
ORIGINAL ARTICLE

An author is known by the context she keeps: significance
of network motifs in scientific collaborations

Tanmoy Chakraborty1 • Niloy Ganguly1 • Animesh Mukherjee1

Received: 31 December 2014 / Revised: 5 May 2015 / Accepted: 13 May 2015

� Springer-Verlag Wien 2015

Abstract Collaboration networks are elegant representa-

tions for studying the dynamical processes that shape the

scientific community. In this paper, we are particularly

interested in studying the local context of a node in col-

laboration network that can help explain the behavior of an

author as an individual within the group and a member

along with the group. The best representation of such local

contextual substructures in a collaboration network are

‘‘network motifs’’. In particular, we propose two funda-

mental goodness measures of such a group represented by a

motif—productivity and longevity. We observe that while

4-semi clique motif, quite strikingly, shows highest

longevity, the productivity of the 4-star and the 4-clique

motifs is the largest among all the motifs. Based on the

productivity distribution of the motifs, we propose a pre-

dictive model that successfully classifies the highly cited

authors from the rest. Further, we study the characteristic

features of motifs and show how they are related with the

two goodness measures. Building on these observations,

finally we propose two supervised classification models to

predict, early in a researcher’s career, how long the group

where she belongs to will persist (longevity) and how much

the group would be productive. Thus this empirical study

sets the foundation principles of a recommendation system

that would forecast how long lasting and productive a

given collaboration could be in future.

1 Introduction

Coauthorship of a paper can be thought of as the

documentation of a collaboration between two or more

authors, and these collaborations form a ‘‘collaboration

network’’ (a.k.a ‘‘coauthorship network’’) in which the

network nodes represent authors, and two authors are

connected by an edge if they have coauthored one or more

papers (Newman 2004). Nowadays, collaboration among

researchers has been increasingly popular through

‘‘knowledge sharing’’ and cross-hybridization of multiple

ideas (Huang et al. 2008). The fine-grained assessment of

collaboration network can lead to identifying local con-

nectivity pattern of individuals to describe the network

context to which they belong to (i.e., the local neighbor-

hood of which the node under observation is a part of). One

can use the idea of such local context of nodes as a means

of exploring the entire collaboration network, since these

local substructures not only describe the dynamics of col-

laboration patterns of an author over her entire research

career but also provide a mesoscopic view at the interme-

diate scale between the whole network and the individual

node. The significance of contextual information around a

node has been successfully proved in understanding human

languages (Dascal 1989), biological functional units (Prill

et al. 2005) and topological structure of large complex

systems (Hyun Yook et al. 2004). Here, for the first time,

we particularly investigate the network context around an

individual in a collaboration network as a combination of
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different ‘‘network motifs’’ (Alon 2007) which are con-

sidered to be small subgraphs with a specific interaction

pattern recurrently appearing in the network. For example,

Fig. 1 shows three typical connectivity patterns centered

around Mark Newman,1 a renowned British physicist at the

University of Michigan. One can notice from the three

patterns (Fig. 1a–c) that even if Newman plays an impor-

tant role in each case, the overall impact of each of these

local groups (in terms of productivity as defined in Sect. 5)

varies significantly. This immediately indicates that there is

a latent microdynamics governing the formation of differ-

ent local substructures that need to be investigated to un-

derstand the actual role of an individual within a team and

predict the fate of such groups in the future. In this re-

search, we are primarily interested in such contextual in-

formation (in terms of network motifs Milo et al. 2002)

around each individual node over different time periods

that indeed explains the dynamics behind the changes in

the collaboration profile.

We show how a systematic and rigorous analysis of such

contextual information in terms of motifs can lead us to

understand the micro-level behavior of authors (i) as an

individual within the group and (ii) as a member of the

collaboration, i.e., along with the group. Note that in the

second case, all individuals may not be connected with

each other, rather several combinations of a fixed set of

individuals with different connectivities may form distinct

group structures. While we address the first case briefly, the

second case forms the major agenda of our current work.

We observe that the motif-based study presented in this

paper is unique and remarkably unfolds certain individual

and group-level characteristics of the authors that are not

usually visible through direct statistical analysis. Note that

the present research is an extension of our earlier obser-

vation where we showed that different patterns of scientific

collaborations and can nicely be captured by network

motifs (Chakraborty et al. 2014). Here, our primary ob-

servation is that the local context (represented by network

motifs) of a node in a collaboration network can help ex-

plain the behavior of an author as an individual within the

group and a member along with the group.

The contributions of our work are manifold. We begin

by defining two fundamental goodness measures of a

group—productivity and longevity. A simple analysis of

these two metrics leads us to various interesting observa-

tions: (a) there are certain motif structures (e.g., 4-star,

4-clique) that have relatively higher productivity than the

rest of the lot and (b) the more dense a motif is the longer

does it last; the rate of new collaboration edges getting

included into such dense motifs gets slower over time. We

then investigate the behavior of an author within a group.

In particular, we show that simple contextual information

about the author allows us to nicely classify them in terms

of the number of citations they receive and this is true even

when there is an imbalance in the number of instances

present in the two classes. It is important to mention here

that such a motif-based study allows us to do the classifi-

cation of even the rare class with an accuracy of 87 %. In a

step further, these network contexts (motifs) in the col-

laboration network are assumed to be different represen-

tations of group collaborations. From this perspective, we

investigate certain characteristic features of motifs to ob-

serve precise correlation between productivity/longevity

and these features. The features that we considered are:

(i) how long does a particular motif pattