPerm has been shown in initiator selection for

message spreading (see Section 4.10.2). As shown in Figure 4.8, if one uses MaxOPerm

to detect the overlapping communities, then the performance is almost as good, as that of

using the ground-truth community.
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4.14 Summary of this Chapter

In this chapter we introduced two vertex-based metrics, called permanence (Perm) and

overlapping permanence (OPerm) respectively for disjoint and overlapping community

analysis. Subsequently, we proposed two greedy algorithms, MaxPerm and MaxOPerm

to detect disjoint and overlapping communities respectively from the networks. The

contributions of this chapter are manifold:

• The values of Perm and OPerm act as a strong indicator of the existence of

community structure in a network.

• We presented the first generalized formula, OPerm that can identify both overlapping

and non-overlapping communities depending on the underlying structure of the

network.

• We demonstrated for the first time how vertices are organized within a community

through proper statistical quantities.

• We identified a precise rank order among the vertices within a community by

arranging them into a core-periphery structure based on OPerm.

• Being vertex-based metrics, both Perm and OPerm are significantly localized;

they therefore allow partial estimation of communities in a network whose entire

structure is not known.



Chapter 5

Analyzing Ground-truth Communities

In this chapter we address our third objective of analyzing ground-truth community

structure of a real-world network. In particular, we consider a scientific network, called

citation network, and analyze its ground-truth community structure.

5.1 Introduction

Several works on detecting and tracking communities in a temporal environment have

been conducted [24, 203]. However, the interactive patterns of the detected communities

over a temporal scale still remain unexplored mainly due to the lack of standard real-world

ground-truth communities. For those networks, whose ground-truth community structures

are known to us, the lack of appropriate metadata information has remained a barrier in

exploring the dynamics of the community interactions. This chapter stresses on developing

ground-truth overlapping communities in terms of the research fields of a large-scale

directed citation network of computer science domain and explores the inter-cluster

interactive patterns on a longitudinal scale (i.e., with the progress of time) that in turn

explains the rise and fall of the impact of scientific research over the last fifty years.

The contributions of this chapter are threefold:

101
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• Ground-truth communities and their temporal interactions: In first part of this

chapter, we describe a large-scale paper-paper directed citation network of the com-

puter science domain with the research areas/fields annotated thus representing the

natural partitioning of the network into ground-truth communities. Next, we propose

a simple edge-centric measurement called “inwardness” of a community to capture

the dynamics of inter-cluster interactions across time points. Subsequently, to un-

derstand this phenomena at a more granular level, we postulate several explanations

for such a dynamical behavior of research communities. Finally, we validate our

proposed framework with the evidence of additional statistics obtained in the form

of the project funding decisions made by NSF (National Science Foundation of the

USA).

• Interdisciplinary nature of research fields: In the second part, we systematically

unfold the dynamics and emergence of connections across the fields, which in turn

quantify the interdisciplinary research activities. The degree of interdisciplinarity

of a particular field is measured using four indicators that neatly separate out the

core from the interdisciplinary fields in a fully unsupervised fashion. After that,

we perform a two-fold analysis of the results. As a first objective, we compare the

evolutionary landscape of a core and an interdisciplinary field, while as a second

objective we perform core-periphery analysis of the citation network at different time

points and observe that the popularity of the interdisciplinary research now-a-days

overshadows the core fields.

• Understanding scientific career of researchers: In the last part of this chapter,

we analyze the diverse scientific careers of researchers in computer science domain

in order to understand the key factors that could lead to a successful scientific ca-

reer. In particular, we investigate by proposing two entropy-based metrics how the

researchers make choices to select their fields of research at different points in their

career. We observe that most of the prominent researchers tend to follow typical

“scatter-gather” policy – although their entire careers are immensely diverse with

different types of fields selected at different time periods, they remain very focused

in one or at most two fields at different shorter time spans of their careers.
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Table 5.1: General information of raw and filtered datasets.
Raw dataset Filtered dataset

Number of valid entries 2,473,171 1,549,317

Number of entries with no venue 343,090 –

Number of entries with no author 45,551 –

Number of entries with no publication year 191,864 –

Partial data of the years before 1970 and 2011-2012 343,349 –

Number of authors 1,186,412 821,633

Avg. number of papers per author 5.18 5.04

Avg. number of authors per paper 2.49 2.67

Number of unique venues 6,143 5,938

Percentage of entries with multiple fields 9.08% 8.68%

5.2 A Large Publication Dataset

The traditional information pertaining to citation networks like papers and citation

distributions are not adequate in this study to meet all the experimental needs. The analysis

needs several other related information about each paper, e.g., publication year, publication

venue (journal/conference), research field, authors and their continents.

5.2.1 Curation of a Large Publication Dataset

We crawled one of the largest publicly available datasets from Microsoft Academic Search

(MAS)1. We collected all the papers specifically published in the computer science domain

and indexed by MAS. The crawled dataset2 contains more than 2 million distinct papers al-

together which are further distributed over 24 fields of computer science domain (see Table

5.2). Moreover, each paper comes along with various bibliographic information – the title

of the paper, a unique index for the paper, its author(s), the affiliation of the author(s), the

continent of the author(s), the year of publication, the publication venue, the related field(s)

of the paper, the abstract and the keywords of the paper, and the references of the paper.

In general, scientific focus shifts are affected manifold by contributory papers than by

1academic.research.microsoft.com
2The dataset is available at http://cnerg.org for the research community.

academic.research.microsoft.com
http://cnerg.org
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Table 5.2: Percentage of papers in various fields and their average inwardness (see Section
5.3) in each decade (for each decade, top and second ranked inwardness measures are in
bold font).

No. Subject Abbreviation % of papers Average Inwardness

60-69 70-79 80-89 90-99 00-10

1. Artificial Intelligence AI 15.30 0.02 0.67 4.94 5.14 3.29
2. Algorithms and Theory ALGO 14.09 4.13 4.49 3.39 2.12 0.55

3. Networking NW 8.63 0.19 0.53 1.06 3.42 1.76

4. Databases DB 8.12 3.75 3.67 1.80 1.14 0.17

5. Distributed and DIST 7.63 0.02 2.02 2.86 1.55 0.56

Parallel Computing

6. Hardware & Architecture ARC 7.29 0.41 2.49 2.29 1.12 1.04

7. Software Engineering SE 6.40 1.98 3.21 1.89 1.67 0.52

8. Machine Learning ML 6.09 0 0.43 2.51 2.97 2.62
and Pattern Recognition

9. Scientific Computing SC 4.02 0 1.14 2.38 2.91 0.19

10. Bioinformatics BIO 3.88 0 0 0.71 1.27 0.56

& Computational Biology

11. Human-Computer HCI 3.42 0 0.03 1.65 2.05 1.39

Interaction

12. Multimedia MUL 3.34 0 0.53 2.51 2.22 1.33

13. Graphics GRP 3.32 0 0.56 2.58 2.63 1.07

14. Computer Vision CV 3.03 0 0.86 1.29 2.73 1.27

15. Data Mining DM 3.02 0 0.27 1.80 1.83 1.02

16. Programming Languages PL 3.00 0.41 2.49 3.86 2.46 1.29

17. Security and Privacy SEC 2.94 0 0.86 3.80 2.56 1.59

18. Information Retrieval IR 2.26 0 0.42 1.32 2.62 1.79

19. Natural Language NLP 2.11 0 0.13 1.16 2.82 1.92

and Speech

20. World Wide Web WWW 1.76 0 0 1.86 2.10 1.83

21. Computer Education EDU 1.67 0 0 0.80 0.83 0.39

22. Operating Systems OS 1.07 0.31 1.73 1.39 1.98 1.20

23. Real Time RT 0.90 0 0.67 1.56 2.52 0.54

Embedded Systems

24. Simulation SIM 0.14 0 0.30 1.20 2.70 0.87

reviews, surveys and text books, and therefore we exclude these items from our data. Fur-

ther, in order to make our data bounded we consider only those papers that cite or are cited

by at least one paper. Moreover, we consider only those papers published in between 1970

and 2010 because this set of papers contains the most reliable and significant entries. In

the filtered dataset, 8.68% papers belong to multiple fields (act as interdisciplinary papers).

Some of the general information pertaining to the filtered dataset are presented in Table 5.1.
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5.2.2 Constructing Citation Networks

Since our method is primarily based on suitable statistical analysis of various properties

of paper-paper citation network, the next task is to construct the citation network from the

tagged dataset. Formally, a citation network is defined as a graph G =< V,E > where

each node vi ∈ V represents a paper and a directed edge eji pointing from vj to vi indicates

that the paper corresponding to vj cites the paper corresponding to vi in its references.

From our tagged dataset, a citation network is constructed by the papers representing nodes

and the citations representing directed edges from the citing paper to the cited paper. At a

higher tier, each field (i.e., a collection of papers) can be thought of as a single community,

and two communities can again be linked by a directed edge with edge-weight calculated

using Equation 5.1 mentioned in Section 5.3. Following this strategy, we essentially obtain

a field-field directed and weighted network on top of the paper-paper citation network

which attempts to capture the interaction patterns of the scientific communities. Note that

in each year, there are at most 24 communities (if there exists at least one paper from each

of the fields) and the size of each community changes over the years depending upon the

number of publications in that field. A community at time t can interact with any other

communities at or before t.

5.3 Time Transition of Scientific Communities

In this section, we analyze the time transition of the scientific focus showing how one field

has taken over another during the time evolution of the computer sciences. In particular,

we measure the impact of a field so as to construct the time transition diagram reflecting

the trend shifts. Some of the previous experimental results [59, 60] show that the trend

of citations received by a paper after its publication period is not linear in general; rather

there is a fast growth of in-citations within the initial few years after the publication,

followed by an exponential decay. We notice the same property in our dataset and observe

that the average number of inward citations per paper peaks within three years from its

publication and then slowly declines over time (see Figure 5.1). Note that this property is

also prevalent across the different fields of the domain (see inset of Figure 5.1). Therefore,
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Figure 5.1: Average distribution pattern of inward citations (with variances) for a paper
after publication (inset: same measure for every field).

in order to measure the importance of a paper (or a field) around its time of publication, all

our analysis throughout the rest of the chapter assumes only the citations received by the

paper within three years from its publication. We quantify the importance of a paper (aka

inwardness) in terms of the total number of inward citations to the paper. Consequently,

the temporal inwardness of a field fi at time t denoted by In(f ti ) that captures the local

citation count (within three-year window) suitably normalized by the number of papers in

that field can be defined as follows:

In(f ti ) =
∑
j 6=i

wtj→i (5.1)

where wtj→i =
ctj→i
pti

with ctj→i corresponding to the number of citations received by the

papers of field fi from the papers of field fj , pti corresponding to the total number of papers

in field fi and 1 ≤ t ≤ 3. Note that for all our estimates, in addition to this three-year

window we also include the year of publication of the paper.

In order to investigate the global time transition pattern (i.e., the worldwide behavior) we

compute the inwardness of each field (Equation 5.1), rank them and plot the top two values

(see the solid and broken lines respectively in Figure 5.2(a)) as a function of time. Each

field is uniquely color coded and the relative height of the y-axis shows the inwardness

of the field for a particular year. In each focus-window, we also mention the name of the

top hub (backup) field that on an average brings in the largest number of citations for the
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Figure 5.2: Time transition of scientific communities and probable reasons behind such
transition. (a) Top two scientific community (based on inwardness) at the forefront of sci-
entific research trend (names of topmost backup community for the community in the fore-
front of every trend-window are mentioned). Cause analysis: (b) fraction of papers for the
top and the second ranked communities among the 10% high impact papers in each year;
(c) change of citations from the topmost backup communities; (d) fraction of papers for the
top and second ranked communities among the 10% highly influential papers in each trend-
window. To smoothen the curves, the best sliding window size of five years has been used.

top ranking field. This information, as we shall see in Section 5.3.1, forms one of the

major reasons for focus shifts. The total number of transitions of research focus during

1960 to 2005 is 11 (i.e., there are 12 trend-windows in the global time transition diagram).

A careful inspection of the behavior of the curves shows that in every focus-window, a

similar pattern is followed with the inwardness first rising and then gradually declining

near the transition. Simultaneously, the second rank field which comes to the top position

in the next focus-window in every case starts reflecting a relative growth of inwardness

at the middle of the current focus-window. Another important issue is that the differences

of inwardness between the top and the second top ranked fields in the long-ranged and

short-ranged focus-windows are largely different. We investigate this property in further

detail in the rest of the section.
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Table 5.3: Ranking of top fields in each trend-window in terms of collaborative papers,
multi-continent papers and diversity (average ranks of top fields in two segments of 6
trend-windows are shown in third, fifth, seventh, tenth, twelfth and fourteenth rows).

1960-1964 1965-1969 1970-1973 1974-1977 1978-1979 1980-1981

Collaborative Rank 13 8 13 11 3 13

Avg. 10.16

Multi-continent Rank 12 8 12 10 1 12

Avg. 9.87

Diversity Rank 11 8 11 13 12 11

Avg. 11

1982-1987 1988-1991 1992-1996 1997-1999 2000-2002 2003-2005

Collaborative Rank 6 12 2 6 1 6

Avg. 5.5

Multi-continent Rank 7 11 3 7 2 7

Avg. 6.17

Diversity Rank 3 9 10 3 4 3

Avg. 5.33

5.3.1 Reasons for Transitions

In this section, we conduct a diverse set of experiments to investigate the reasons behind

the typical dynamics of scientific communities in the longitudinal scale observed earlier.

We focus on different orthogonal characteristics all of which converge to reasons for the

transitions observed. While the first cause that we propose is from an overall estimate of

the data, the following three are time-varying estimates of the data.

Cause I: Impact of collaborations: Here we show that, in the current years, the expansion

of collaborative work within and across continents as well as the diversity in research inter-

est can have direct influence on the emergence of a scientific community at the forefront. To

this purpose, we measure the impact of collaborative research by ranking all fields globally

based on (i) the number of papers in that field having multiple authors (collaborative pa-

pers), (ii) the number of papers involving authors from multiple continents (multi-continent

papers) and (iii) the diversity of a field (say, f ) measured by the average number of fields

that the authors of f have worked. These three ranks act as three different indicators of col-

laboration. Note that in case (iii), the more the diversity the higher is the rank of the field.

Moreover, we suitably normalize each of the above three factors for any particular field by

the total number of papers in that field. Thus, each factor indicates the average collabora-



5.3 Time Transition of Scientific Communities 109

tive nature of a field. We then rank the fields based on each of the three normalized scores.

Table 5.3 notes the ranks in cases (i), (ii) and (iii) for those fields that are at the forefront in

terms of inwardness in each trend-window and the average rank of these fields in two seg-

ments each composed of six trend-windows. We observe that in all the three cases the aver-

age rank in the second segment is much higher3 than that in the first segment. This indicates

that in the current years, those fields that enjoy a higher number of collaborations and a

higher overall diversity in the research interests of its constituent authors have an increased

chance of emerging at the forefront. The collaborative ranks of the top fields in the earlier

time periods are lower mainly because of the less proportion of the collaborative/multi-

continent/diverse papers in those fields. We also observe that during the earlier time peri-

ods the high ranked collaborative fields are mostly the newly emerging fields such as AI,

ML, NLP. Earlier, these emerging fields contained very few papers compared to the papers

in the core fields. It seems that in the early years, the top ranking fields like Algorithms and

Databases (the so-called core-fields of computer science) acted as the only and therefore

indispensable sources of citation for any other field. Therefore, they were able to maintain

their high ranks at least in the initial years even without having much collaborations. This

is precisely the reason for their low collaboration score in spite of a high inwardness score.

Cause II: High impact papers: We extract the top 10% of the papers that have the highest

number of in-citations (considering the last three years and the current year) from among all

the papers published in a year. We call them as high-impact papers. Next we measure the

fraction of papers out of this 10% that belong to a particular field. The fields are then ranked

by this fraction and the fractional values are plotted in Figure 5.2(b) for the top and the

second ranked fields. We observe that in 9 out of 11 cases a decline in the fraction of high-

impact papers of the top ranked field and the simultaneous increase of high-impact papers in

the second ranked field trigger a transition in Figure 5.2(a). Another important point to note

is that in the later years, out of the 10% high impact papers, the fractions from the top and

the second ranked fields diminish rapidly. While in the initial years this fraction is found to

be close to 1, in the later years it drops to around 0.5. This partially indicates the maturity

of the computer science domain as a whole, whereby several fields become effective and

now have a place in the list of 10% high-impact papers unlike in the earlier years.

3Note that in this case, the rank x is higher than rank y if x < y conforming to the usual notion of any

ranking system.
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Cause III: Citation patterns of backup communities: The impact of a paper in our

experiment is determined by the citations received from other papers. Therefore, one of the

important factors that helps a particular scientific community to rise up to the top is the con-

tribution of its backup communities that direct most of their outward citations to push this

community to the top. In Figure 5.2(c), we plot bars for each year indicating the fraction

of citations that the top ranked community (according to Figure 5.2(a)) received from its

primary backup community (i.e., the backup community that brings in the largest number

of citations). Note that in 75% of the cases, the citation received from the primary backup

community falls abruptly close to the transition indicating that they play a pivotal role in

keeping the dominant field “dominant”. This abrupt fall could be possibly caused because

the citations coming from the backup communities start getting shared by other competing

communities and the current community at the forefront start losing its charm owing to

its member topics slowly becoming dated, thereby, losing the “timeliness” advantage. We

observe that the backup fields for a particular top field are not same in all time windows.

Moreover, the citations from the backup fields which are mostly focused towards the top

field in the initial time periods, split among multiple fields at the time of transition. We ob-

serve that the increase in the diversity of citations from the backup field is one of the main

triggering factors behind the time transition, and this might be possibly tied to the overall

maturity of the backup field itself to emerge as an altogether new scientific paradigm.

Cause IV: Effect of seminal papers: The two causes discussed above have a direct bear-

ing with the time transition of the research trend. However, there can be indirect factors

affecting the rank of a community – one such factor could be the inception of seminal

papers that have potential to completely change the direction of research in the immediate

future. In this section, we attempt to quantify the impact of such papers by introducing

a metric called Influence. In particular, we consider only those citations that a paper

receives from the papers belonging to its own field published within the three-year window,

however, ensuring that the paper being cited does not have any author in common with the

paper citing it. This expresses how important a particular paper is within its own scientific

community. The influence (Influence(pti)) of paper pi at time t is defined as follows:

Influence(pti) =
∑
pj∈P t

1

dpj
(5.2)
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where P t is the set of all papers that cite pi within the three year window (1 ≤ t ≤ 3)

and belong to the same field as of pi, and dpj corresponds to the total number of outward

citations from the paper pj - the fraction is used to suitably normalize the impact of citation.

We extract the top 10% influential papers in each trend-window and find out from among

them the fraction of influential papers for each field. We then rank the fields based on

this fraction and plot once again the top and second ranked influential fields in each

trend-window in Figure 5.2(d). The results corroborate our hypothesis that the top rank

field (inwardness based) in a certain trend-window has the highest number of influential

papers in the previous window (almost in 65% cases). In the earlier years (1960 to 1975),

the two fields, namely Algorithms and Databases completely shadow all other fields in

terms of papers and citations. The competitive pressure starts to appear mainly after 1975.

If we measure this fraction from after 1975, we observe that in six out of seven cases

(excluding the last window) the field that sees the birth of the largest number of influential

papers in a trend-window emerges in the forefront in the immediate next trend-window.

This observation points to the fact that the influential papers can play a very crucial role in

shaping future research.

5.3.2 Correlation with Research Funding

It could be interesting as well as important to validate our measurements with other extrane-

ous real-world statistics directly or indirectly reflecting the evolution of scientific research

in the computer science domain. To this purpose, we collect the fund disbursal data of

one of the major funding agencies of the United States – the National Science Foundation

(NSF)4. Although this agency has a long funding history, the publicly available data that we

could gather is from 2003 to 2009. In Table 5.4, we compare the top three fields ranked by

our inwardness metric with the top three fields ranked by (i) the number of NSF proposals

submitted and (ii) the number of proposals accepted in that field. The high-impact fields

predicted by our method match accurately with the trend of proposal submission. To

4http://www.nsf.gov/



112 Chapter 5 Analyzing Ground-truth Communities

compare the two statistics, we propose a similarity metric τ that is defined as

τ =
s

n
(5.3)

where s is the number of similar pairs and n is the number of data points. In Table 5.5,

we report the pairwise similarity (τ ) between the fields ranked by our method and fields

ranked by (a) the number of proposals submitted and (b) the number of proposals granted

in those fields. As the number of data points are not many, exact similarity might again

be a very strict assumption in this case. Therefore, while measuring the similarity using

Equation 5.3, we increment the value of s when (i) at least one field is matching, and

(ii) at least two fields are matching with 50% weight for each matching. We report the

similarity values in the first row (REC vs. SUBMIT) and fourth row (REC vs. AWARD)

of Table 5.5 for the same year where REC refers to what is recommended by our method

based on inwardness. The results clearly show that our predictions are very well aligned

with proposal submission while it is moderately aligned with the fund disbursal patterns.

Table 5.4: Funding statistics compared with the inwardness results (top three ranked fields
are tabulated from left to right).

NSF

Years Inwardness results Proposal submitted Proposal awarded

2003 AI/IR/NW NW/AI/HCI NW/ALGO/SE

2004 AI/IR/NW AI/HCI/RT RT/ARC/DIST

2005 AI/IR/NW AI/ML/HCI GRP/SE/ALGO

2006 IR/ML/AI ML/ALGO/SEC ALGO/SEC/ML

2007 ML/AI/ALGO ALGO/ML/HCL ALGO/HCI/SEC

2008 ML/AI/ALGO ML/ALGO/SE ALGO/ML/SE

It is often observed that the current funding patterns significantly affect the research direc-

tions of the future. Further, at times, the current research trend seems to strongly influence

the funding decisions of the immediate future. The above observations can be illustrated

quantitatively here. In order to do so, we introduce lagging and leading similarities between

fields ranked by the inwardness metric (REC) and those ranked by the number of proposals

submitted/awarded. We measure two different similarity values – lead(fund,REC, t = 1)

and lag(fund,REC, t = 1). From the results depicted in Table 5.5, we observe that the in-

fluence of funding decisions on the future research trend is much more (lead) than the influ-

ence of the current research trend on the future funding decisions (lag). This shows that our
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results are remarkably in line with the decisions made by the expert researchers involved in

such important proposal selection committees. However, we remark that all our results are

based on only a small number of data points and should therefore be considered indicative.

Table 5.5: Correlations between our recommendations (REC) with the submit (SUBMIT)
and award (AWARD) patterns of grants.

τ

Pairs At least 1 matching At least 2 matching

REC Same year 1 0.78

vs. lead(SUBMIT,REC, t = 1) 1 0.83

SUBMIT lag(SUBMIT,REC, t = 1) 0.83 0.50

REC Same year 0.71 0.50

vs. lead(AWARD,REC, t = 1) 0.75 0.42

AWARD lag(AWARD,REC, t = 1) 0.33 0.25

5.4 Measuring Interdisciplinarity of Scientific Research

“Interdisciplinary research is the only way to do research in current times.”

– Fritjof Capra, The Turning Point

A field is any comparatively self-contained and isolated domain of human experience

which possesses its own community of experts, with distinctive components such as

shared goals, concepts, facts, tacit skills and methodologies. Interdisciplinary field, on the

other hand, brings in together distinctive components of two or more fields in research or

education, leading to new knowledge which would not be possible without this integration.

Despite a reasonable number of works promoting the increasing trend of cross-field

research, researchers [149, 216] still believe that there is a lack of proper quantitative

indicator that could efficiently identify interdisciplinary fields (interdisciplinary papers)

in a certain domain. Here we propose four indicative metrics for measuring interdisci-

plinarity; three of these are directly related to the topological structure of the citation

network, while the fourth is an external indicator based on the attractiveness of a field

for the in-coming researchers. We measure the significance of each of these features in

characterizing interdisciplinarity independently and then systematically accumulate them

to build an unsupervised classification model.
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5.4.1 Features for Identifying Interdisciplinarity

In this subsection, we propose some possible features for each of the fields that can serve

as indicators for interdisciplinarity. The rest of the subsection elaborately describes the

proposed features one by one and their significance in unfolding the interdisciplinary

nature of a field.

(i) Reference Diversity Index (RDI): The references of a paper reflect the diversity of

knowledge sources, i.e., the related subject areas from where the paper has been motivated.

Moreover, it is quite intuitive that the more is the breadth of the references of a paper, the

more interdisciplinary it should be. Therefore, to formulate the diversity of references, we

propose a simple quantitative measure described below.

Definition 1: Reference Diversity Index (RDI): The RDI of a paper is the entropy of its

reference set in terms of different fields the paper cites. The RDI of a field is the average of

the RDIs of all the papers belonging to that field.

Let Xi be a paper of field fi, and it refers to papers of k different fields namely f1, f2, ..., fk

(fi may be one of the fields in f1 to fk). The Reference Diversity Index (RDI) of paper

Xi denoted by RDI(Xi) describes the heterogeneity in the distributions of references as

follows:

RDI(Xi) = −
∑
j

pjlog(pj) (5.4)

where pj is the proportion of references of Xi that are given to the papers of field fj . In

other words, it is the ratio of the number of references made to the field fj by the paper

Xi to the total number of references that the paper Xi makes. The average is taken over all

the papers in field fi to get the RDI score of fi.

Figure 5.3 illustrates the results of the RDI measured for the fields of computer science

domain in four different time windows. All the results are sorted in descending order

of RDI to get an idea of the rank of the fields in each time window. The more the RDI

value of a field the more it should be interdisciplinary in nature. After 1975-1979, the

interdisciplinary work mainly started emerging and the fields like Data Mining, World

Wide Web, Human Computer Interaction, Information Retrieval consistently remain at the
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Figure 5.3: Reference Diversity Index (RDI) of all the fields in computer science domain
in four time-windows. The x-axis is sorted (descending order) by the RDI value.

top positions in terms of their RDI values (Figure 5.3). At the same time, the fields like

Algorithms, Operating Systems, Hardware and Architecture, Databases, Programming

Languages steadily accelerate to the bottom of the rank list. Another important observation

is that the degree of interdisciplinarity in terms of RDI for all the fields gradually seems to

get uniform over the years (the bars in Figure 5.3 for all the fields gradually acquire equal

height over the years). This is a clear indication of an increasing rate of interdisciplinary

activities manifesting across the entire domain over the last few decades.

(ii) Citation Diversity Index (CDI): When analyzing the inward citation distribution

patterns of the fields in our dataset, we notice that though the skewness of the inward

citation pattern (i.e., breadth of the incoming citations of a paper coming from different

fields) is reasonably similar for all the fields, there exist few fields exhibiting a sudden

sharp rise of citation diversity at certain time points. We quantitatively measure the

diversity of the inward citations of a field in the following paragraph.

Definition 2: Citation Diversity Index (CDI): The CDI of a paper in a particular time

window is the entropy of its incoming citations coming from papers of different fields pub-

lished in that time window. The CDI of a field is the average of the CDIs of all the papers

belonging to that field.
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Let Xi be a paper of field fi published in the time window ti
5, and is cited by the papers

(also published in ti) of k different fields namely f1, f2, ..., fk (fi may be one of the fields

in f1 to fk). The Citation Diversity Index (CDI) of paper Xi in time window ti denoted by

CDIti(Xi) is defined to capture the diversity of the inward citations of a paper using the

following equation.

CDIti(Xi) = −
∑
j

pjlog(pj) (5.5)

where pj is the proportion of citations of paper Xi received from the papers (published

in the time window ti) of field fj . The average is taken over all the papers in field fi to

get the CDI score of fi. Similarly, we can find out the CDI of Xi in time window ti+1,

i.e., CDIti+1
(Xi) by the diversity of the citations received from the papers published in

ti+1. This indicates the diversity of new citations for the same paper in the next time

window. Then for a field fi, the difference in the diversity of inward citations between two

successive time windows (ti and ti+1) which we call drift can be expressed as

∆ti(fi) = CDIti+1
(fi)− CDIti(fi) (5.6)

5Note that by the term “time window ti” we refer to the five year time period from ti to ti + 4.
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Figure 5.5: Membership Diversity Index (MDI) of all the fields in computer science
domain in four time-windows. The x-axis is sorted (descending order) by the MDI value.

The interpretation of this difference ∆ is as follows. If the temporal profile of ∆ is roughly

stable for a field then it would mean that the diversity of inward citations does not change

over time. However, there are certain fields where at some point ∆ rises abruptly indicating

a sudden huge difference in the diversity between ti and ti+1. Following this point, the

diversity remains high at all time points thus keeping the difference ∆ stable once again

for the rest of the time span. In Figure 5.4, we plot the ∆ values of those fields for which

we are able to detect such a large fluctuation at some time point in the entire profile. As

shown in Figure 5.4, WWW shows a sudden peak between the time windows 1984-1988

and 1985-1989 and then gets stabilized. Similar behavior is observed for NLP between the

time windows 1988-1992 and 1989-1993. Other fields mentioned in Figure 5.4 indicate

similar characteristics. However, the only exception in Figure 5.4 is the Databases field

which although seems to be a relatively core area of research shows a peak in ∆ at around

1982-1986. Within a very short period, the ∆ falls abruptly again (1983-1987) which is

unlike the case of other fields discussed earlier. A closer inspection of our data shows

that during the years 1982-1986, Databases received a variety of citations from fields like

Computer Vision, Security and Privacy and Operating Systems. However, in the later years

such citations to the Databases field are not found any more. A possible reason could be

that in the later years Data Mining that had its birth from Databases (see Figure 5.8 later)

started enjoying the cross-field citations rather than the Databases field itself.
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(iii) Membership Diversity Index (MDI): The communities in citation network of

a domain generally indicate different areas of research (see Section 5.2) where the

intra-community citation density is higher than across communities [42]. We hypothesize

that the diverse range of membership of a paper in different communities could be an

indicator of its degree of interdisciplinarity. To verify our hypothesis, we conduct a

community-centric measurement on the networks of four dynamic-windows (1975-1979,

1985-1989, 1995-1999 and 2004-2008). We use SLPA (Speaker listener Label Propagation

Algorithm) [229] to detect overlapping communities in each dynamic-window. Then

based on the membership of the overlapping nodes (papers) in each field, we define

another metric called Membership Diversity Index (MDI) for each field as a measure of its

interdisciplinarity.

Definition 3: Membership Diversity Index (MDI): The MDI of a paper is the entropy

expressing the extent of its membership to different communities. The MDI of a field is the

average of the MDIs of all the papers belonging to that field.

We run SLPA on the network of each dynamic-window that extracts the overlapping

communities (say, c1, c2, ..., cn). Since we know the actual field information of the papers,

for each community cj we can then find out the major field fi such that cj contains most of

the papers from fi. In this way, we can mark each community with a field tag that roughly

signifies the research area indicated by this community. Note that it might be possible

that more than one communities are marked by the same field tag since we have very few

field categories (24 fields in the computer science domain) compared to the number of

communities in each dynamic-window. Now for the field fi, we extract only those papers

that are part of overlapping communities in that time-window. These papers ‘flagged’ as

overlapping papers within the field fi form the basic constituent of the MDI measure.

We find out the membership of each such overlapping paper in the different field-tagged

communities. Now, the MDI of the field fi in a particular time-window is defined by the

following equation:

MDI(fi) = −
m∑
j=1

pjlog(pj) (5.7)

where pj is the fraction of papers flagged as overlapping in fi and is a member of the

community tagged as fj , while m is the number of fields (i.e., m = 24). The more the
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Figure 5.6: Attraction Index of all the fields in computer science in four time-windows.
The x-axis is sorted (descending order) by the χ value.

MDI value of a field the more is its chance of interdisciplinarity.

Note that since the overlaps are measured in different dynamic sliding windows, a node

that belongs to a specific community in one dynamic window may move to a different

community (communities) in the subsequent dynamic window because its surrounding

connectivity might change in the next time window. Figure 5.5 shows the fields of com-

puter science domain in four different time windows in decreasing order of MDI. Here,

while in the time windows (1975-1979) and (1985-1989), Data Mining is consistently

found to be at the top, in the later years the fields like NLP and Computational Biology

seem to acquire the top positions.

(iv) Attraction Index: The selection of the new research field for both the budding and

experienced researchers mostly depends on the impact and popularity of the existing fields

in any particular time period. Therefore, the study of inclination of the authors to adopt

a new field can be one of the real and relevant evidences supporting the popularity of

the fields in that time period. To quantify the attractiveness of a field, we use a simple

measurement called Attraction Index (χ) discussed below.

Definition 4: Attraction Index (χ): The Attraction Index of a field in a time window is

defined by the number of new authors (normalized by the number of papers in that time

window) who start research in that field in that time window.
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Let us assume that the number of unique authors from the beginning to the year ti and to

the the year ti+4 who published papers in field f are ni and ni+4 respectively. The number

of papers of field f published in time window (ti − ti+4) is ci. Therefore, the Attraction

Index of a field f at that time window denoted by χf is measured by the following equation.

χf =
ni+4 − ni

ci
(5.8)

In Figure 5.6, we plot the value of χ for all the fields (in decreasing order of χ) in four

different time windows. We can observe that though the fields like OS, Networking hold

the top few positions in terms of χ in the earlier two time windows (1975-1979 and

1985-1989), in the recent years, these positions are gradually occupied by the fields like

Computational Biology, WWW, Data Mining. We posit that this observation can be a

distinctive factor to categorize core and interdisciplinary fields.

5.4.2 Unsupervised Classification Model

In the previous section, we have proposed four features with the intention that they would

be indicative to explore the degree of interdisciplinarity of a field as well as help classi-

fying the core and interdisciplinary fields. In this section, we propose an unsupervised

classification model that can effectively cluster the fields based on the similarity of these

features. Note that we only consider the most recent time period of 1995-2008 for this

classification6. In this model, each field f is represented by a feature vector of size four.

The entries of the vector correspond to the value of four features namely RDI(f), ∆f ,

MDI(f) and χf . Then we create a symmetric adjacency matrix A24×24 whose (i, j) cell,

A(i, j), denotes the cosine similarity of the feature vectors corresponding to the fields

fi and fj . For instance, let us assume that Vi and Vj represent the feature vectors corre-

sponding to the fields fi and fj respectively. Then A(i, j) represents the cosine-similarity

6The features are most discriminative in this time-window.
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Figure 5.7: The result of the unsupervised classification model. Two clusters are
represented by two different colors (red and green).

between the feature vectors Vi and Vj as indicated by the following equation:

A(i, j) = cos(Vi, Vj) =

∑4
k=1 Vik × Vjk√∑4

k=1 V
2
ik ×

√∑4
k=1 V

2
jk

(5.9)

An undirected and weighted network is created based on the adjacency matrix A, and the

network is fed into the classification module. We use the algorithm proposed by Waltman

et al. [218] for the unsupervised clustering.

The results of the clustering algorithm is pictorially depicted in Figure 5.7. It is apparent

from the figure that the fields get divided into two distinct clusters. The cluster represented

by the green color comprises eight fields; all of them seem to be interdisciplinary fields

except Databases. The reason could be that the fields like WWW, NLP, Data Mining got

the major motivation and ideas from Databases when emerging as separate fields (see

Figure 5.8 for further details). Therefore, though individual features could not reflect

this similarity properly, their combination efficiently unveils the latent similarity in the

clustering results. On the other hand, the cluster represented by the red color consists

mainly of the fields which show their consistent existence from the very beginning.

Therefore, this cluster seems to be representing the core fields of computer science. To

the best of our knowledge, this is the first attempt to present a quantitative definition of

interdisciplinarity in terms of a set of distinctive features that neatly separates out the core

from the interdisciplinary research areas.
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Figure 5.8: Evolutionary landscape of (a) WWW and (b) Programming Languages (PL)
based on the references. Top panel shows a constant level of interaction among Databases,
Data Mining, IR resulting in a new field - WWW; whereby core field like PL remains same
over the years.

5.4.3 Evolutionary Landscape of Interdisciplinary Fields

Since from the previous section, we obtain two distinct clusters of core and interdisci-

plinary fields in the computer science domain, the immediate question we ask is that

how such an interdisciplinary field could have evolved from the cross-fertilization of the

various core fields. Are the citation-based evidences capable of unfolding the evolutionary

landscape of an interdisciplinary field? To answer this question, we concentrate on the

temporal interaction patterns among the fields through citations over the last four decades.

We hypothesize that if an interdisciplinary field has evolved from two or more fields (say,

f1, f2, ..., fn), the interactions among the fields f1, f2, ..., fn over the years should show a

steady growth due to the sharing of knowledge and principles through cross-citations.

For this purpose, we construct a field-field citation network Gf =< Vf , Ef > on top of

the paper-paper citation network in each time window, where each node fi ∈ Vf indicates

a field fi (a collection the papers related to fi), and a directed and weighted edge eij ∈ Ef
from fi to fj denotes the number of citations from the papers of field fi to the papers of

field fj . Thus, in our experiment, we have maximum 24 vertices (if there exists at least one

paper in a field it qualifies as a vertex) inGf at any time point. Then, we study the temporal
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interactions of the vertices in each time window. For the sake of conciseness, here we

present the evolutionary landscape of one interdisciplinary field (WWW) and one core field

(Programming Languages) which exhibit a consistent ranking for all the metrics discussed

in section 5.4.1. In Figure 5.8, we draw the contour heat maps showing the evolution

pattern of WWW (top panel) and PL (bottom panel) over the last four decades. This figure

has following two utilities. First, it takes into account the distance of two vertices as the

inverse of the edge weight connecting them and groups them accordingly (green regions).

In addition, the size of the font and the red circle around each vertex (field) indicates the

relative importance of the vertex. Here the size of each vertex in Figure 5.8(a) indicates the

amount of citation received by the field (corresponding to the vertex) from the papers of

WWW (similarly from the papers of PL in Figure 5.8(b)). Furthermore in each time step,

an automated threshold is defined to exclude the fields which have not received sufficient

amount of citations compared to the others. As shown in Figure 5.8(a), the papers of

WWW have cited only the papers of Databases in early times (1975-1984); but in the later

time window (1985-1994), the citations get divided among Databases, IR and Data Mining.

Moreover, a distinct group comprising Databases and Information Retrieval starts evolving

with small contributions from Data Mining, AI and Human Computer Interaction. Till this

point, WWW is missing from the frame due to the small number of inward citations. In

the latest time stamp (1995-2004), WWW is found to receive huge self citations and the

previous group is enlarged with the pronounced involvement from WWW, DM, DB and IR.

It clearly explains the evolution dynamics of WWW. However, another group is noticed in

the last time window consisting mainly of Networking, Software Engineering, Distributed

Systems and Security & Privacy. This probably indicates another line of interdisciplinary

research manifesting in the form of secured distributed networking. On the other hand,

if we look at Figure 5.8(b) demonstrating the evolution of Programming Languages (PL),

a constant appearance of PL is noticed from the very beginning. This indicates that

Programming Languages was one of the contributory fields in computer science domain

earlier and remains significant afterwards. This could be the first and fundamental study to

understand the basic ingredients responsible for the formulation of a new field of research

and helps develop a prediction system capable of recommending the probable fields whose

cross-fertilization can produce another field of research in the near future.
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5.4.4 Core-periphery Analysis

We understand the impact of the research fields on the entire domain in a systematic way

by studying the core-periphery organization [35] of the citation network. The idea is to

decompose the fields into various shells in a particular year (or in a dynamic time window)

such that a high ks − shell index of a field reflects a central position in the core of the

network. As mentioned earlier, both the inward and outward citations play pivotal roles

in determining the impact of a field in its domain. Therefore, we take into account both of

them separately to perform the k-core decomposition in four different dynamic windows

(i.e., 1975-1979, 1985-1989, 1995-1999, 2004-2008).

We start by recursively removing nodes that have single link until no such nodes remain

in the network. These nodes form the 1-shell of the network (ks − shell index ks =

1). Similarly, by recursively removing all nodes with degree 2, we get the 2-shell. We

continue increasing k until all nodes in the network have been assigned to one of the shells.

The union of all the shells with index greater than or equal to ks is called the ks-core

of the network. We repeat the experiment both for in-citation and out-citation of a node

separately. Since the shell index is assigned to each paper, we calculate the fraction of

papers of a field in each ks-core of the network in each dynamic window to identify the

fields of a domain that sit at the core of the network.

The multi-level pie charts in Figure 5.9 (a) in four dynamic time-windows show how the

different branches of computer science are positioned with respect to the core-periphery

organization of the citation network (considering inward citations). Each level of the

pie-chart represents one of the ks-shell regions, i.e., the innermost layer represents Region

I (largest ks-shell index), followed by Region II, Region III, and finally the outermost

layer represents the peripheral Region IV. In each layer, we show the fraction of papers

belonging to a field. The pie charts for the time windows 1975-1979 and 1985-1989 show

that the Region I consists mostly of core fields like Databases, Programming Languages

and Software Engineering; while after that it is dominated by the more applied fields like

Networking, Distributed Systems, Data Mining with a small contribution from Hardware

& Architecture and Databases. In all other regions, all branches of computer science are

present. From these results, we can infer that the core of the computer science is gradually
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Figure 5.9: Multilevel pie-chart for the dynamic windows 1975-1979, 1985-1989,
1995-1999 and 2004-2008 showing the core-periphery organization of the citation network
of computer science with respect to (a) inward citations and (b) outward citations.

being shaped by the more applied fields.

As mentioned earlier, while inward citation represents the authoritativeness of a field, the

outward citation shows the hubness of a field, i.e., the propensity of a field to cite others.

The degree of hubness of a field is equally important to measure its impact since the high

degree hub papers (fields) usually act as the connectivity backbone of the network, some-

times creating paths between distant fields thereby, unfolding a scope for the emergence of

new transdisciplinary fields. Therefore, we extract the core-periphery organization of cita-

tion network with respect to the outward citations as shown in Figure 5.9 (b). Surprisingly,

while Algorithms and Theory has been consistently appearing at the periphery region in

Figure 5.9 (a), the core regions are heavily dominated by Algorithms in Figure 5.9 (b) along

with an additional contribution from Databases. Recently, the core region is covered by the

emerging fields like Computer Vision, Multimedia and Distributed Systems. In short, Fig-

ure 5.9 presents a clear indication of the position of different fields within the domain and

that the interdisciplinary fields are accelerating steadily toward the core of the domain.
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5.5 Understanding Scientific Career of Researchers

“It is really important to do the right research as well as to do the research right. You need

to do ‘wow’ research, research that is compelling, not just interesting.”

– Richard M. Reis, Stanford University

Of all the decisions we make as an emerging scientist, none is more important than iden-

tifying the right research area, and in particular, the right research topic. The success of

scientific career gets determined by these two choices. Change in scientific research career

can be defined as any major change in work-role requirements or work context [32,33,166]

and as a process that may result in a change of job, profession, or a change in one’s

orientation of work while continuing in the same job [5, 62]. People believe that many

factors act as an active role to regulate these changes. For instance, researchers might try

to align themselves with the cutting-edge research at the current time and as a result of

this a change in scientific research career becomes unavoidable [173]. On the other hand,

this career shift might be described as an effect of “saturation” in the field of a researcher

leading to a switch to the other fields [177].

Here, we use the same bibliographic dataset of computer science domain mentioned in

Section 5.2 and attempt to analyze the local and global dynamics regulating a researcher’s

decision to select new field of research over the entire career. Essentially, we intend to

answer some specific questions pertaining to a researcher’s scientific career – how are

the local and the global dynamics regulating a researcher’s decision to select new field of

research over the entire career? what are the suitable quantitative indicators to measure the

diversity of a researcher’s scientific career? We further build a stochastic model that can

reproduce the real-world phenomenon of field selection process. Evaluations of our model

through the real-world data lead us to conclude that our model, quite accurately, mimics

the field selection process for all the researchers present in the dataset. Note that, we use

the terms “author” and “researcher” interchangeably in the rest of the chapter.
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5.5.1 Diversity Measures

Diversity of an author’s research career can be understood as the degree of varia-

tion/changes in research fields over the entire career. Since “diversity” of a sequence can

be efficiently measured by Shannon’s entropy [196], we propose two different versions of

entropy measurement to quantify diversity of an author’s research career. If F is the set of

unique fields of papers written by an author a, the plain entropy of author a (denoted by

Ha
p (F )) is calculated over the number of times author a writes papers in a particular field

in her entire research career as defined by the following equation:

Ha
p (F ) = −

∑
i∈F

pilog(pi) (5.10)

where pi = number of papers written by a in field i
total number of papers written by a

. Zero plain entropy implies that an author

worked in a single field throughout her career whereas a high value indicates that she has

worked in various fields in different time spans of her career. However, the plain entropy

does not capture the order information of a particular value within the sequence; it just

considers probability distributions, i.e., if we interchange the position of different entries

in a sequence keeping the frequency contribution of each individual field same, the plain

entropy of the sequence remains constant. In our case, since our primary interest is to

understand the change in research fields adopted by an author in different time periods,

the ordering information of fields in the sequence turns out to be important. Therefore in

order to capture the local diversity, we propose another measure of field diversity for an

author a called the window entropy (denoted by Ha
w(F )) defined as follows – a window of

size k slides over the sequence of fields in F , the plain entropy for the sequence contained

within that window at each position is calculated, and the mean of all these positions

is computed to measure the window entropy of the entire sequence as described in the

following equation:

Ha
w(F ) = − 1

n− k + 1

n−k+1∑
i=1

Ha
p (wi) (5.11)

where wi is the set of fields in the ith sliding window of size k, ranging from i to (i+k−1).

The window entropy indicates the diversity in the selection of fields in short spans of

time by considering only previous k fields in the sequence. The motivation behind these

measures is to understand whether the author is working simultaneously in diverse fields
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throughout the career or she is following the “scatter-gather” policy, i.e., while working

in diverse fields at the macro scale, at the micro scale, concentrating on only one particular

field within a given time slice. Low Ha
w(F ) indicates that the author indeed follows a

“scatter-gather” policy; whereas high values indicate that the author has a tendency to

work in many different fields simultaneously within short periods of time.
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Figure 5.10: Distribution of fields adopted by the authors (plotted in log-log scale). The
y-value corresponding to the x-value indicates the fraction of authors contributing to x
number of fields in their careers.

5.5.2 Experimental Results

Statistical analysis of authors’ careers: We first plot in Figure 5.10 the distribution of

fields selected by the authors over their entire career. It follows a truncated power-low

behavior and shows that around 64% of the total authors worked only in one field, 18%

of the total authors worked in two fields and so on. In Figure 5.11(a), we show the average

number of fields in which an author contributed in a particular year from the start of her

career (i.e., after her first publication). It can be observed that as the career of an author

progresses over time, the number of distinct fields she has contributed to increases till

around fifteen years and then mostly stabilizes. This may be understood as an author’s

career profile, in the initial years a scientist is usually more actively developing skillset in

a field and is keen setting up collaborations in the field as well as in the closely associated

ones. Eventually, after fifteen years of her scientific career, she would generally tend to

focus on a fixed set of fields where she has considerable expertise; thus a decline forward

at the end of the curve is observed in Figure 5.11(a). In Figure 5.11(b), we plot the total
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Figure 5.11: (a) Average number of fields contributed by an author in a year after the first
publication and (b) total number of fields in which an author contributes till a particular
year after the first publication. Both of these are calculated as an average over all authors
present in the data set.

number of fields contributed by an author (on an average) up to a certain year after her

first publication. It is to be noted that this plot cannot be obtained directly by cumulating

the result in Figure 5.11(a) since we measure the total number of distinct fields in an

author’s career in Figure 5.11(b); whereas cumulating over Figure 5.11(a) might count a

field more than once. It can be observed in Figure 5.11(b) that the total number of fields

to which an author contributes increases till around fifteen years and at a relatively lower

rate afterward. This plot also indicates the average number of years that an author usually

takes to start contributing to the ith field. For example, an author starts contributing to the

third field in about 6-7 years from the start of her career.

Diversity of authors’ scientific career: Next, we analyze the diversity of an author’s

scientific career at different time points in terms of two proposed entropy-based measures,

namely the plain entropy (Ha
p (F )) and the window entropy (Ha

w(F )). Figure 5.12(a)

shows the plain entropy probability histogram of all authors, i.e., fraction of authors with

plain entropy ranges divided into several buckets. It can be observed that high fraction

of authors tend to have small plain entropy since most of them have worked in very few

research fields. Figure 5.12(b) shows the average plain entropy of sequence of fields of an

author till a certain number of publications. We take an empirical cutoff of 80 publications

while computing the entropy measures because most of the authors fall in this region. The

publications of authors after this cutoff are ignored for the entropy calculation. One can

observe the increase, relative to the number of fields selected by an author which is faster
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Figure 5.12: (a) Plain entropy distribution histogram of authors and (b) plain entropy till
a certain number of publications (averaged over all the authors).

at the early stages following a gradual stabilization toward the end.

Similarly, we plot both these figures for the window entropy in Figure 5.13. Interestingly,

the major concentration of authors lies in 0.5-1.2 window-entropy region plus a significant

amount of mass in the first bucket. From both the histograms of plain and window en-

tropies, one can conclude that though the average behavior indicates that an author tends to

select only a few research fields in her entire research career, she seems to prefer working

simultaneously in multiple fields at a particular time point. We observe that such fields

are quite related to each other in the sense that if we can take more coarse-grained field

classification scheme, these fields might come within the category of a top-level field. For

instance, Graphics and Multimedia are so closely related fields in computer science that one

can assume these as two subfields under the field called “Image Processing.” The scatter

plot in Figure 5.13(b) indicates that researchers, at the beginning of their research, tend to

select a number of fields simultaneously thus making the average entropy higher. The rea-

son could be that they are initially not very confident which particular fields of research they

should select in order to survive in the scientific community. Gradually with experience,

they tend to get stabilized after publishing 20-25 papers, thus reaching a lower entropy at

the middle of the curve. Following this, again a steady growth of the curve indicates that

possibly they start collaborating with other researches from the other fields and hence, by

doing this, they tend to advocate interdisciplinary research toward the end of their careers.

Correlation between plain and window entropies: In Table 5.6, we present a confusion

matrix indicating the correlation between the two diversity measures. We classify the
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Figure 5.13: (a) Window entropy distribution histogram of authors and (b)window entropy
till a certain number of publications (averaged over all the authors).

Table 5.6: Confusion matrix indicating the population density of authors (in %) and
average number of citations obtained by an author (in parenthesis) in different regions.

Window entropy

Pl
ai

n
en

tr
op

y

Low High

Low 43.37 6.6

(11.61) (11.21)

High 6.61 43.41

(13.36) (10.38)

entire population of authors into four parts corresponding to the four cells of the matrix.

Note that the low (high) entropy values correspond to values below (above) the median

value of the respective type of entropy. Each region on the matrix corresponds to different

types of career profile. For instance, the region corresponding to low window entropy and

high plain entropy indicates that the authors here do not work simultaneously in multiple

fields; rather they choose to work in fields one after the other. On the other hand, the region

indicating high plain and window entropies corresponds to those authors who have worked

in diverse areas and also contributed simultaneously to multiple fields at any particular

time point. Table 5.6 shows the population density (in percentage) of authors in each

region. In parallel, what would be more interesting to investigate is the importance of each

such region, i.e., what would be the preferred strategy a new author should adopt in order

to acquire higher importance in scientific community. In any bibliographic dataset, a raw

measure to quantify the importance of an author is usually the number of citations she has

received by publishing papers. Therefore, we measure the importance of each region by
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Figure 5.14: Scatter plot showing the correlation between plain entropy and window
entropy with size of the circle proportional to number of points in the region surrounding
the center of the circle.

calculating the average citations an author of the corresponding region has received (the

value within parenthesis in each region of Table 5.6 indicates this importance). The key

observation is that the region with high plain entropy and low window entropy has high

average citation value compared to all other regions. This indicates that the highly cited au-

thors follow a “scatter-gather” policy, i.e., work in diverse fields over their entire career but

remain confined to a few fields in each time slice. The authors in the region with high plain

entropy and high window entropy have least average citation count which indicates that the

authors who have worked in a large majority of fields in the entire career as well as in each

shorter time slice get low citations. It is worth noting that in this experiment, we consider

only those authors who have published at least five articles because the size of the sliding

window for calculating the window entropy is assumed to be five. We further vary the

window size, but similar results are observed in all the regions for different window values.

Next we measure the correlation between plain and window entropies using Pearson

correlation coefficient (τ ) as shown in Figure 5.14. The size of the circle is proportional to

number of points in the region surrounding the center of the circle. The correlation is very

high (τ=0.88) between these two entropies which indicates a strong dependency between

them. These results once again agree with the proportion of authors shown as two most

popular regions on the principal diagram of the confusion matrix (i.e., low plain entropy

and low window entropy, high plain entropy and high window entropy). This correlation

increases with the increase in the size of the window since k-window entropy with large
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k value gradually approaches the plain entropy. Furthermore, it would be interesting to

understand to what extent an author is influenced by her other colleagues (coauthors) in

selecting a new field. More particularly, we intend to measure the correlation between

the entropy of an author with her strongest collaborator (with whom she has published

the largest number of papers) and to what extent this correlation changes when compared

to any arbitrary coauthor. Figure 5.15(a) shows the scatter plot of the plain entropy of

an author with the plain entropy of her strongest collaborator. The Pearson correlation

between them is quite high (0.52) compared to any arbitrary coauthor (τ=0 as shown in

Figure 5.15(b)). This result can have two implications: (a) an author either tries to align

herself in the direction of her strongest collaborator in choosing research fields or (b)

an author chooses such a collaborator with whom the research interests have maximum

alignment. Similar correlation exists for the case of window entropy (since plain and

window entropies are highly correlated as discussed in Figure 5.14).
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Figure 5.15: Scatter plot of the plain entropy of an author (a) with her strongest
collaborator and (b) with any arbitrary coauthor.

5.6 Formation of Circles in Coauthorship Networks

The availability of an overwhelmingly large amount of bibliographic information including

citation and co-authorship data makes it imperative to have a systematic approach that will

enable an author to organize her own personal academic network profitably. An effective

method could be to have one’s co-authorship network arranged into a set of “circles”,
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Figure 5.16: A hypothetical example showing an ego network of an author u with labeled
circles.

which has been a recent practice for organizing relationships (e.g., friendship) in many

online social networks.

Here, we study the problem of automatically discovering an author’s academic circles. In

particular, given a single author with her co-authorship network, our goal is to identify her

circles, each of which is a subset of her coauthors. Some examples of real-world circles

in an author’s co-authorship network are shown in Figure 5.16. The “owner” of such a

network (the “ego”) may wish to form circles based on common bonds and attributes

among her coauthors (the “alters”). An author could have several reasons behind initiating

a new collaboration. Some common tendencies exhibited by authors include collaborations

with the people from her own Institute or with people sharing the same research interest

with her. Therefore, the problem of deciding upon a single dimension to both characterize

the circles and categorize the coauthors appropriately becomes extremely challenging.

Moreover, circles are author-specific, as each author organizes her personal network of

coauthors independent of all other authors with whom she is not connected. This leads to

a problem of designing an automatic method that organizes an author’s academic network,

more precisely, categorizes her surrounding neighborhoods into meaningful circles.

5.6.1 An Unsupervised Model for Discovering Ego-centric Circles

Our model for detecting ego-centric circles applies to any general ego network, where each

node is considered as an ego and the set of her one-hop neighbor nodes constitute the set of
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alters. The ego is said to spawn the ego network, but is not considered as a part of the net-

work. Our method intends to discover circles in this ego network in an unsupervised fash-

ion, leveraging properties specific to nodes as well as properties of the network. Our model

requires each node to have a profile, which is essentially the feature vector characterizing

the node in a feature space. We now describe the algorithm for circle formation in more

details. The input to our algorithm is an ego network G =< V,E >. Each node v ∈ V has

anN -dimensional profile vector Fv = {f1v, f2v, f3v, ..., fNv}, where fiv denotes the value of

the ith feature of the node v. The ego node u, often referred to as the center node, is respon-

sible for spawning the ego network, but does not itself feature as a part of the network. So

the ego network of u is essentially the subgraph induced by the alters of u. Let D(x, y) be

the Euclidean distance between the profile vectors of nodes x and y given by Equation 5.12.

D(x, y) = D(y, x) =

√√√√ N∑
i=1

(fix − fiy)2 (5.12)

The aim of the method is to identify a set of circles Ĉ= {C1, C2,.....,CK}. Given a circle

Cj ∈ Ĉ and a node y ∈ V , we define the distance of y from Cj , say D′(Cj, y), as the

average distance of y from all other nodes in Cj . Also, the profile similarity measure

between a pair of nodes x and y, denoted by Sim(x, y) is defined to be the reciprocal of

D(x, y). Analogously, the similarity between node y and circleCj , denoted by Sim′(Cj, y)

is defined to be the reciprocal of D′(Cj, y).

Each circle Cj in our model has a similarity threshold parameter τj associated with it such

that if node y ∈ V is in Cj then the following constraint is satisfied:

Sim′(Cj, y) ≥ τj (5.13)

Based on our assumption that nodes within a common circle at any point of time have

a higher probability of forming an edge in the network, our model predicts the circles

estimated at each step to be cliques, and distinct circles not to share any edge at all. Given

a set of K circles Ĉ= {C1, C2,.....,CK}, along with a set of threshold parameters τ̂ = {τ1,

τ2,...,τK} in any iteration of the algorithm, we define a closeness estimator for a pair of

nodes (x, y) ∈ V ×V in terms of their circle membership, denoted by β(x, y). Let β1(x, y)
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and β2(x, y) be defined as follows.

β1(x, y) =
∑

Cj :{x,y}⊆Cj

(Sim(x, y)− τj + λ)−1 (5.14)

β2(x, y) =
∑

Cj :{x,y}*Cj

(Sim(x, y)− τj + λ)−1 (5.15)

Note that {x, y} ⊆ Cj if both x and y are members of the circle Cj , while {x, y} * Cj if

Cj does not contain one or both of x and y. The constant λ is kept large enough to ensure

that no term in the summation is negative and may simply be taken as the maximum of

all threshold values, i.e., max{τ1, τ2, ..., τK}. Note that β1(x, y) is high if x and y share

common circles with very high thresholds, while β2(x, y) is high if x and y do not share

common circles with high thresholds.

Now, we define the closeness estimator β(x, y) as follows.

β(x, y) = exp{[β1(x, y)]2 − [β2(x, y)]2} (5.16)

Note that β(x, y) is purely a circle-membership based similarity metric for the pair (x, y),

and increases with increase in the number and threshold values of the common circles

which x and y are part of. Thus, the closeness estimator emphasizes not only the common

circle memberships of nodes but also the thresholds of the circles they are part of.

From the closeness information so estimated, the probability that the pair (x, y) forms an

edge in G is modeled by:

p((x, y) ∈ E) =
β(x, y)

1 + β(x, y)
(5.17)

Similarly, for the node-pair (x, y) which does not belong to E, the probability is estimated

as follows:

p((x, y) /∈ E) = 1− p((x, y) ∈ E) =
1

1 + β(x, y)
(5.18)
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Quite evidently, p(x, y) increases with increase in β(x, y) and is normalized using add-one

smoothing. Thus we get a predicted probability of existence for each possible edge in the

network given Ĉ and τ̂ . The rationale underlying the prediction is that the closeness of a

pair of nodes (x, y) is proportional to the similarity of their profiles as well as the number

and similarity thresholds of common circles that they are a part of. Now the model must

ensure that this predicted network indeed corresponds to the real network, for which we

present the following analysis.

Assuming independent generation of each edge in the graph, the joint probability of G and

Ĉ can be written as

Pτ̂ (G; Ĉ) =
∏

(x,y)∈E

p((x, y) ∈ E)
∏

(x,y)/∈E

p((x, y) /∈ E) (5.19)

We define the following notation 5.20 for ease of expression:

φ(x, y) = log (β(x, y)) = ([β1(x, y)]2 − [β2(x, y)]2) (5.20)

Taking logarithm of Equation 5.19, and using notation 5.20 we can express the log

likelihood of G given Ĉ and τ̂ as:

lτ̂ (G; Ĉ) = log (Pτ̂ (G; Ĉ))

=
∑

(x,y)∈E

log (p((x, y) ∈ E)) +
∑

(x,y)/∈E

log (p((x, y) /∈ E))

=
∑

(x,y)∈E

log (β(x, y))−
∑

(x,y)∈V×V

log(1 + β(x, y))

=
∑

(x,y)∈E

φ(x, y)−
∑

(x,y)∈V×V

log(1 + exp{φ(x, y)})

(5.21)

5.6.2 Unsupervised Learning of Model Parameters

In this section, we describe the method used to find the set of circles Ĉ by maximizing the

log likelihood in Equation 5.21. Initially, each node is in a different circle with a very high
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threshold value. At each iteration t, for each node y ∈ V we alter the circle membership

of y by randomly adding it to some circles it previously did not belong to and deleting it

from some circles it belonged to. The circle thresholds are then updated accordingly such

that the constraint in Equation 5.13 is not violated.

The general idea is that larger the number of circles a node y is already part of after time

step t, lesser is the extent to which the circle membership of y is disturbed in time step t+1.

We denote by Ĉt the set of circles and by τ̂t the corresponding set of thresholds after time

step t, where Ĉt = {C1(t), C2(t),...,CK(t)} and τ̂t = {τ1(t), τ2(t),...,τK(t)}. Also, let the

log likelihood of G given Ĉt and τ̂t be lτ̂ (G; Ĉt). The following are the main steps of the

algorithm to update the circle in time step t+ 1:

Step 1: For each node y ∈ V , we capture the circle membership of y at time t by defining

two sets S1y,t and S2y,t:

S1y,t = {Cj(t)|Cj(t) ∈ Ĉt ∧ y ∈ Cj(t)} (5.22)

S2y,t = {Cj(t)|Cj(t) ∈ Ĉt ∧ y /∈ Cj(t)} (5.23)

Step 2: Now we intend to compute the number of circles to add y to and to remove y from,

given by the two variables - AddCircle(y, t+ 1) and RemoveCircle(y, t+ 1):

AddCircle(y, t+ 1) =

⌈
K1 + |S1y,t|
|S1y,t|

⌉
(5.24)

RemoveCircle(y, t+ 1) =

⌈
K2 + |S1y,t|
|S1y,t|

⌉
(5.25)

Here, K1 is a randomly chosen integer with 1 ≤ K1 < |S2y,t|, such that the value of

AddCircle(y, t+ 1) is less than or equal to |S2y,t|, i.e., the number of circles that y is

currently not part of. Similarly, K2 is a randomly chosen integer with 1 ≤ K2 < |S1y,t|
such that the value of RemoveCircle(y, t+ 1) is less than or equal to |S1y,t|, i.e., the

number of circles that y is currently part of. Note that both AddCircle(y, t+ 1) and

RemoveCircle(y, t+ 1) are low for high values of |S1y,t|. This ensures that the more the
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number of circles y is currently part of, lesser is the disturbance to the circle membership

of y (and vice versa).

Step 3: Add y to AddCircle(y, t + 1) many randomly chosen circles from S2y,t and

remove y from RemoveCircle(y, t + 1) many randomly chosen circles from S1y,t. The

corresponding circles are updated accordingly.

Step 4: Once Steps 1, 2 and 3 are over for each node, we have the set Ĉt+1 containing

the augmented circles. Next, we update the corresponding thresholds by setting τj(t + 1)

corresponding to the circle Cj(t + 1) to the minimum value such that for each node

y ∈ Cj(t + 1) the constraint in Equation 5.13 is not violated. Thus the updated τj(t + 1)

for Cj(t+ 1) is given by:

τj(t+ 1) = min{Sim′(Cj(t+ 1), y)|y ∈ Cj(t+ 1)} (5.26)

Step 5: If the threshold τj(t + 1) for Cj(t + 1) falls below a constant lower limit τL, we

discard Cj(t + 1). The value of τL is empirically determined. In our experiments, we

tested over a wide range of τL and set it to 0.2 for best results (see Figure 5.17).

Step 6: We then compute the log likelihood lτ̂t+1(G; Ĉt+1) using Equation 5.21. If

lτ̂t+1(G; Ĉt+1) > lτ̂t(G; Ĉt), then retain newly computed sets Ĉt+1 and τ̂t+1; else set

Ĉt+1 = Ĉt and τ̂t+1 = τ̂t.

The process continues till we reach a maxima and the log likelihood does not increase any

further for sufficiently many iterations. We then report the set of circles so obtained as the

optimal set of circles.

5.6.3 Feature Extraction

Profile information of each author node in the ego network is represented as a feature

vector consisting of a set of features. These features can be divided into two broad

categories – general and ego-centric features. Having these two separate categories, the

feature set emphasizes the fact that members of common circles should not only have high
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feature similarity with each other but also share similar relationships with the ego.

Given an author x with all her publications, and the set of fields of research

F = {r1, r2, ....., r24}7, we define the versatility vector V̂ (x) of an author x as

{ri,x; ri ∈ F} such that ri,x is the fraction of publications of x in field ri. Also, given

a set of decades DEC = {1960-1970, 1971-1980, 1981-1990, 1991-2000, 2001-2009},

we define the persistence vector D̂(x) for x as {dj,x; 1 ≤ j ≤ 5}, where dj,x denotes the

number of papers published by x in decade DEC(j). We also define the major field of

work R(x) for x, where she has maximum number of publications.

The general features capture independent characteristics of each author in the ego network

and are listed below:

• The normalized number of citations the author has received (size 1)

• The normalized number of citations per paper that the author has received (size 1)

• The normalized h-index of the author (size 1)

• The normalized number of coauthors of the author (size 1)

• The versatility vector of the author (size 24)

• The normalized number of papers written by the author (size 1)

• The persistence vector of the author (size 5)

• The major field of the author (size 1)

On the other hand, the ego-centric features capture the relationship of an alter with its ego.

Such features include:

• The fraction of papers coauthored by the alter with the ego in each of the five

decades (size 5)

7Note that there are 24 research fields present in our dataset.
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• The fraction of papers coauthored by the alter with the ego in each of the 24 fields

(size 24)

• The normalized number of common coauthors that the alter has with the ego (size 1)

• The fraction of papers authored by the alter in the major field of the ego (size 1)

• The fraction of papers authored by the ego in the major field of the alter (size 1)

5.6.4 Evaluation of Detected Circles

We use the citation network discussed in Section 5.2. The co-authorship network

constructed from this dataset has authors as nodes and edges between authors who have

written at least one paper together. We consider the ego networks corresponding to each

node (author) present in our dataset, thus obtaining 821,633 ego networks.

In this section, we intend to evaluate the quality of the circles detected by our proposed

methodology. Evaluation is especially important to judge the quality of the detected

circles. We compare the circles detected by our model with that obtained from four

other recent overlapping community detection algorithms, namely BIGCLAM [232],

SLPA [228], OSLOM [126] and COPRA [85]. We also detect the circles using the

coordinate ascent method (CA) [145]. Since we intend to show that research field of the

authors is not the proper information for creating the circles, we also compare our output

with the circles obtained simply from research fields. For comparison, we use overlapping

modularity Qov [89] which is probably the most widely used measure for evaluating the

goodness of a community structure without a ground-truth.

First, to show the change in Qov with respect to the threshold τL as described in Section

5.6.2, we plot this quality function in Figure 5.17 by varying τL from 0.05-0.5. We

observe that Qov reaches maximum at τL = 0.2. Then for each competing algorithm,

we measure the value of Qov for each ego and take an average over all the egos present

in our dataset. The table adjacent to Figure 5.17 shows that our method outperforms

the traditional topology based community finding algorithms in detecting meaningful

circles. Our method achieves Qov of 0.68 which is 6.25% higher than coordinate ascent
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Figure 5.17: (Left) Change in overlapping modularity Qov with the increase in τL; (Right)
comparison of the baseline algorithms with our method.

method, 13.33% higher than BIGCLAM, 15.25% higher than OSLOM, 17.24% higher

than COPRA, and 21.42% higher than SLPA.

5.6.5 Task Based Evaluation

We further evaluate the quality of the circles through a task based evaluation framework

– the task of collaboration prediction. We choose two supervised learning models: linear

regression (LR) [11] and supervised random walks (SRW) [11]. Then we demonstrate that

inclusion of the ego-centric circles detected by our model as a feature in the feature set

would eventually enhance the performance of this model with respect to the one in which

the circle information is missing.

Feature Set: We use a set of node- and edge-level features for the learning models. The

following set of node-level features (denoted by N ) are used. Each feature is normalized

by the maximum value of the corresponding feature so that the values range between 0 to 1.

• Normalized number of citations received by an author

• Normalized h-index of an author

• Normalized number of coauthors of an author

• Fraction of papers by an author in each of the 24 fields

• Normalized number of papers written by an author

• Fraction of papers published by an author in each of the five decades (between 1960-

2009)
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Further, given an edge e = (x, y) in the co-authorship network, we additionally use the

following edge-level features (denoted by E). Each feature is appropriately normalized to

a value between 0 and 1.

• Fraction of papers coauthored by x and y in each of the five decades

• Normalized number of common coauthors of x and y

• Fraction of papers authored by x in the major field of y

• Fraction of papers authored by y in the major field of x

We refer to the combined set of both node- and edge-level features byNE. We provide this

set NE of node and edge attributes as an input to the learning model which then takes care

of determining how to combine them with the network structure to make predictions [11].

Note that if we take the dataset till t for training the model, all the features mentioned

above will be calculated based on the statistics of each vertex till t in order to avoid

information leakage.

Table 5.7: Comparison of BIGCLAM (BIG), coordinate ascent method (CA) [145] and
our model (CIRC) after including their detected circle information into the feature set
of Linear Regression (LR) and Supervised Random Walks (SRW) frameworks across
three time periods and different feature sets (N: node-level, E: edge-level, NE: node- and
edge-level, NEB: adding the binary circle information to NE, NEBC: adding the numerical
circle information to NEB).

Time

period

Area Under the ROC Curve (AUC)

Linear Regression (LR) Supervised Random Walks (SRW)

N E NE
NEB NEBC

N E NE
NEB NEBC

BIG CA CIRC BIG CA CIRC BIG CA CIRC BIG CA CIRC

1996-1999 0.5872 0.5914 0.6451 0.6569 0.6689 0.6791 0.6989 0.7195 0.7235 0.6332 0.6478 0.7659 0.7908 0.7895 0.8275 0.7971 0.8296 0.8303
2001-2004 0.5890 0.5907 0.6528 0.6529 0.6437 0.6659 0.6845 0.7011 0.7012 0.6419 0.6514 0.7591 0.8067 0.8035 0.8249 0.8098 0.8149 0.8356
2006-2009 0.5916 0.5891 0.6436 0.6439 0.6510 0.6509 0.6905 0.7001 0.7198 0.6360 0.6608 0.7609 0.8001 0.8101 0.8295 0.8111 0.8279 0.8321

Average 0.5893 0.5904 0.6472 0.6512 0.6545 0.6653 0.6913 0.7069 0.7148 0.6370 0.6533 0.7620 0.7992 0.8101 0.8273 0.8060 0.8279 0.8327

Time

period

Prec@20

Linear Regression (LR) Supervised Random Walks (SRW)

N E NE
NEB NEBC

N E NE
NEB NEBC

BIG CA CIRC BIG CA CIRC BIG CA CIRC BIG CA CIRC

1996-1999 0.137 0.124 0.152 0.155 0.161 0.158 0.164 0.173 0.177 0.165 0.172 0.201 0.205 0.209 0.210 0.207 0.215 0.223
2001-2004 0.141 0.143 0.156 0.162 0.159 0.169 0.175 0.175 0.185 0.158 0.163 0.198 0.200 0.210 0.209 0.215 0.220 0.225
2006-2009 0.147 0.142 0.161 0.162 0.165 0.171 0.179 0.178 0.189 0.161 0.169 0.199 0.208 0.209 0.212 0.211 0.217 0.224

Average 0.142 0.136 0.156 0.160 0.162 0.166 0.173 0.175 0.184 0.161 0.168 0.199 0.204 0.209 0.210 0.211 0.217 0.224

Evaluation Methodology: In order to demonstrate that predictions are robust irrespective

of the time stamp considered for dividing the dataset into training and test sets, we run

the competing models in three different time periods: (i) the dataset till 1995 is considered

for training and the accuracies of the models are measured by comparing the new edges

formed between 1996-1999, (ii) similarly, the dataset till 2000 for training and 2001-2004
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for checking the accuracy, and (iii) the dataset till 2005 for training and 2006-2009 for

checking the accuracy.

In each time stamp, we evaluate the methods on the test set, considering two performance

metrics: the Area under the ROC curve (AUC) and the Precision at Top 20 (Prec@20),

i.e., for each node s, what fraction of top 20 nodes suggested by each model actually

receive links from s later. This measure is particularly appropriate in the context of

link-recommendation where we present a user with a set of suggested coauthors and aim

that most of them are correct.

Performance Evaluation: We compare the predictive performance of two learning

models including the circle information in three different time periods. We iterate each of

these collaboration prediction models using different sets of features: (i) only node-level

features (Model: N), (ii) only edge-level features (Model: E), (iii) both node and edge level

features (Model: NE), (iv) besides node and edge level features, including a binary feature

B that checks whether a pair of nodes (x, y) belong to at least one common ego-centric

circle or not (Model: NEB), and (v) besides node-level and edge-level features and the

binary circle information, including a numeric feature C indicating the number of common

circles a pair of nodes (x, y) is a part of (Model: NEBC). The circles are detected by our

model, the coordinate ascent method (CA) [145] and BIGCLAM separately.

Table 5.7 shows the performance of these two prediction models with different feature sets.

We notice that edge features are more effective than node features, and the performance

improves incrementally after combining different features together. A general observation

is that inclusion of circle information in the feature set improves the performance of

both the prediction models irrespective of the time periods. For instance, it improves the

performance by 9.87% and 15.25% on average in terms ofAUC and Prec@20 respectively

compared to the case, where the circle information is not present (NE).

We further observe that the inclusion of circle information detected by our model signif-

icantly outperforms the case where the circles are obtained by BIGCLAM and CA in each

time stamp. Including the binary circle information (NEB) from our model achieves an

average AUC improvement of 2.16% and 3.51% respectively for LR and SRW models

(similarly, in terms of Prec@20, the improvement is 3.75% and 2.94% respectively for LR
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and SRW models) compared to BIGCLAM (CA).

Further, including the count of common circles for a node pair (NEBC) in the feature

set leads both LR and SRW to achieve even better performance. We observe an average

AUC improvement of 3.41% (1.11%) and 3.31% (0.57%) respectively for LR and SRW

models using our circle information as compared to that obtained from BIGCLAM (CA)

(similarly, in terms of Prec@20, the improvement is 6.35% (5.14%) and 6.16% (3.22%)

respectively for LR and SRW models).

5.7 Summary of this Chapter

The lack of reliable ground-truth communities has made network community detection a

very challenging task. In this chapter, we developed ground-truth overlapping communi-

ties of a directed paper-paper citation network that emerge from the natural grouping of

research papers in various fields of the computer science domain. We conduced a set of

experiments to understand this network and the community structure from diverse per-

spectives. We conclude by summarizing our main observations in this chapter as follows:

• Quite remarkably, for the last fifty years one observes a very robust behavior of

the dynamics – the field that is the strongest contender of the field currently at the

forefront almost surely emerges as the top ranked field after the transition.

• The key factors that keep a field at the forefront include the citations from the backup

field, the inception of the seminal papers and the existence of high-impact papers.

• Funding statistics obtained from NSF is in very good agreement with the results

predicted by our method.

• Four indicative features quite efficiently unfold the extent of interdisciplinarity of a

field that further help in building the classification model.

• For already very interdisciplinary fields, such as Data Mining, the indicators may

have a certain “saturation” effect forcing it towards the core region of the computer

science domain.
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• The average behavior of a researcher’s career indicates that a researcher tends to

adopt few research fields in her entire research career, though she seems to prefer to

work simultaneously on various fields.

• Researchers who have worked in many fields in their entire careers but remained

confined in few fields in each time window get high importance in terms of citations

compared to the others.

• Finally, we proposed a simple yet effective method of detecting ego-centric circles

in co-authorship networks.



Chapter 6

Community-based Applications

In this chapter we address our fourth objective of leveraging the community information

of networks in order to design different applications.

6.1 Introduction

Community detection or clustering constitutes a fundamental framework in the develop-

ment of various applied systems, e.g., search system, recommendation system etc. In this

chapter we show how the citation network and various types of community markings of

this network can be leveraged to develop two applications.

The contributions of this chapter are threefold:

• We analyze the scientific dataset mentioned in Section 5.2 to understand the citation

growth of each paper after its publication. We discover that the pattern of citation

growth can be clustered into at least six different categories which are in contrast

with the earlier observation that the citation profile of published articles in general

follows a universal pattern. We further conduct a deeper investigation of the papers

in the different categories that leads us to deduce a series of conclusions about the

characteristic properties of these categories.
147
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• In particular, we adopt a stratified learning approach for the prediction task, whereby,

we propose a two-stage prediction model for the task of future citation count predic-

tion where we make use of the six categories of citation pattern that we observe.

• Finally, we propose for the first time a framework for faceted recommendation of

scientific articles, FeRoSA which apart from ensuring quality retrieval of scientific

articles for a particular query paper, also efficiently clusters the recommended papers

into different semantic categories (facets).

6.2 Categorization of Scientific Citation Profiles

There has been a plethora of research done on the citation network and on its evolution as a

collective system. There is already a well-accepted belief on the dynamics of citations that a

scientific article receives after publication – an initial growth (growing phase) in the number

of citations within the first two/three years after publication followed by a steady peak of

one to two years (saturation phase) and then a final decline over the rest of the lifetime of

the article (decline and obsolete phase) as shown in Figure 6.1 [58, 59]. In most cases, the

above observation has been drawn from the analysis of a very limited set of publication

data, thus, obfuscating the true characteristics. For instance, Eom and Fortunato [58] used

14,977 papers published in journals of the American Physical Society (APS) from 1893 to

2008. Here, we conduct our experiment on a massive bibliographic dataset of the computer

science domain comprising more than 1.5 million papers published between 1970 and 2010

(see Section 5.2). Strikingly, unlike earlier observations about citation profile of a paper, we

notice six different patterns of citation profiles prevalent in the dataset (namely, PeakInit,

PeakMul, PeakLate, MonDec, MonIncr and Oth). We exhaustively analyze these profiles to

exploit the micro-dynamics controlling the actual growth of the underlying citation network

that has remained unexplored in the existing literature. We believe that this observation will

not only help in reformulating the existing bibliographic indices such as Journal Impact

Factor (JIF), but will also enhance the general bibliometric research such as citation link

prediction, information retrieval and self-citation characterization.
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Figure 6.1: A hypothetical example showing the traditional belief in the pattern of citation
profile of a scientific paper after publication.

6.2.1 Six Categories of Citation Profiles

Since the primary focus of our study is to analyze citation growth of a paper after

publication, an in-depth understanding of how the number of citations after publication

of a paper varies over the years is necessary. We therefore conduct an exhaustive analysis

of the citation patterns of different papers present in our dataset. Some of the previous

experimental results [75] show that the trend of citations received by a paper after its

publication date is not linear in general; rather there is a fast growth of citations within the

initial few years, followed by an exponential decay. Here we take all the papers having at

least 10 years of citation history, and consider maximum 20 years of their citation history.

Then we design our own heuristics based on the number and the position of the peaks to

categorize the citation profile of each paper.

Algorithm to categorize citation profiles: In order to decipher the trends of citation, we

perform various processing on the data set. First of all, to smoothen the time series data

points in the citation profile of a paper, we use five-years moving average filtering; then,

we scale the data points by normalizing them with the maximum value present in the time

series (i.e, maximum citations received by the paper in a particular year); finally, we run

local peak detection algorithm1 to detect peaks in the citation profile. Over and above,

1
The peak detection algorithm is available in Matlab Spectral Analysis package - http://www.mathworks.in/help/signal/ref/findpeaks.html; we use

‘MINPEAKDISTANCE’=2 and ‘MINPEAKHEIGHT’=0.75 and the default values for the other parameters.

http://www.mathworks.in/help/signal/ref/findpeaks.html
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Figure 6.2: A systematic flowchart demonstrating the rules for classifying the citation
profiles.
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Figure 6.3: Citation itineraries for the first five categories. In each frame, the belt
bounded by the lines Q1 and Q3 represent the first and the third quartiles of the data points
respectively. For each category, one representative citation itinerary is shown at the middle
of the belt. The percentage mentioned in each frame indicates the proportion of papers in
each category. The major proportion of papers (44.8%) lies in category ‘Oth’ which does
not have any specific pattern and is not shown in this diagram.

we apply the following two heuristics to specify peaks: (i) the height of a peak should

be at least 75% of the maximum peak-height, and (ii) two consecutive peaks should be

separated by more than 2 years, otherwise they are treated as a single peak. A systematic

flowchart to detect each category is shown in Figure 6.2.
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Remarkably, we notice that a major proportion of papers do not follow the traditional

citation profile mentioned in the earlier studies, rather there exist six different types of

citation profiles of research papers based on the count and the position of peaks present

in the profile as shown in Figure 6.1 (in each frame, a citation belt is formed by the lines

Q1 and Q3 which represent the first (10% points lie below this line) and third (10% points

lie above this line) quartiles of the data points respectively (i.e., effectively 80% points

are within the citation belt), and the solid line drawn within the citation belt represents the

average behavior of all the profiles corresponding to that category.) The definitions of six

types of citation profiles with the individual proportions in the entire dataset are give below.

(i) PeakInit: Papers whose citation count peaks within 5 years of publication (but not in

the first year) followed by an exponential decay (proportion: 25.2%) (Figure 6.3(a)).

(ii) PeakMul: Papers having multiple peaks at different time points of the citation itinerary

(proportion: 23.5%) (Figure 6.3(b)).

(iii) PeakLate: Papers having very few citations at the beginning and then a single peak

after at least 5 years of the publication which is followed by an exponential decay in

citation count (proportion: 3.7%) (Figure 6.3(c)).

(iv) MonDec: Papers whose citation count peaks in the immediate next year of the

publication followed by a monotonic decrease in the number of citations (proportion:

1.6%) (Figure 6.3(d)).

(v) MonIncr: Papers having a monotonic increase in the number of citations from the year

of publication till the date of observation (i.e., it can be after 20 years of its publication)

(proportion: 1.2%) (Figure 6.3(e)).

(vi) Oth: Apart from the above types, there exist a large number of papers which on an

average usually receive less than one citation each year. For these papers, the evidences are

not significant enough for assigning them into one of the above categories, and, therefore,

they remain as a separate group altogether (proportion: 44.8%).

6.2.2 Contribution of Categories in Different Citation Ranges

One of the fundamental aspects of analyzing scientific publications is to measure how

acceptable they are to the research community. This is often measured by the raw citation

count – the more an article receives citations from other publications, the more it is
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Figure 6.4: Contribution of papers of each category in different citation buckets.

assumed to be admired by the researchers and hence the more is the scientific impact [30].

In this current context, an interesting question is – which among the six categories contain

papers that are admired most in terms of citations. In order to answer this question, we

conduct a systematic study – the total citation range is divided into four buckets (the

citation ranges are: 11-12, 13-15, 16-19, 20-11408) such that each citation bucket would

contain almost equal number of papers. For a deeper analysis of the highest citation range,

we further divide the last bucket (20-11408) into four more ranges, thus obtaining seven

buckets altogether. Then we measure the proportion of papers contributed by a particular

category to a citation bucket (see Figure 6.4). Note that in each citation bucket, the number

of papers contributed by a category is normalized by the total number of papers belonging

to that category. Therefore, this figure is a histogram of conditional probability distribution

– probability that a randomly selected paper falls in citation bucket i given that it belongs

to category j. The normalization is required in order to avoid population bias across

different categories. We observe that the higher region of citation is mostly occupied

by the papers in PeakLate and MonIncr categories followed by PeakMul and PeakInit.

We also notice that the MonDec category which has the minimum proportion in the last

citation bucket shows a monotonic downward fall in the fraction of papers as the citation

range increases. These initial evidences present a general and non-intuitive interpretation

of citation profiles that if a paper does not obtain high citations within the immediate few

years after its publication, it does not necessarily mean that it will continue to remain low

impact all through its lifetime; rather in future its citation growth rate might accelerate and

it could indeed turn out to be a well accepted paper in the scientific community. We further

explain this behavior in the subsequent parts of this section.
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Table 6.1: Mean publication year (Y) (its standard deviation, σ(Y )) and the proportion of
papers (in %) in conferences and journals for each category of citation profile.

Category Mean publication % of conference % of journal

year (σ(Y )) papers papers

PeakInit 1994 (5.19) 64.35 35.65

PeakMul 1991 (6.68) 39.03 60.97

PeakLate 1992 (6.54) 39.89 60.11

MonDec 1994 (5.44) 60.73 39.27

MonIncr 1993 (7.36) 25.26 74.74

6.2.3 Characterizing Different Citation Profiles

The rich metadata information of the publication dataset further allows us to understand

the characteristic features of each of these six categories at finer levels of detail.

Influences of publication year and publication venues on the categorization: One

might raise an immediate question that this categorization might be influenced by the time

(year) when the papers are published, i.e., the papers published earlier might be following

the well-known behavior whereas the papers published recently might indicate a different

behavior. In order to verify that the categorization is not biased by the publication time

period, we measure the average year of publication of the papers in each category. From

the second column of Table 6.1, we can conclude that the citation pattern of the papers is

not biased by the publication year since the average years more or less point to the same

time period.

On the other hand, the mode of publication in conferences is significantly different from

that of journals, and therefore the citation profiles of papers published in these two venues

are also expected to be different. To analyze the venue effect on the categorization, we

measure the fraction of papers published in journals vis-a-vis in conferences for each

category as shown in the third and the fourth columns of Table 6.1 respectively. We observe

that while most of the papers in PeakInit (64.35%) and MonDec (60.73%) categories are

published in conferences, papers belonging to PeakLate (60.11%) and MonIncr (74.74%)

categories are mostly published in journals. Hence, if a publication starts receiving greater

attention or citations at a later part of its lifetime, it is more likely to be published in a
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journal and vice versa. These results put forth two immediate conclusions. First, due

to the increasing popularity of conferences in an applied domain like computer science,

the conference papers get quick publicity within a few years after publication, which is

also the reason for the rapid decay of their popularity. In contrast, journal papers usually

take time to get published and hence to get popularity, thus being mostly admired much

later after publication. However, most of the journal papers remain consistent in receiving

citations even after long years of their publications. Another interesting point to be noted

from these results is that although the existing formulation of the journal impact factor [75]

has been defined taking into consideration the citation profile as shown in Figure 6.1, most

of the journal papers which fall in PeakLate or MonIncr do not follow such a profile at

all; at least for papers in PeakLate category, the metric does not focus on the most-relevant

time frame of the citation profile (mostly after first 5 years of publication). In the light of

the current results, the appropriateness of the formulation of the bioliogaphic metrics such

as journal impact factor remain doubtful.

Effect of self-citation on the categorization: Another factor that often affects citation rate

is self-citation. We also conduct a similar experiment to notice the effect of self-citation

on the categorization of citation profiles. Essentially, we first dispose the citation from

the dataset if the citing and the cited papers have at least one author in common, and then

measure what fraction of papers in each category migrate to the other category due to

this disposal. We observe in Table 6.2 that papers in MonDec are vastly affected by the

self-citation phenomenon. We find that around 35% of papers in MonDec would have been

in the ‘Oth’ category had it not been due to the self-citations. We also observe that the

self citation is usually used in initial periods of the publication by the authors in attempt to

increase the visibility of their publications in the scientific community. This effect is more

prominent for MonDec category which is followed by Oth and PeakInit.

6.2.4 Analyzing Stabilities of Different Categories

The number of citations for a paper changes over time depending on its long/short lasting

effect on the scientific community which in turn might change the shape of the citation

profile. Therefore, studying the temporal evolution of each citation profile can help us un-
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Table 6.2: Confusion matrix representing the transition of categories due to the removal
of self-citations. A value x in the cell (i, j) represents that x fraction of papers in category
i would have fallen in category j if self-citations were absent in the entire dataset. Note
that, no row has been specified for Oth category because papers from this category can
never be moved to the other categories by any deletion of citations.

Category PeakInit PeakMul PeakLate MonDec MonIncr Other

PeakInit 0.72 0.10 0.03 0.01 0 0.15

PeakMul 0.02 0.81 0.04 0 0.1 0.11

PeakLate 0.01 0.06 0.86 0 0.01 0.06

MonDec 0.05 0.14 0 0.41 0 0.35

MonIncr 0 0.02 0.01 0.01 0.88 0.09

Figure 6.5: Alluvial diagram representing the evolution of papers in different categories
and the flows between the categories in time T + 10, T + 15 and T + 20. The colored
blocks correspond to different categories. The size of the block indicates the number of
papers in that category, and the shaded waves joining the regions represent flow of papers
between the regions, such that the width of the flow corresponds to the fraction of papers.
The total width of incoming flows is equal to the width of the corresponding region.

derstand the stability of the categories individually. Since, we know the category of those

papers that have at least 20 years of citation history, for each such paper we further analyze

how the shape of the profile evolves through this 20 years timeline. Essentially, after publi-

cation of a paper at time T , we identify its category at time T +10, T +15 and T +20 based

on the heuristics discussed earlier. We hypothesize that a stable citation category tends to

maintain its shape throughout the entire timeline. The colored blocks of the alluvial dia-
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gram in Figure 6.5 correspond to the different categories for three different timestamps. We

observe that apart from the Oth category which has a major proportion of papers, MonDec

seems to be the most stable, which is followed by PeakInit. However, papers which are as-

sumed to fall in Oth category quite often turn out to be MonIncr papers in the later time peri-

ods. This analysis indeed demonstrates a systematic approach to unfold the transition from

one category to another taking place in scientific research with the increase of citations.

6.2.5 Core-periphery Analysis

Although Figure 6.4 provides the impact of different categories in terms of raw citation

count, it neither indicates the significance of the papers in each category forming the

core of the network nor gives us any information regarding the temporal evolution of the

structure. For a better and more detailed understanding, we perform k-core analysis [92] of

the evolving citation network by decomposing the network for each year into its ks-shells,

such that an inner shell index of a paper reflects a central position in the core of the

network. The idea is to show how the papers in each category (identified at the year 2000)

migrates from one shell to another after getting citations in the next 10 years. It also allows

us to observe how persistent a category is in a particular shell. In Figure 6.6, we notice

that the majority of papers in the Oth category lie in the periphery and its proportion in the

periphery increases over time which indicates that the papers in this category are becoming

increasingly less popular in time. PeakMul category gradually leaves the peripheral region

over time and mostly occupies the two innermost shells. PeakInit and MonDec show

almost similar behavior with a major proportion of papers in inner cores in the initial

year but gradually shifting towards peripheral regions. On the other hand, MonIncr and

PeakLate show expected behavior with their proportion increasing towards inner shells

over time indicating their rising relevance as time progresses. This study helps us identify

temporal evolution of the importance of different categories in terms of how each of them

contributes to the central position of the citation network.
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Figure 6.6: Multi-level pie chart for year 2000,2004, 2007 and 2010 showing the
composition of each of the categories in different ks-shell regions; where the colors
represent different categories and the area covered by each colored region in each ks-shell
denotes the proportion of papers in the corresponding category occupied in that shell. The
innermost shell is the core region and the outermost shell is the periphery region.

6.3 Predicting Future Citations of Scientific Articles

The next objective is to show that the categorization of citation profiles has significant

consequences to early prediction of citation itinerary of scientific papers. Such a prediction

scheme can be of significant interest not only for the scholars at universities and research

institutes but also for the engineers and policy makers in business and government domains.

The very limited number of studies on this topic [230] have mostly modeled the problem

as a learning task – given a set of features and a particular time interval, a regression model

is trained on the entire set of the training population, and accordingly, the future citation

count of a query paper is estimated. A common underlying implicit assumption in these

approaches is that the citation itinerary of all published papers have similar characteristics.

However, we observe that such an assumption is flawed and therefore seriously affects the

accuracy of the prediction. Consequently, we propose to categorize the complete set of

data samples into different subparts each of which corresponds to one of the six citation

itineraries observed. This approach is commonly termed as stratified learning [91] in

the literature where the members of the stratified space are divided into homogeneous

subgroups (aka strata) before sampling. This indeed reduces the extent of variability

and increases the representativeness of the data samples in each individual strata thus

enhancing the learning scheme.
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6.3.1 Distinctive Features

Here we provide a brief description of the set of features learned by the classifiers. The

features can be broadly classified into three classes, namely the author-centric features, the

venue-centric features and the paper-centric features. Note that for a particular paper, all

the features are calculated with respect to the year of its publication. For features which are

still unobserved, e.g., new authors or new venues, we do not assign zero values; instead we

set them to the minimum value observed across all the samples available at that particular

time point.

(i) Author-centric features: For all the author-centric features mentioned here, we mea-

sure both the average (Avg) and the maximum (Max) values for each paper to incorporate

the notion of both team-effect and individual leadership respectively in the final citation

count prediction.

(a) Author productivity: Yan et al. [230] noticed that the more papers an author publishes

(productivity of the author), the higher average citation counts she can expect. Therefore,

for each paper, we calculate the productivity of its authors (ProAuth) that indeed indicates

how the influence of productive authors regulates the citation profile of a paper.

(b) Author h-index: H-index is a standard metric to measure both the productivity and the

impact of the published work of an author [99]. Therefore for each paper, we measure the

h-index (Hindex) of authors.

(c) Author diversity: The diversity of an author a denoted by AuthDiv(a), indicating the

breadth of expertise of a. It is measured by the entropy of the research fields where she

publishes and is given by

AuthDiv(a) = −
24∑
i=1

p(ni|n)× log(p(ni|n)) (6.1)

where ni denotes the number of papers written by author a belonging to the field i (total 24

fields are available in the dataset), and n denotes the total number of papers written by a.

For each paper, we include the diversity of authors (AuthDiv) as a feature. Note that these

two features have not been considered in earlier works [230].
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(d) Sociality of author: Since the authors tend to cite papers of their previous collabo-

rators, it is natural to assume that the paper from a widely connected authors has a larger

probability to be cited by different coauthors. A simple measurement is to count the number

of coauthors (NOCA) of each author present in a paper [230].

(ii) Venue-centric features: We consider the three features listed below to signify the

importance of venue.

(a) Long term venue prestige: To measure the prestige of a publication venue (Ven-
PresL), we calculate the average citations received by the papers published so far in that

venue.

(b) Short term venue prestige: It is measured as the average number of citations received

per paper published in that venue during at most two preceding years (VenPresS). The

basic difference between VenPresL and VenPresS is that while the former measures the

overall impact of a venue by considering all the papers published so far in that venue, the

latter only measures the recent impact of the venue. VenPresS is conceptually similar to

the impact factor of a journal as defined in [74].

(c) Venue diversity: VenDiv can be measured by considering the different fields covered

by the papers published in that venue. A formula similar to Equation 6.1 gives a quantitative

measure of VenDiv. This is another new feature introduced in this study for the first time.

(iii) Paper-centric features: Among the paper-centric features mentioned below, third

and fourth features are newly introduced in this study.

(a) Team-size: It has been observed that there exists a critical value of team-size corre-

sponding to which the citation accumulation is maximum. Hence, we directly take into

account the number of authors of a paper (Team).

(b) Reference count: Sometimes, only the number of references serves as a feature to

distinguish regular and survey papers. Therefore, we directly use the reference count of a

paper (RefCount) as a feature in our study.

(c) Reference diversity: Earlier in Section 5.4.1 we proposed a measure called Reference
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Diversity Index (RDI) as an indicator of interdisciplinarity that attempts to quantify the

diversity in terms of the number of fields being cited by a paper. It is also measured sim-

ilarly using Equation 6.1; here n (ni) indicates the total number of references (number of

references to the papers belonging to field i).

(d) Keyword diversity: As mentioned in Section 5.2, MAS assigns keywords, from a

global set of keywords, against each paper in order to characterize it properly. For each

paper, we measure how diverse its keywords are (KDI) similarly by Equation 6.1; here ni
indicates the fraction of keywords of paper x belonging to the field i. Note that a keyword

may appear in multiple fields. For them, we consider multiple instances one for each field.

(e) Topic diversity: We use the unsupervised Latent Dirichlet Allocation2 [25] as men-

tioned by Yan et al. [230] to discover topics for each paper. We empirically set the number

of topics as 100, i.e., for each of our 100 topics, the topic model calculates p(topici|d), the

inferred probability of topic i in document d (Topic). The topic distribution τ(d) over all

topics in the document d is then: τ(d) = {p(topic1|d), p(topic2|d), ..., p(topic100|d)}.

6.3.2 Proposed Framework

The prediction is done through a two-stage learning process where the learning task is

defined as follows:

Learning task: Given a set of features F = {f1, f2, ..., fn}, our goal is to learn a function

ψ to predict the citation count of an article d at a given time period ∆t after its publication.

Formally, this can be written as:

ψ(d|F,∆t)→ CT (d|∆t) (6.2)

where citation count, CT is as defined below.

Citation count: As defined by Yan et al. [230], given the set of scientific articles D, the

citation count (CT (.)) of an article d ∈ D is defined as:

2We use GibbsLDA++ (http://gibbslda.sourceforge.net/) with the default settings.

 http://gibbslda.sourceforge.net/
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Figure 6.7: A schematic of our proposed framework (SVM: Support Vector Machine,
SVR: Support Vector Regression). Here we assume that the query paper is mapped to
‘MonIncr’ class by the SVM module.

citing(d) = {d′ ∈ D : d′ cites d}
CT (d) = |citing(d)|

Note that in this paper, we consider ∆t ∈ [1, 5].

We now elaborate the two-stage learning process undertaken to accomplish the above

mentioned task.

Two-stage prediction model

The schematic diagram of our proposed two-stage model for predicting future citation

count is shown in Figure 6.7. In the first stage, a sample (paper) is classified into one of the

six identified categories which is done by using a multi-class SVM. In the second stage,
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the actual citation count of the paper is computed by employing a customized SVR model.

In the rest of the section, we explain each of the stages separately.

Stage I: For each training sample, we identify its category among the six defined categories

using the set of rules mentioned in Section 6.2.1. We also extract the features (mentioned

in Section 6.3.1) for each training sample. Hence the multi-class Support Vector Machine

(SVM) [130] receives the category and the feature (author-centric, paper-centric, venue-

centric) information of each member in the training set. Subsequently, given a test sample

(query paper) along with its set of features, the multi-class SVM outputs the category of

the sample. For training and classification phases of SVM, we use Weka-LibSVM toolkit3

applying pairwise multi-class decision approach. The best results are obtained for the

polynomial kernel setting. The overall accuracy and the importance of each feature in the

classification task are reported in Section 6.3.3.

Stage II: Support Vector Machine can be applied not only to classification problems but

also to the case of regression often termed as Support Vector Regression (SVR) [200]. We

use LibSVM (epsilon-SVR)4 for this analysis with the default parameter settings. We train

separate SVR models for each category C as well as for each time instance ∆t; each SVR

is identified by the notation SV R(C,∆t). Recently, Yan et al. [230] used four prediction

models, namely Linear Regression, k-Nearest Neighbor, CART and SVR and showed

that SVR outperforms other models in predicting future citation counts. Therefore, in our

experiment we use SVR for the final prediction.

The training set for SVR pertaining to a certain category (say, MonIncr) contains the

papers whose citation patterns fall into that category. Besides taking the features of the

papers as input, SV R(C,∆t) also takes as input the number of citations the constituent

training papers in that category have received at ∆t time after their publication. That is, if

∆t = 5, the citation count of a paper at the fifth year of its publication available from the

training sample is taken into consideration. For example, if a paper has been published in

1975 (1978), the number of citations it received in the year 1980 (1983) is taken as input.

Handling information leakage: In order to make predictions for the query paper, we

3http://www.cs.waikato.ac.nz/ml/weka/
4 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://www.cs.waikato.ac.nz/ml/weka/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Table 6.3: Performance of the baseline model (columns 2-4) and our proposed system at
various time intervals for the test papers published between 1996-2000 (columns 5-7) and
test papers published between 2001-2005 (columns 8-10).

Baseline Our model

1996-2000 1996-2000 2001-2005

R2 θ ρ R2 θ ρ R2 θ ρ

∆t=1 0.55 5.45 0.59 0.87 2.66 0.86 0.89 1.95 0.88

∆t=2 0.54 6.36 0.57 0.90 1.46 0.88 0.91 1.20 0.90
∆t=3 0.53 7.67 0.56 0.83 3.11 0.85 0.82 3.22 0.80

∆t=4 0.50 9.16 0.52 0.77 3.86 0.84 0.77 3.76 0.79

∆t=5 0.48 12.09 0.49 0.74 4.18 0.75 0.71 4.08 0.73

always consider the information available before the publication of the query paper (i.e.,

we avoid any information at or after the publication year of the query paper). For instance,

when predicting the future citation count of an article (published in 1996) 5 years after its

year of publication, all the articles published in the year 1990 or before are processed in

the training samples; all the other articles published after 1990 are discarded. The reason

is that for 5-years future citation prediction of the papers published in 1996, if we use the

papers published in 1992 in the training phase, their citation counts in the year 1997 would

become the data points in the training space of the regression model for ∆t = 5. This

implies that we are using the information of the citations at 1997 in order to predict the

citation count of the paper published in the year 1996, which leads to information leakage.

6.3.3 Performance Evaluation

In this section, we analyze the performance of the baseline system and our proposed model

in predicting future citation count of a given paper at the time of publication. For the base-

line system, we design a model which is similar to that proposed by Yan et al. [230] (except

that we are using a lot more features). It is identical to our proposed model except that it

does not include the first stage of our model. Thus, for a query paper, it takes into account

all the training samples and the set of features discussed in Section 6.3.1, and applies SVR

to predict the citation count of the paper. Essentially, we intend to show the significance of

the preprocessing stage (first stage of our model) in the task of future citation prediction.
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Evaluation Metrics: For the evaluation purpose, we use the following metrics: coefficient

of determination (R2)5 [230], mean squared error (θ) and Pearson correlation coefficient

(ρ). Note that the more the value of R2 and ρ, the better the accuracy of the model; but for

θ, the reverse argument is true.

Dataset: The filtered dataset contains 1,549,317 scientific articles which need to be

divided further for training and testing. However, for the evaluation of SVM, we need

those papers whose true categorizations are known to us, i.e., those papers which have

at least 10 years history (published between 1970-2000); though for measuring SVR

accuracy, this might not be the criteria. Therefore for the sake of uniformity, we consider

the papers published between 1970-1995 for training (505,149 papers), and the papers

published between 1996-2000 (146,620 papers) for testing (for baseline as well as our

algorithm) throughout the evaluation (unless explicitly mentioned). However, we also

report the final prediction accuracy for the papers published between 2001-2005.

Performance of the baseline model: The predictive performances of the baseline system

for each of the consecutive five years after publication are shown in Table 6.3 (columns

2-4). We observe that the baseline system achieves the highest accuracy (R2=0.55, θ=5.45

and ρ=0.59) at the immediate next year after publication of a paper. We also observe that the

accuracy of the predicted citation count is moderately overestimated for longer number of

years which in turn decreases the accuracy of the baseline system in the later time periods.

Performance of our model: Table 6.3 shows the final performance of our model in each

time interval after the time of publication. In this table, apart from the citation prediction

for the papers published between 1996-2000, we also show the accuracy for the papers

published between 2001-2005 (in that case, the training set consists of papers published

between 1970-2000, and papers published between 2001-2005 constitute the test samples).

Contrary to the performance of the baseline model where the highest accuracy is achieved

at the immediate next year after publication, we achieve the best performance of our model

2 years after the year of publication. Remarkably, we observe that for all the cases, our

5R2 is defined as: R2 = 1 −
∑
d∈D(C(d)−C

′
(d))2∑

d∈D(C(d)−C(D))2 , where D is the set of test documents, C(d) is

the actual citation count for article d, C
′
(d) is the predicted citation count for article d in the test set D,

C(D) = 1
|D|
∑

d∈D C(d) is the mean of the actual citation count for an article present in D. R2 6 1, and

a larger R2 indicates a better performance.
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Table 6.4: Confusion matrix depicting the performance of SVM at the first stage of our
prediction model. The last column indicates the accuracy of the classification system
for each individual category. The correct classification results (diagonal elements) are
highlighted in bold font.

PeakInit PeakMul PeakLate MonDec MonIncr Oth Accuracy

PeakInit 9550 70 20 20 0 2419 0.79

PeakMul 29 15261 2500 3 0 3000 0.73

PeakLate 7 718 4842 2 489 518 0.73

MonDec 398 444 157 2247 0 453 0.61

MonIncr 2 403 0 0 2789 0 0.87

Oth 55 5142 5 2 0 154188 0.96

Overall accuracy 0.78

model achieves nearly 50% higher accuracy compared to the baseline system (especially

for θ and R2). Note that the performance in 2001-2005 is also quite significant - even

better than the previous regime as the system is getting trained with more data. We further

observe that the typical situation where the system performs poorly is when a new venue

gets introduced and quickly becomes popular; it takes certain number of years of learning

for the system to predict accurately. Another important observation is that the predicted

citation counts are almost always overestimated (not underestimated) for the later years.

The reason behind this is not exactly clear but the result itself provides a future opportunity

to estimate a linear offset to predict more accurately.

Performance of SVM classification: We have discussed the accuracy of the prediction

model but this in turn depends on the underlying first stage of classification which is done

using multi-class SVM. Table 6.4 shows the confusion matrix describing the performance

of the SVM classification used in the first stage of our model. Each column of the matrix

represents the instances in a predicted class, while each row represents the instances in an

actual class. Therefore, all correct guesses are located in the diagonal of the table. Bethard

and Jurafsky [21] mentioned that 90% of papers that have been published in academic jour-

nals are never cited. We have also observed in Figure 6.3 that our dataset is highly biased

towards the population of the low-cited papers (i.e, ‘Oth’). Therefore, SVM also slightly

overestimates ‘Oth’ category in the classification. The overall accuracy of the classification

system is 0.78 which is quite promising considering the biased training samples and the fact

that no feature after the publication of the paper is considered to classify the papers. Besides
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‘Oth’ category, we also observe higher accuracy for class ‘MonIncr’ (0.87) which is fol-

lowed by ‘PeakInit’ (0.79), ‘PeakMul’ (0.73) and ‘PeakLate’ (0.73). The lowest accuracy is

obtained for category ‘MonDec’ (0.61). One possible reason could be that this is one of the

rarest categories in the dataset. Thus, the lack of enough evidences might have accounted

for the low final accuracy of the SVM model in classifying the papers into this category.

Performance assuming perfectly accurate SVM: In Table 6.4, we notice that in the first

stage of our model, we achieve overall 78% accuracy and the error in this stage propagates

in the second stage of our model. We believe that this performance can be improved a

lot in future with more efficient feature selection and thus remains a potential area of

future research. However, one might argue that if the SVM model could have achieved

nearly 100% accuracy, how much improvement one would expect from the final prediction

model. This might also answer how the error which propagates from the first stage of the

model to the next stage affects the final output of citation prediction. Since we know the

true category of each of the test papers, we use only those training samples belonging to

the true category for training SVR, thus forcing 100% accuracy in the first stage. Table 6.5

shows the performance improvements (differences) of our model in comparison to the

earlier results shown in Table 6.3 for different values of ∆t (test set constitutes papers

published within 1996-2000). One can clearly notice a significant improvement over

the baseline model and our earlier results especially for the higher values of ∆t. This

indicates that the error propagating from the first stage SVM model to the next stage

significantly affects long term citation prediction, and improvements in the first stage can

highly enhance the overall performance of the system.

Robustness of categories: Earlier results show that the systematic categorization of the

training samples improves the performance of the prediction system in comparison to the

baseline system. A pertinent question could be that how robust are these categories for

the final prediction, i.e., if the (near-)similar/dissimilar categories are merged together,

how does it affect the final output of the model. Note that in Figure 6.3, the categories

‘PeakInit’ and ‘MonDec’ (‘PeakLate’ and ‘MonIncr’) are nearly similar in terms of the

number of peaks and whether the peak occurs in the first/last half of the citation profile;

others are reasonably different. Now the question is that if we merge the near-similar

categories together to reduce the total number of categories, how does it affect the final

prediction. The extreme case would be the baseline system itself where all the categories
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Table 6.5: Performance improvement (differences) of our model in comparison to the
earlier results shown in Table 6.3 for different values of ∆t, while considering 100%
accuracy in SVM model.

Improvement over Improvement over

baseline model our earlier results

R2 θ ρ R2 θ ρ

∆t = 1 0.34 -3.54 0.31 0.02 -0.75 0.04

∆t = 2 0.37 -5.09 0.34 0.01 -0.19 0.03

∆t = 3 0.37 -5.85 0.33 0.07 -1.26 0.04

∆t = 4 0.35 -7.22 0.36 0.08 -1.92 0.04

∆t = 5 0.41 -10.19 0.37 0.15 -2.28 0.11

Table 6.6: (Left) Performance of the two-stage prediction model for two different types of
categorization schemes; (Right) performance of the baseline model and our proposed sys-
tem at various time intervals after including the first year’s citation count as another feature.

Cat-1 Cat-2

R2 θ ρ R2 θ ρ

∆t=1 0.87 2.05 0.85 0.59 5.23 0.63

∆t=2 0.88 1.94 0.88 0.61 4.67 0.68
∆t=3 0.79 3.38 0.80 0.55 6.86 0.61

∆t=4 0.75 4.01 0.76 0.51 8.89 0.54

∆t=5 0.71 4.10 0.72 0.50 9.58 0.49

Baseline Our model

R2 θ ρ R2 θ ρ

∆t=2 0.60 4.92 0.65 0.92 1.02 0.90
∆t=3 0.59 5.06 0.64 0.85 2.56 0.82

∆t=4 0.58 5.44 0.62 0.83 3.16 0.81

∆t=5 0.54 6.56 0.56 0.81 3.88 0.79

are combined. Apart from this, we reconfigure the categorization in two different ways:

[Cat-1] combining near-similar categories and keeping others separate ([PeakInit + Mon-

Dec], [PeakLate + MonIncr], [PeakMul], [Oth]), [Cat-2] combining one pair of dissimilar

categories ([PeakInit + PeakMul], [PeakLate], [MonDec], [MonIncr], [Oth]). In this case

also, we use the default set of training and test samples as mentioned in earlier in the

dataset and run the two-stage prediction model separately for two types of categorization.

Table 6.6 (left) shows the final performance of the two-stage model for the two catego-

rization schemes. One can easily notice two immediate consequences of these schemes –

(i) combining two near-similar categories (as done in Cat-1) does not make much effect

on the final prediction in comparison to combining two different categories (as followed

in Cat-2), since the decrease in accuracy from the actual results (shown in Table 6.3) is

significantly less for Cat-1 than that for Cat-2; (ii) while combining two major categories
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in Cat-2, the accuracy of the final prediction decreases drastically from the actual results

of Table 6.3, and it tends to be closer to the baseline system. The results for Cat-1 are still

worse (although slightly) than the original six category system. Hence, a natural question

stays whether dividing the data into further categories would improve performance. We

have tried different variations; all of them tend to introduce more noise in the SVM

classification module thus decreasing the overall performance.

Impact of early citation information: In earlier papers [36], it has been shown that the

citation count of a paper in the initial few years after publication plays an important role

in predicting the future citation count of the paper. However, in our experiments, we have

only considered those features of a paper that one can get at the time of its publication since

our objective is to predict the future impact of a paper as early as possible. However, we

also believe that the initial few years’ citation counts can boost up the prediction of the final

citation counts since these initial citations seem to be the early crowd-sourced feedback of

the scientific community about the paper. Therefore, to see its impact in the final prediction,

we conduct another set of experiments – we include the citation count of a paper in the

immediate next year (∆t=1) of its publication as a feature and predict the citation count of

each paper for ∆t between 2 and 5 years. Table 6.6 (right) shows the accuracy for both

the baseline system and the two-stage prediction model. As compared to Table 6.3, we can

see a clear improvement of the system mostly in the higher values of ∆t. Moreover, this

also improves the SVM classification where we achieve 84% overall accuracy. With this

information, the baseline system also improves a lot as mentioned in [230].

6.4 Faceted Recommendation for Scientific Articles

One of the most common ways of doing any literature survey is perhaps the following –

start from a known article and then traverse along those articles which have either cited

the known article or have been cited by the known article. In particular, when a researcher

reads the known article, she starts ruminating and asking recurrent questions pertaining

to it that can further lead her to browse the other articles. These questions are most

often synthesized from the knowledge context of the end users. For instance, an expert

in a certain area, while reading a paper might want to find papers presenting “alternative
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approach” of the query paper, thus expecting the recommendation engine to return only

“alternative approach” related papers; while on the other hand a naïve user might be

interested to understand the “background” of the query paper. A smart recommendation

engine should be able to organize the recommended papers into multiple such facets/tags.

This would not only reduce the tedious effort of searching related articles in accordance

to the knowledge context of the end user, but also should answer a more fundamental

question: what is the role of a recommended paper in relation to the query paper. However,

the traditional paper recommendation systems primarily aim at improving the relevance of

the recommendations and therefore tend to overlook the above fundamental aspect.

Figure 6.8: Change in role of the papers over the years. Papers which mostly appeared in
(a) Introduction, (b) Related work, (c) Comparison or (d) Result section earlier have been
referred to in other sections quite significantly over the years.

With respect to the content of any paper, a possible way to capture the variable knowledge

context is through the section information. For instance, the “Related work” section of

a paper often contains papers solving similar problems. In general, a paper might be

referred to for different reasons (thus playing various roles), and the role of a referred

paper can also change over the years. For instance, we observe that those papers which

were mostly referred to in the “Introduction” section earlier have started appearing in

“Method” section as well quite significantly (see Figure 6.8). Therefore, in order to build

a simple working system one can assume that the sections serve as representatives for the

different knowledge contexts. In particular, we posit that an efficient recommendation

system should be able to capture the changing role of a recommended paper with respect



170 Chapter 6 Community-based Applications

to the query paper. This in turn calls for designing a recommendation engine that apart

from ensuring the appropriateness of the recommended papers, is capable of organizing

the recommendations into semantic groups or facets.

In this paper, we attempt to build a “Faceted Recommendation System for Scientific

Articles” (FeRoSA) that given a query paper, in addition to recommending the relevant sci-

entific papers, also organizes the recommendations into facets, thereby, suitably catering to

the appropriate knowledge context of the end user. FeRoSA groups the recommendations

into four naturally observed facets, namely, Background, Alternative Approaches, Methods

and Comparison. This grouping has been formulated from the most intuitive forms of the

knowledge context of the end users, which directly map to the different broad sections of

any paper; however, the current system can very easily adapt to any other suitable form

of grouping. An initial prototype version of the system is shown in Figure 6.9 and can be

accessed from www.ferosa.org. Our methodology is based on a principled framework

of random walk with restarts that attempts to simulate the traversal mechanism of an user

initiating from the known article. The model takes into consideration both the citation

links as well as the content information to systematically produce the most relevant results.

Figure 6.9: The propotype of FeRoSA publicly available online. The definitions of the
four facets are described in Section 6.4.1.

www.ferosa.org
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6.4.1 Dataset

We collect the AAN dataset6 [182] which is a assemblage of all papers included in ACL

(Association for Computational Linguistics7) publication venues. In the full dataset, most

of the papers have raw text. The texts are pre-processed where the sentences, paragraphs

and the sections are properly separated using different tags. A significant part of the corpus

had word splits and word joins. These are rectified in the whole corpus using a dictionary

based approach. A preliminary statistics pertaining to the used dataset is shown in Table

6.7.

Table 6.7: Statistics of the used datasets.
Number of papers 9,843

Average number of references (within ACL only) 6.21

Number of unique authors 7,892

Number of unique venues 280

Extraction of Section Heading: As discussed earlier, we categorize the citation links

based on their occurrence in various sections of the paper. To extract the section heading,

a list of 25,483 unique headings is collected and manually annotated into five different

categories: Introduction, Related Work, Method, Results and Conclusion. The categories

are further mapped into four facets, namely Background (Introduction), Alternative Ap-

proaches (Related Work), Method (Method) and Comparison (Results and Conclusion), as

also suggested by Zhigang et al. [104]. A brief description of the facets/tags is as follows:

• Background (BG): These are the citations which are prerequisite for understand-

ing the basic notions of the citing paper. These citations generally point either to

some seminal papers in that particular area, or to some papers which describe certain

concepts that are relevant in understanding the framework of the citing paper.

• Alternative Approaches (AA): If there are citations to the approaches, which can

be seen as alternative to the method proposed in the citing paper, then such citations

are categorized as AA. These references are often found in system oriented research

papers where new methods/frameworks are proposed.
6
http://clair.eecs.umich.edu/aan/xml/

7
https://www.aclweb.org/

http://clair.eecs.umich.edu/aan/xml/
https://www.aclweb.org/
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• Methods (MD): If the citing paper borrows any such tools, techniques, datasets,

measures or other concepts from the paper, or if both the papers have some overlap

in usage of any of the entities mentioned above then such a citation is treated asMD.

• Comparison (CM): As mentioned in [135], a relation is said to be comparable if

the citing paper has been compared to a cited paper in terms of differences or resem-

blances. Most of the times, these types of references tend to occur in the evaluation

section of the citing paper. Essentially, one can argue that all the AA-tagged papers

can be treated as CM papers. However, the AA-tagged papers may be irreproducible

or difficult to be reimplemented, and thus may not be used for comparison. We only

consider the cited paper as CM if it is used by the citing paper for comparison.

In this context, Liang et al. [135] and Nanba and Okumura [153] classified the citation re-

lations into three major categories, namely Based-on (same as the combination of BG and

AA), Comparable (same as CM) and General (those which are not classified). However,

we argue that these categories are too coarse to unfold the specific relations between citing

and cited papers. While manually mapping the sections, we observe that there are few refer-

ences falling in Based-on category, which are mentioned mostly in the Related work section

with the explicit description and often appear alone in a sentence (average 1.05 references

per line); whereas other references in this category appear as one among many others in a

single sentence (average 3.35 references per line). While the latter references are mostly

used to understand the background of the paper, the former are more important and often

point to the papers describing alternative approaches related to the same problem. There-

fore, we further divide the Based-on relation into two facets, BG and AA. In addition, we

see that most of the system oriented papers often borrow techniques from the other papers to

design a new framework. On the other hand, to establish the performance of a proposed sys-

tem, researchers often compare their systems with the state-of-the-art. We argue that these

two types of references are different and should be explicitly distinguished. Therefore, we

further propose two new facets, MD and CM. In Table 6.8, we show that the experts8 also

concur with us most of the times on these four categories (facets). Note that the set of facets

to be used may vary for different domains of research; however the underlying faceted rec-

ommendation framework used in this study is independent of the choice of facets.
8

The expert opinion was taken from the annotators, who were later involved in evaluating the systems as discussed in Section 6.4.3. For a direct reference of a paper, we ask

experts whether the reference indicates BG, AA, MD or CM and then compare their opinion with our section annotation (in four categories).
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Table 6.8: Confusion matrix showing the agreement of the experts’ judgment (indicated
by column) with our section mapping (indicated by row).

BG AA MD CM

BG (Introduction) 26 7 6 3

AA (Related Work) 19 63 8 7

MD (Method) 4 2 18 1

CM (Comparison) 5 6 2 28

Figure 6.10: The work-flow diagram of FeRoSA.

Extraction of Citation Contexts: In addition to the citing-cited paper pair for each cita-

tion, we also need to know the context and the section heading of where the citation has

occurred, in order to assign the facet. We use Parscit [51] to identify the citation contexts

from the dataset and then extract the section headings for the pair of papers within the

network. A facet is assigned to each pair of citing-cited paper, depending on the section in-

formation. The statistics regarding extracted citation contexts are shown in Table 6.9. Note

that if a cited paper occurs multiple times in different sections of a cited paper, multiple

facets would get assigned to this paper pair.

Table 6.9: Statistics of various facets in the annotated dataset.
Number of citation contexts extracted 61,051

Number of BG edges 23,022

Number of AA edges 10,797

Number of MD edges 8,828

Number of CM edges 18,404
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6.4.2 Recommendation Method

In this section, we describe in detail the working principle of our proposed recommenda-

tion system, FeRoSA. Figure 6.10 shows a schematic diagram of the proposed work-flow.

From the AAN dataset, we first construct a citation network, where each edge is labeled

with one or more of the four facets, as described in Section 6.4.1. Given a query paper,

an induced subgraph is constructed by taking its 1-hop and 2-hop neighbors in the citation

network and the papers with high content similarity to the query paper based on cosine

similarity measure. This graph is further used to construct an induced subgraph for each of

the facets. Next, a random walk with restarts is performed to find papers in each induced

subgraph, that are important for the query paper. A facet-wise rank list of papers is

constructed for each query paper, along with a rank list based on papers with high cosine

similarity. Finally, a rank aggregation framework is used to combine these multiple ranked

lists. Below, we describe each of these modules in further details.

The citation network: We build the citation network which is a directed graphG = (V,E)

with edge labels. The labeling is a mapping from the edge set E to set of facets based on

the data obtained from citation contexts. An edge may be tagged with multiple facets, if a

paper cites another paper in multiple sections.

The induced subgraphs: We construct an induced subgraph of the network for each query

paper. An initial pool of vertices is obtained by following two criteria: (i) we consider

all the papers which are at 1-hop or 2-hop distance from the query paper in the citation

network irrespective of the label and directionality of edges; (ii) we also consider those

papers as nodes that have a cosine similarity of at least 0.49 with the query paper (top 100

papers if the number of papers exceeds 100). Then we construct an induced subgraph of

nodes present in the initial pool for each facet individually. For instance, for AA we only

consider those citation edges in the induced subgraph which are labeled as AA. Therefore,

the graph structure for a particular query node is different for different facets. Note that in

this process, few nodes might get disconnected or remain isolated. In the rest of this section,

we discuss how this graph can be utilized in a systematic way to generate recommendations.

Random walk on the induced subgraphs: In order to obtain the importance of the nodes

with respect to the query paper, we perform random walk with restarts (RWR) [171] on the
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induced subgraph with query paper being the starting node. Random walk with restarts is

defined in Equation 6.3: consider a random walker that starts the walk from node i. The

walker iteratively moves to its neighborhood with a probability proportional to the edge

weights. At each step of the random walk, it has some probability c to return to the starting

node i. The relevance score of node j with respect to node i is defined by the steady-state

probability ri,j that the walker will finally stay at node j and is given by

−→r i = (1− c)Â−→ri + c−→e i (6.3)

where −→r i = [ri,j] is an n × 1 ranking vector; ri,j is the relevance score of node j with

respect to node i; c is the restart probability, 0 ≤ c ≤ 1; Â is the normalized weighted

matrix associated with the weighted adjacency matrix A = [aij]; −→e i is the restart vector,

with all its elements 0 except the ith element. We consider the restart probability c as 0.4.

Apart from the citation links in the induced subgraph, we also consider the isolated nodes

by assigning a teleportation probability (i.e., a probability of randomly jumping to any one

of the isolated nodes) as 0.3, thus eliminating the chance of the isolated nodes remaining

unreachable by the random walker.

Rank aggregation: We use the above framework to obtain a rank list of nodes present in

the induced subgraph for each facet separately. Additionally, we consider content similarity

by measuring the cosine-similarity between the query paper and each of the papers present

in the induced subgraph. Next, we utilize a rank aggregation method to combine these two

types of rankings. In our work, we use RankAggreg, an R package developed by Pihur et

al. [178], where they consider rank aggregation as an optimization problem

δ∗ = argmin
m∑
i=1

wid(δ, Li)

The optimization problem finds an ordered list that minimizes the total distance between

each of the provided lists and the list δ, where δ is the ideal super-list, Li is the ith ordered

list and wi is its corresponding weight, which is equally distributed in our case. d(δ, Li)

is the distance measure [178]. We have employed Spearman footrule [178] as the distance

measure which is nothing but the summation over absolute difference between ranks of all

the nodes while considering any two lists.
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Note that for each facet T , we aggregate the ranking obtained for T and the cosine-

similarity based ranking to obtain the final rank list. In addition, we also perform a total

rank aggregation in order to design a flat version of FeRoSA (f-FeRoSA) by combining all

the facet-wise rankings and the cosine similarity based ranking together (see Section 6.4.3).

6.4.3 Experimental Results

In this section, we present the performance of FeRoSA. Since evaluating the performance

of such kind of systems requires domain knowledge, we design a new evaluation scheme,

consisting of three independent steps. First, we ask experts with sufficient domain

knowledge to generate a limited set of ground-truth dataset, based on which we evaluate

our system for faceted recommendation. Second, we ask a set of researchers having

partial knowledge of the domain (“semi-experts”) for mass-scale evaluation. Third, we

shortlist a few papers and request one of the authors of each paper to judge the quality

of the recommendations returned by FeRoSA for their own papers. Further, we show

that FeRoSA can appropriately be used for flat recommendation as well that significantly

outperforms existing state-of-the-art systems. Towards the end, we conduct a detailed

analysis of the systems for different model parameters.

Evaluation metrics: We use the following metrics to evaluate FeRoSA and the baseline

systems.

1. Comparative evaluation: The following metrics are used to compare the competing

systems:

• Overall Precision (OP): It measures the ratio between the number of relevant

recommendations (according to the experts’ judgments) and the total number of

recommendations provided for a query paper by each competing system. The

overall precision of each system is then measured by averaging OPs for all the

query papers.

• Overall Impression (OI): It measures that among all the query papers, in how

many cases a particular system is rated to have an overall better performance.
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We measure this value for a system on the basis of precision majority, i.e., for

what fraction of query papers, the system has a higher OP than others.

2. Faceted evaluation: We use facet-based precision (TPT ) for the evaluation of the

facets of FeRoSA. It measures the overall precision of the recommended papers un-

der each individual facet T , denoted by TPT . Initially, for each paper TPT is calcu-

lated and then the average of all TPT s is reported for each tag T .

As mentioned earlier, while the quality of the recommendation system is partially judged

by OI, OP and TP, due to the lack of information about the actual number of relevant

papers for each query paper, it is difficult to measure the recall of the system.

Evaluation of faceted recommendation:

In this section, we first describe the process of ground-truth generation, followed by a brief

description of the baseline algorithms, and then elaborate the comparative evaluation of all

the systems for faceted recommendation.

Ground-truth generation: Because of the unavailability of a benchmark dataset for the

evaluation of scientific article recommendation especially for the faceted recommendation,

we conducted an expert judgment for generating a set of faceted and flat recommendations

(used later in this section) as our ground-truth. For this purpose, we shortlisted a set of 30

query papers that cover the fields of expertise of the experts. For each query paper, we pre-

sented 30 recommendations that we pulled from four separate systems: FeRoSA (12 rec-

ommendations), Google Scholar (GS)9 (6 recommendations), Microsoft Academic Search

(MAS)10 (6 recommendations) and a graph based paper recommendation system (we call

it LLQ) proposed by Liang et al. [135] (6 recommendations). Note that the three latter

systems, namely GS, MAS and LLQ, which are quite popular for paper recommendation

are further used in this section as competing systems to FeRoSA for flat recommendation.

The reason behind taking more recommendations from FeRoSA in the ground-truth dataset

9
http://scholar.google.co.in

10
http://academic.research.microsoft.com/

http://scholar.google.co.in
http://academic.research.microsoft.com/
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is that we intended to evaluate other two proposed faceted baseline systems using this an-

notation, each of which might not cover six recommendations if we would have taken less.

The experts were provided with web based interfaces11, in which they were shown a query

paper and the 30 recommendations for each query paper (the name of the systems remained

anonymous). Each expert had to mark whether each recommended paper was relevant to

the query paper, and if so, the possible facet(s).

Baseline systems: To the best of the authors’ knowledge, FeRoSA is the first and unique

faceted recommendation engine for scientific articles and hence no other systems are avail-

able, which can be considered as a baseline. We, therefore, design two competitive baseline

systems to compare with FeRoSA.

(i) VanillaPR: For each query paper we form a single induced subgraph G′(V ′, E ′) which

is exactly same as that of FeRoSA ignoring the facet labeling. Once the graph is formed,

we perform RWR with query paper as the restart node. We then retrieve the nodes having

the highest values from RWR. Finally, to label the retrieved documents with facets, we

train a supervised model using the ground-truth data we collected in the previous section.

The main motivation was that since the section heading is quite correlated with the facet

of the paper, this information can be used for labeling a recommended paper with the

possible facet. Based on this idea, we use the following three types of features to train

the supervised model. For each pair of the query and the recommended paper, we use a

total of 12 (4 Boolean + 8 real valued) features as follows: (i) section of the recommended

paper, if it appears in one hop distance of the query paper (4 Boolean features, one for

each section), (ii) within the vertex set V ′ for the query paper, fractional number of times

a particular recommended paper appears in a given section (4 real-valued features, one for

each section), and (iii) for a given recommended paper, fraction of times it is cited in a given

section by any paper in the whole dataset (4 real-valued features, one for each section). We

then learn the weights for features with a rankSVM model [129]. We report the average

precision of the system after performing a three fold cross-validation (20 instances for

training and 10 for testing for each iteration) over the ground truth data.

(ii) FeRoSA-CS: Our second baseline recommends papers by relying only on RWR, per-

formed on subgraphs of papers within 2-hop distance from the query paper, without con-

11
http://www.ferosa.org/evaluation/

http://www.ferosa.org/evaluation/
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sidering the content-similarity (CS) based papers. This in turn answers the necessity of

considering cosine-similarity based papers while constructing the initial pool.

Figure 6.11: (a) Venn diagram of the recommended papers in four facets; (b) distribution
of papers which are tagged by all four facets.

Comparative analysis: We conduct an empirical study on the results obtained from

FeRoSA. Figure 6.11(a) represents a Venn diagram of all the recommended papers under

different facets, i.e., what all facets have a particular paper been recommended under

various different queries. For example, 3.54% of the recommended papers appear only as

BG to any of the query paper. We observe that 58.48% of the recommended papers appear

under all the 4 facets for various queries. For these papers, we further show in Figure

6.11(b) their distribution in different facets, which seems to be fairly uniform.

Table 6.10: Faceted evaluation of all the competing faceted recommendation systems. For
VanillaPR, the performance is reported by performing 3-fold cross validation.

Facets VanillaPR FeRoSA-CS FeRoSA
BG 0.65 0.51 0.79
AA 0.48 0.34 0.56
MD 0.62 0.39 0.62
CM 0.44 0.38 0.62

Average 0.55 0.40 0.65

We report in Table 6.10 the average precision of all the systems for different facets.

We observe that FeRoSA attains the highest average precision (0.65) amongst all other

systems, which is 18% higher than VanillaPR and 62.5% higher than FeRoSA-CS. The
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Table 6.11: Confusion matrix for the faceted evaluation (FPR: false positive rate). For
VanillaPR, we report the confusion matrix for that run where maximum average precision
for all the facets is achieved.

(a) VanillaPR

Facets AA BG CM MD FPR
AA 41 6 12 4 0.08

BG 13 87 11 17 0.09

CM 7 9 17 13 0.06

MD 11 6 7 32 0.05

(b) FeRoSA-CS

Facets AA BG CM MD FPR
AA 23 14 9 17 0.09

BG 18 69 13 28 0.14

CM 13 8 18 7 0.06

MD 11 14 5 26 0.05

(c) FeRoSA

Facets AA BG CM MD FPR
AA 33 11 6 13 0.07

BG 14 99 5 10 0.07

CM 2 6 28 10 0.04

MD 3 7 12 34 0.04

maximum precision of FeRoSA is obtained for the BG tag (0.79), which is followed by

MD (0.62), CM (0.62), and AA (0.56). The pattern is also similar for FeRoSA-CS. For the

case of MD, however, we observe similar performance for VanillaPR and FeRoSA.

For further analysis, we present the confusion matrix for the facets in Table 6.11 along with

the false positive rate for each system. The false positive rates are quite low for the facets

(i.e., the specificity values of the facets are quite high). To understand the reason behind

the misclassification, we unfold the tagged citation network once again and observe that

it arises due to the frequent occurrences of a single edge being tagged by multiple facets.

For instance, Table 6.11 shows that AA is mostly misclassified to MD for FeRoSA. In the

tagged citation network, we observe the same phenomenon that among the multi-faceted

edges with AA tag, around 50% of edges are tagged by both AA and MD (similarly for

CM and MD with 36.6% of occurrences together).

Mass-scale evaluation: To broaden the evaluation of FeRoSA, we perform a mass-scale

evaluation, aiming for more coverage on the system output and targeting a wider set of

evaluators. All the selected evaluators had a good knowledge of the NLP domain. This

time we reverse engineer the process by selecting few papers from the ground-truth data,

each of which appear in the recommendation of multiple query papers. To start with, we

shortlisted a collection of 31 such recommended papers. For each recommended paper,

we enlisted the set of query papers (and the facets) in which the recommended paper has

appeared12. The evaluators then evaluated the relevance of the recommended paper, as

well as the relevance of the facet with respect to each query paper in which the given

recommended paper has appeared. A total of 26 experts participated in this evaluation

task. Table 6.12 provides details about the experiment conducted. For each recommended

12
This indeed reduced the evaluators’ effort of reading multiple papers.
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paper, we calculate the faceted precision for all its corresponding query papers and show

the results in Table 6.13(a). Similarly, we calculate the average faceted precision for all

query papers and report it in Table 6.13(b). We observe that for both the cases, FeRoSA

significantly outperforms other baselines.

To validate our hypothesis, that the facet of a recommended paper can vary from one

query paper to other query paper, we categorize our set of 31 recommended papers into

two sets. We call the first set as ‘steady facets’, where each recommended paper appears

in a particular facet for more than 75% of the time. Other papers fall in the set ‘changing

facets’. We observe that the average facet-wise precision is 0.75 and 0.64 for steady facets

and changing facets respectively.

Table 6.12: Statistics of the mass-scale evaluation.
Number of experts 26

Number of recommended papers evaluated 31

Average number of query papers for each recommended paper 23.32

Total number of query-recommendation pairs evaluated 723

Table 6.13: Facet-wise precision for (a) recommended paper to query paper and (b) query
paper to recommended paper.

(a)

Facets Vanilla FeRoSA FeRoSA
PR -CS

BG 0.57 0.70 0.73
AA 0.43 0.41 0.53
CM 0.37 0.59 0.64
MD 0.58 0.55 0.69
Avg. 0.49 0.56 0.64

(b)

Facets Vanilla FeRoSA FeRoSA
PR -CS

BG 0.66 0.82 0.85
AA 0.45 0.48 0.54
CM 0.42 0.54 0.73
MD 0.51 0.68 0.77
Avg. 0.51 0.63 0.72

We are further interested to observe whether our system performs better for the highly-cited

query papers, or whether the same accuracy is achieved for all citation ranges of the query

papers. Generally, a standard recommendation system should perform equally well for all

ranges of query papers. Here we divide the entire range of incoming citations of the query

paper into three buckets and measure the faceted precision of all the competing systems for

each bucket separately. In Table 6.14, we see that FeRoSA performs significantly better

than the other baseline systems even for low-cited query papers.

Evaluation by the authors: There is no better alternative than the authors themselves
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Table 6.14: Performance of three competing faceted systems for different query papers
divided into three citation ranges (Low: 0 to 6, Medium: 7 to 28, High: 29 to 343).

Facets
VanillaPR FeRoSA-CS FeROSA

Low Medium High Low Medium High Low Medium High

BG 0.53 0.73 0.71 0.44 0.54 0.55 0.65 0.84 0.87

AA 0.41 0.52 0.49 0.28 0.35 0.41 0.53 0.56 0.61

MD 0.57 0.59 0.71 0.40 0.34 0.44 0.65 0.55 0.67

CM 0.29 0.55 0.48 0.33 0.39 0.41 0.56 0.62 0.69

Avg. 0.45 0.59 0.59 0.36 0.40 0.45 0.59 0.64 0.71

when it comes to evaluating the recommendation for a particular paper. We were curious to

know whether FeRoSA could impress the authors with its recommendations. We designed

the judgment experiment by selecting a set of 30 authors and we sent each of them, a

judgment form, where we specified one of his/her papers as query paper, and one (top)

recommendation from FeRoSA for each facet. The author had to make a binary judgment

about the relevance of recommendation to the query as well as the relevance of the facet

for the recommendation separately. We obtain an average faceted precision of 0.50 (BG:

0.49, AA: 0.42, MD: 0.52, CM: 0.59). In 75% cases the recommended papers are marked

as relevant. Four authors marked three out of four faceted recommendations as relevant.

Overall, the authors appreciated the attempt of designing a faceted recommendation system

for scientific articles.

Evaluation of flat recommendation:

We further posit that FeRoSA can also be used as a flat recommendation system if the

rank lists obtained from the different facets and the cosine-similarity based ranking can be

appropriately combined. Therefore, we use the rank-aggregation method in order to obtain

a flat recommended list. In this section, we discuss the performance of the flat version of

FeRoSA (f-FeRoSA) and compare it with three state-of-the-art flat baseline systems.

Baseline systems: we consider three flat baseline systems: Google Scholar (GS),

Microsoft Academic Search (MAS) and a graph based paper recommendation system

proposed by Liang et al. [135] (we call it LLQ from the initials of the three authors of
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the paper). We consider LLQ as a baseline system because similar to our approach, it

also classifies citation relations into three categories, namely Based-on, Comparable and

General using the approach proposed in [153], and these categories are further used to

compute a final combined score. Note that while GS and MAS are mostly known for

searching scientific papers, an inherent nature of ranking of the retrieved results has lead

us in using them as potential baseline systems.

Table 6.15: (a) Flat evaluation of the competing systems; (b) overall precision of
f-FeRoSA at different number of recommendations.

(a)

Systems OI@3 OP@3
GS 0.27 0.61

MAS 0.17 0.45

LLQ 0.13 0.41

f-FeRoSA 0.43 0.79

(b)

OP f-FeRoSA
OP@3 0.79

OP@5 0.78

OP@10 0.71

Comparative analysis: We perform a broad analysis of the performance of all the com-

peting methods. Table 6.15(a) reports the values of individual metrics mentioned earlier,

averaged over all the judgments conducted by the experts. For top 3 recommendations

per system, f-FeRoSA achieves OP of 0.79 which is 29% higher than GS, 75% higher

than MAS, and 62% higher than LLQ. One can also notice that for 43% of the cases,

f-FeRoSA fares better than all other systems in terms of overall impression. Clearly,

f-FeRoSA is preferred nearly twice more than Google Scholar, which is the second best

performing system. This indeed shows that f-FeRoSA outperforms the state-of-the-art

recommendation systems by a reasonable margin. We also see in Table 6.15(b) that

f-FeRoSA is quite consistent in recommending highly relevant papers within top rank list.

Detailed analysis of system performance: Here, we conduct a detailed analysis of the

results obtained from the baseline systems and f-FeRoSA. In particular, we intend to

measure the performance of the systems for parameters such as hop distance, incoming

citations of the query paper etc. Note that for better comparison, we divide the entire range

of parameter values obtained from our system into three buckets such that all the buckets

contain nearly equal number of elements, except few cases such as hop distance and age

difference of query and recommended papers where we instead use the actual number of

papers falling in a certain range. Note that the analysis is performed for those query papers
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Table 6.16: Comparative evaluation based on Overall Precision (OP) of the baseline
systems and f-FeRoSA for different parameters (Pq: query paper, Pr: recommended paper,
Yx: year of publication of paper x). The range of each bucket is shown in the column
heading. The fraction of papers for each bucket is also mentioned within parenthesis in
each cell of the table.

Systems
Hop distance Age difference (YPq − YPr) Incoming citations of Pq

1-hop 2-hop >2-hop
Newer

(-5 to -15)

Same Time

(-4 to 3)

Older

(4 to 20)

Low

(0 to 6)

Medium

(7 to 28)

High

(29 to 343)

f-FeRoSA 0.81 (0.35) 0.79(0.34) 0.76 (0.31) 0.86 (0.33) 0.77 (0.35) 0.71 (0.32) 0.79 (0.40) 0.71 (0.30) 0.88 (0.30)

GS 0.57 (0.32) 0.52 (0.40) 0.71 (0.28) 0.52 (0.30) 0.72 (0.41) 0.61 (0.29) 0.51 (0.40) 0.58 (0.30) 0.68 (0.30)

MAS 0.43 (0.37) 0.38 (0.39) 0.62 (0.24) 0.57 (0.44) 0.62 (0.28) 0.65 (0.28) 0.41 (0.40) 0.46 (0.30) 0.52 (0.30)

LLQ 0.47 (0.34) 0.28 (0.35) 0.44 (0.32) 0.43 (0.25) 0.48 (0.28) 0.26 (0.47) 0.44 (0.40) 0.42 (0.30) 0.36 (0.30)

along with their recommendations, which were annotated by the experts. Various ranges

might differ if this analysis is repeated for the whole dataset. We keep the ranges similar

for the baseline systems for fair comparison. We also report the fraction of papers, falling

under a particular range for a competing system.

Hop distance: Here, we intend to measure the effectiveness of the recommended papers

for each hop distance. For this, we calculate the OP of recommended papers at each hop

(i.e., among the recommended papers that fall in i-hop distance, what fraction is marked as

relevant by the experts, where i ∈ {1, 2, > 2}). Table 6.16 shows that all the systems except

LLQ attain the maximum accuracy for recommendations at a distance larger than 2-hops.

Therefore, recommending only the 1-hop papers may not be ideal in terms of precision of

the system for f-FeRoSA, GS and MAS. Note that the fraction of recommendations from

different hops seems to be almost similar for all the competing systems with the papers in

2-hop being recommended the most. f-FeRoSA, however, maintains a reasonable balance

and outperforms the competing systems for all the hop distances.

Age difference between query (Pq) and recommended (Pr) papers (i.e., YPq − YPr): A

crucial factor for the competing systems is the age difference of the query and the recom-

mended papers. We measure whether the older recommended papers relative to the query

paper (denoted by positive value of YPq − YPr) achieve higher accuracy as compared to

the recent papers published after the query paper (denoted by negative value of YPq − YPr)
in the relevance judgment. We again divide the entire data into three buckets, and Table

6.16 shows that f-FeRoSA outperforms other baseline systems for all the buckets attaining
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a maximum accuracy when the recommended papers are newer than the query papers. GS

achieves the highest accuracy in the middle bucket, which is the same as f-FeRoSA. While

GS tends to recommend papers more from the same time as the query paper, MAS rec-

ommends mostly the newer papers. f-FeRoSA maintains a nice balance by recommending

papers from all the three ranges.

Incoming citations of query paper Pq: Here we divide the entire range of incoming

citations of the query paper into three buckets and measure the accuracy in each bucket

separately. Note that since the query papers used in evaluation are same for the all the

systems, the fraction of papers in each bucket is also the same for all the systems. We

notice in Table 6.16 that f-FeRoSA achieves maximum accuracy for the papers with high

citation. Interestingly, f-FeRoSA outperforms all the baseline systems by a huge margin,

for the query papers with low citations and high citations. This feature is very critical

because while it is easier to obtain a good evidence for the highly cited paper, it is much

more difficult to find relevant papers for the not-so-highly cited query papers.

6.5 Diversified Citation Recommendation System

Finding relevant scholarly articles from the literature for a given topic is an important

task for several scientific activities. This may be required, for example, to understand the

current state-of-art in the topic, or to provide the citations while writing a research article.

With more than one hundred thousand new papers published each year, performing a

complete literature survey to find relevant articles has become a difficult task for research

community. Researchers typically rely on manual methods such as keyword-based search

via web search engines, reading proceedings of conferences, and browsing publication

lists of known experts in the respective fields. These techniques are laborious as well as

time-consuming, and they allow to reach only a limited set of articles in a reasonable time.

For these reasons, there has been a significant effort from research community to develop

automatic recommendation systems that help researchers to find relevant articles [97, 98].

While there is a significant body of work on the design of citation recommendation

systems, the state-of-the-art on this problem suffers with the following three limitations.
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First, some of the existing citation recommendation systems require the entire article [98]

Further, some other existing methods [97] need the citation context as input to suggest the

appropriate references for the given article. This implies the assumption that the person

conducting the search is confident of the novelty of contributions in the article (which

is why he/she chooses to invest sufficient time to create the article). This reduces the

usefulness of such citation recommendation systems to only as a refinement tool, and not

a tool which can potentially be used at the beginning of the acedamic research. Third, one

of the problems in the keyword based citation recommendation is that the search results

typically would not include the semantically correlated articles if these articles do not use

exactly the same keywords.

6.5.1 Proposed Ranking Method: DiSCern

Our proposed model primarily builds on a time-variant random walk process, known

as the vertex-reinforced random walk (VRRW) [175], which contrary to the general

PageRank algorithm, takes into account both prestige and diversity in order to rank the

vertices in a network. Here we first describe the key ingredients of our proposed citation

recommendation system and then we present the algorithms.

Citation Network Construction: Since our method is primarily based on a network, we

construct a paper-paper citation network as follows. A citation network is defined as a

graph G =< V,E > where each node vi ∈ V represents a paper and a directed edge eji
pointing from vj to vi indicates that the paper representing vj cites the paper representing

vi in its references. We also add a self-link to each node.

Keyword Network Construction: Since the preliminary idea of our system is to rec-

ommend diversified citations for a particular search query, we intend to expand the input

query to obtain a set of similar keywords that can cover different semantics of the query.

For this, we use the keyword meta data available with the articles. We then construct

the keyword-keyword graph as follows: We construct the keyword-keyword graph as an

undirected and weighted graph Gk(Vk, Ek) where each node in Vk represents a keyword

and two nodes vki and vkj (vki , v
k
j ∈ Vk) are connected by an edge ekij (∈ Ek) if there is at

least one article that contains both the keywords corresponding to these two vertices. The
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weight wki,j associated with an edge ekij is determined by the number of articles where both

the keywords corresponding to vki and vkj appear.

Query Expansion by Clustering Keywords: Our next task is to cluster similar keywords

from the topological structure of the keyword-keyword network. We utilize Louvain [27],

a well known state-of-the-art algorithm to find communities in the keyword-keyword

graph. Now given an input query, the system first identifies the community membership of

this query and then all the constituent keywords present in that community are fetched for

the next step of the framework. We refer to the query expansion step as QExpn.

Retrieving Diverse and Relevant Citations: After expanding the given input query, we

obtain a expanded query containing a set of similar keywords using QExpn described

as above. Then the articles corresponding to the expanded query are collected to further

determine an induced subgraph from the original citation network. We now run DiSCern

on this induced subgraph to come up with the citation recommendations. We refer to

this as LocDiSCern since we use DiSCern along with QExpn. Note that, LocDiSCern is

convenient enough to accept multiple query keywords as well. In that case, we map each

of the input query keyword to its corresponding community in the keyword-keyword graph

and collect the articles of all the mapped communities, which in turn form the expanded

query of the keywords.

Note that one might argue on the use of the keyword expansion step in LocDiSCern.

However, we can also run DiSCern directly on the entire citation network by omitting

the QExpn step. We refer to this as GloDiSCern. Other alternatives can also be possible

wherein DiSCern is applied on the entire graph first, followed by QExpn and then the

top K results can be returned. We have also attempted this approach, but did not get

significantly good results.

6.5.2 Experimental Results

We use two datasets: computer science publication dataset (see Section 5.2) and theoretical

high-energy physics dataset13. As mentioned earlier in Section 6.5.1, a natural competitor

13http://www.cs.cornell.edu/projects/kddcup/datasets.html

http://www.cs.cornell.edu/projects/kddcup/datasets.html
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Figure 6.12: Comparison of network-based ranking algorithms in recommending citations
for relevance measures: MAP, recall and co-cited probability for computer science (top
panel: (a) – (c)) and high-energy physics (bottom panel: (d) – (f)) datasets.

for DiSCern is PageRank. Other baseline algorithms include LocPageRank (local PageR-

ank), GloPageRank (global PageRank) and GloDiSCern. For evaluating our system, we

manually collected a set of survey papers from both the datasets. We searched for the

keywords such as “literature”, “survey”, “review” in the title of the papers. Now for each

paper in the gold-standard, we know the references that the current paper has cited. We

assume that these references are diverse and serve as the gold-standard in our experiment.

We evaluate the quality of the citation recommendations suggested by both the proposed

and the baseline algorithms with a number of measures [116]: Relevancy measures:
Recall (R@K), Mean Average Precision (MAP@K) and co-cited probability (CP@K);

Diversity measures: l-hop graph density (denl@K) and l-expansion ratio (σl(S)); Other
measures: average publication year (T@K) and difference ratio (DR@K).

In Figure 6.12(a) and Figure 6.12(d), we observe that both LocDiSCern and LocPageRank

outperform GloDiSCern and GloPageRank with respect to theMAP@K measure. Further,

the performance of LocDiSCern is more about 40% than that of LocPageRank for both the

datasets. We also notice that the performance GloPageRank seems to be the lowest among

the four algorithms. In Figure 6.12(b) and Figure 6.12(e), we plot the value of recall for the

four algorithms on computer science and physics datasets respectively. The observation is

quite similar to that of Figure 6.12(a) and Figure 6.12(d). Surprisingly, we notice that the

plots of recall for LocDiSCern and LocPageRank almost behave like a step-function for
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Figure 6.13: Comparison of network-based ranking algorithms in recommending citations
for different diversity (l-hop graph density, l-expansion ratio) and other (average publica-
tion year, standard deviation (SD) of the publication year and the differences ratio) mea-
sures for computer science (top panel: (a) – (e)) and high-energy physics (bottom panel: (f)
– (j)) datasets. In frames (e) and (j), the differences of all the other systems are measured
with respect to the LocDiSCern; therefore, no line for LocDiSCern appears in that panel.

the computer science dataset. It essentially indicates that for a set of values within a certain

range of K, each of them performs nearly similar. After a certain point of time, the recall

value tends to increase suddenly. However, this behavior is not observed for GloDiSCern

and GloPageRank. In Figure 6.12(c) and Figure 6.12(f), the value of co-cited probability

is plotted for the four algorithms on both the datasets. Here again, the overall observation

is similar to the earlier two scenarios. We observe that the pattern of CP tends to decrease

with the increase of K. It essentially indicates that even if the recommended candidates do

not appear in the gold-standard dataset, they seem to be quite relevant to the input query

since there exist a significant amount of papers that cite both these (recommended and gold-

standard papers) simultaneously. This indeed corroborates our earlier hypothesis that our

system can also recommend better citations that might not appear in the gold-standard set.

In Figures 6.13 (a)-(b) and (f)-(g), we present the results using the two diversity measures.

In Figure 6.13(a) and Figure 6.13(f), we observe that both LocDiSCern and GloDiSCern

clearly outperform LocPageRank and GloPageRank. On similar lines, both LocDiSCern

and GloDiSCern significantly outperform their counterparts using the l-step expansion

ratio (see Figure 6.13(b) and Figure 6.13(g)), which is related to the coverage of the

network with the recommendations. Both LocPageRank and GloPageRank perform

convincingly worse with respect to these diversity metrics. In particular, the results

obtained from the LocPageRank and GloPageRank are more clustered in the network
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compared to that of LocDiSCern as well as GloDiSCern. In Figure 6.13(c) and Figure

6.13(h), we plot the average publication year of all the recommended candidates using

each of the four algorithms on two datasets respectively. Interestingly, we notice that our

proposed two DiSCern-based algorithms outperform the two baseline systems. It indicates

that the vertex-reinforced random walk based methods tend to recommend mostly the

recent papers as compared to the PageRank based methods. However, one might argue that

the higher value of publication year might not be a good indicator to judge the time span

covered by the recommended candidates. A superior citation recommendation system

should recommend citations that covers a large time span, i.e., the standard deviation of

the publication years of the recommended papers should be higher. In Figure 6.13(d) and

Figure 6.13(i), we plot the standard deviation of the publication years of recommended

papers for the four algorithms on two datasets. Here also, we observe that our approach

outperforms the baselines. Therefore, we conclude that vertex-reinforced random walk

based algorithms not only recommend high quality citations based on relevancy, but also

they tend to recommend both older and recent citations. In Figure 6.13(e) and Figure

6.13(j), we measure the differences of the outputs obtained using the remaining three

algorithms with respect to LocDiSCern. As expected, we observe that the difference is

most prominent for the results obtained from GloPageRank. However, we also notice that

the patterns for GloDiSCern and LocPageRank in computer science dataset are similar –

an initial increase is followed by a decrease (hyperbolic shape). The reason could be that

there might exist a critical value of K after which these systems tend to return almost same

set of results. A good recommendation system should adopt this critical K value while

recommending results for different queries. In physics dataset, the pattern is similar for

GloDiSCern and LocPageRank; however it decreases exponentially with the increase ofK.

6.6 Summary of this Chapter

In this chapter, we utilize the citation network and the community structure together to

build real applications. The contributions of this chapter are as follows.

• The categorization of citation profiles offers a necessary first step towards reformu-
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lating the existing quantifiers available in Scientometrics (e.g., impact factor) that

should leverage on the different categories of citation patterns in order to enhance

their meaningfulness.

• We further use the category information in a prediction system where the training

samples are stratified to enhance the accuracy of the predictions.

• We also perform a semantic stratification of the data that further helps us designing

FeRoSA which outperforms the baselines in both faceted and flat recommendations.

• Finally, we develop DiSCern, a novel framework that balances prestige and diversity

in the task of citation recommendation. The model is tested on a large publication

dataset of computer science domain and a dataset of physics domain. The experi-

mental results show that our proposed approach is quite efficient and it outperforms

the state-of-the-art algorithms in terms of both relevance and diversity.
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Chapter 7

Conclusion and Future Work

In this chapter we elaborate important contributions from this thesis and finally wrap up this

thesis by pointing to some future research directions that have been opened by this thesis.

7.1 Summary of Contributions

Community analysis of a network has remained in constant focus among the researchers

since last one and half decades. Most of the work tried to design algorithms for community

detection. In this thesis, the major focus has been to interpret the notion of belongingness

of a node within a community, which has often been ignored due to the assumption that

nodes have an equal extent of belongingness within a community. To explore this point, we

have started our investigation to observe the variability of a community detection algorithm

in producing output for a certain network. Then we have proposed different metrics to mea-

sure the extent to which a vertex belongs to a (non-overlapping or overlapping) community.

Next, we have developed algorithms to detect communities from the networks. Following

this, we have exhaustively studied the real-world community structure of a large citation

network. Finally, we use the community information further to design two applications. In

the following, we summarize the contributions for each problem separately.
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7.1.1 Constant Communities in Networks

Constant communities are regions of the network whose community structure is invariant

under different perturbations and for community detection algorithms. They, thereby, rep-

resent the similar relationships in the network. The existence of multiple results for com-

munity detection is well known; however, this is one of the first studies of the invariant sub-

graphs that occur in a network. The contributions of this work are summarized as follows.

• First, we observe that constant communities do not always have more internal

connections than external connections. Rather, the strength of the community is

determined by the number of different external communities to which it is connected.

We propose a metric to quantify the pull that a vertex experiences from the external

communities, and the relative permanence of the said vertex indicates its inertia to

stay in its own community.

• Second, in most networks, constant communities cover only a subset of the vertices.

Depending on the size of the constant communities it may not be correct or necessary

to assign every vertex to a community, as is the focus of most community detection

algorithms. Furthermore, when we insist on assigning a vertex to a community, the

constant communities can be leveraged to produce results with higher modularity

and lower variance.

• Third, the high functional cohesion among the vertices of the constant community

can render meaning to the community structure of the networks. This conclusion

is much more apparent for labeled graphs where the vertices are associated with

certain functional properties. If we stop at detecting only the constant communities

and treat them as the actual community structure of the graph, we observe that

sometimes they act as a hard bound since no further community detection might be

possible. Therefore, we suggest that the prior detection of these building blocks is

always significant in order to decide how to merge them into more coarse-grained

communities pertaining to a diluted functional cohesion.

• The fourth and most important observation is that not all networks have significant

constant community structure. Two such examples in our test suites are Power and
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Email graphs. The absence of constant communities in the networks indicates that

either communities in general do not exist (such as Power network) or they are

highly overlapped and therefore do not have a significant constant region. A set of

professional emails within correspondents in the same university is likely to have

more overlaps than clear cut communities.

• Finally, we demonstrate evidence that the modularity measure is not enough to

judge the inherent compartmental structure of a network. For instance, Email

and Power networks have reasonably higher modularity values compared to the

others. Still, no consensus is observed in their community structures. Rather

their sensitivity measures indicate that each node might separate out as individual

constant community in the further iterations. Therefore, the goodness metric of the

community detection algorithm should be redefined in a way that can effectively

capture the modular structure of the network.

7.1.2 Permanence and Network Communities

In this chapter, we introduce two vertex-based metrics, permanence (Perm) and overlap-

ping permanence (OPerm) for evaluating the goodness of communities in networks. From

our experiments we observe that the scores of these metrics have a good correlation with

the quality of the ground-truth communities. In addition, these two metrics also provide

some significant advantages compared to other popular community scoring functions. We

summarize the contributions of this chapter as follows.

• The values of Perm and OPerm strongly correlate to the community like structure

of the network. Therefore, these metrics can also be used to identify whether the

network is at all suitable for community detection.

• We believe that the advantages of the proposed metrics arise because these are local

vertex-based metrics as opposed to the more common global/mesoscopic metrics.

At the same time, these metrics also derive the benefits of a global metric to a

certain extent by looking into the exact community assignments of the external

neighbors of the vertex considered. Perfectly global metrics tend to aggregate the
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effect of the connections of all the vertices in a community, which can lead to a

loss of information, particularly if the distribution of the connections is skewed. A

vertex-based metric is more fine-grained, and therefore allows partial estimation of

communities in a network whose entire structure is not known.

• The algorithms, named MaxPerm and MaxOperm are able to detect meaningful

communities from both synthetic and real-world networks. Moreover, these are

highly resilient to the problems, such as resolution limit, degeneracy of solutions

that are often observed in most of the state-of-the-art algorithms.

• Finally, for the first time the community assignment of a vertex has been studied in

such finer details by checking the community assignment of each individual vertex

in a network. This in turn establishes more strongly the correctness of the algorithm

in finding the modular structure of a network.

7.1.3 Analyzing Ground-truth Communities

In this chapter, we analyze the communities (research areas) of a large scale citation

network. The ground-truth labeling has allowed us to study rise and fall of scientific

research in computer science domain over the last 50 years. Next, we study the interdisci-

plinary activities in computer science domain and unfold the evolution dynamics of core

and interdisciplinary fields. Finally, we study the research field adaptation process of a

researcher in her research career and develop a stochastic model to mimic this real-world

phenomenon. In summary, this chapter shows that the usual consensus on the fact that

suggesting an efficient community detection technique usually marks the “endpoint” in

research in this area might not be true; in contrast, it possibly triggers the beginning of a

new dimension of research, whereby, the temporal interaction, influence, shape and size of

the communities so obtained can be suitably analyzed thus allowing for newer insights into

the complex system under investigation. The contributions of this chapter are as follows:

• We provide a large scale real-world network with the labeled ground-truth commu-

nity structure. We believe this dataset would help in the evaluation of various future

community detection algorithms.
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• The longitudinal analysis of the community interactions has revealed a complete

picture of the paradigm shift in computer science domain. We also draw a correlation

of this shift with the NSF funding statistics.

• We propose a bunch of metrics to measure the interdisciplinarity of the research

fields. Few fields such as Data Mining, WWW, Natural Language Processing, Com-

putational Biology, Computer Vision, Computer Education provide clear indications

of interdisciplinarity in terms of all the metrics proposed here. These metrics further

allow us to develop a classification model to identify core and interdisciplinary fields

of a particular domain.

• The core-periphery organization of citation network reveals that the interdisciplinary

fields are accelerating steadily toward the core of computer science domain.

• We explain the field adaptation process of a researcher through a dynamic model.

We notice that the highly-cited researchers typically follow “scatter-gather” process

by working on diverse fields throughout the entire career, while remaining focused

on a single field in each time period.

7.1.4 Community-based Applications

In this chapter, we design two applications pertaining to the citation networks by leveraging

the community information of the network. First, we analyze various citation profiles of

scientific articles after publications and categorize them into six classes. We exhaustively

study these categories separately and design a growth model to substantiate these categories

in the real citation network. Then we leverage this information to develop a stratified learn-

ing framework that can predict the number of citations that an article would receive after

certain years from its publication. Finally, we design a faceted recommendation system for

scientific articles (FeRoSA) that in addition to recommending the relevant scientific papers

for a given query paper, would provide the information as to how these recommended

papers are related to the query paper. The contributions of this chapter are as follows:

• The categorization of scientific citation profiles provides a set of new approaches
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to characterize each individual category as well as to study the dynamics of their

evolution over time.

• The category information is proved to be remarkably useful in predicting future

citation counts within a stratified learning model where we first divide the training

samples into different strata and systematically use these strata for predicting future

citation count of an article.

• We introduce a bunch of features in the task of future citation prediction. We observe

that author-centric features are the most distinguishing ones; among these, average

productivity of authors seems to make a paper attractive.

• We further show that adding the citation counts accumulated within the first year

after publication as a feature can improve the prediction accuracy.

• The idea of stratification is also used in the task of designing faceted recom-

mendation system where we divide the dataset into four facets and conduct the

random walks with restarts separately for the different facets. To the best of our

knowledge this is the first recommendation system for scientific papers where the

recommendations are further divided into different facets depending of the semantic

relation to the query paper.

• FeRoSA achieves a reasonably high precision for the query papers with low citations

and low cosine similarity, thus indicating the robustness of the proposed framework.

• FeRoSA is designed to be lightweight, so that it can easily be deployed as an online

system.

7.2 Future Direction

In this section, we discuss several new avenues of research that have been opened up by

this thesis.
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7.2.1 Constant Communities in Networks

Future directions of this works are mentioned as follows:

• Most of the experiments conducted in this chapter focused solely on agglomerative

modularity maximization methods. We plan to continue our studies on the effect

of vertex perturbations on other types of community detection algorithms such as

divisive and spectral methods as well as different optimization objectives.

• It is important to understand how the randomness of a network in the community

assignment could be quantified in order to develop algorithms that take into account

the variation in randomness for determining the quality of the communities.

• Most importantly, we would like to develop an automated algorithm that can detect

such constant communities from a network.

7.2.2 Permanence and Network Communities

From this chapter, several interesting extensions are possible.

• Since Perm and OPerm are vertex-centric metric, we plan to use these metrics for

large networks whose complete information is missing. In this direction, we would

also like to detect meaningful communities from noisy incomplete networks.

• We plan to extend these metrics for dynamic and weighted networks. We believe that

this metric will help in formulating a strong theoretical foundation for identifying

community structures where the ground-truth is not known.

• We showed that the layered structure of a community is nicely revealed through

the value of OPerm. Moreover, these values provide a ranking of vertices within

a community, which can be leveraged in different applications, such as initiator

selection during message spreading. Therefore, another direction of research could

be to have a deeper understanding of this layered structure and to apply the proposed

metrics in several other applications.
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7.2.3 Analyzing Ground-truth Communities

The interesting future research agenda that can be enumerated from this chapter are as

follows.

• The present empirical study marks the foundation for the design and implementation

of a specialized recommendation engine that would be capable of answering search

queries pertaining to the (a) impact of papers/authors, (b) field at the forefront

(currently and in the near future), (c) seminal papers within a field and many such

other factors. These results can be useful for (i) the funding agencies to make

appropriate decisions as to how to distribute project funds, (ii) the universities in

their faculty recruitment procedure.

• To prove the robustness of the proposed metrics for measuring the interdisciplinarity

of a research field, we would like to apply the set of metrics to other domains such

as physics and biology.

• Finally, we would like to explain how the global dynamics of scientific paradigm

shift influences a researcher’s career and vice versa.

7.2.4 Community-based Applications

The possible future agenda that can be formulated from this chapter are as follows.

• The categorization of citation profiles offers a necessary first step towards reformu-

lating the existing quantifiers available in Scientometrics that should leverage the

signature of different citation patterns in order to formulate robust measures.

• We plan to extend our studies on the datasets of other domains such as physics and

biology to verify the universality of such categorizations.

• We are keen to understand the micro-level dynamics controlling the behavior of

PeakMul category which is significantly different from the others. In future, we
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would like to conduct a detailed analysis to understand different characteristic

features particularly for the PeakMul category.

• Regarding the task of future citation count prediction, we plan to extend this work

by looking into different research fields separately.

• We plan to further explore new features that can provide additional signals not

captured by the features used in this study. We suspect that the content features

seem to provide weak signals because of the coarse representation of the content in

terms of topic modeling. A more sophisticated and systematic mining of meaningful

features from the content is an immediate future task.

• We also intend to investigate whether similar techniques could be used to predict the

scholarly impact of higher level entities (e.g., researchers and universities).

• Regarding FeRoSA, we are interested in the design aspects related to the ergonomics

of the user interface so that it can significantly reduce user’s cognitive overload,

while providing high user satisfaction at the same time.

• In general, the framework used in FeRoSA can be used to provide faceted

recommendations for items such as movies, books, videos etc.
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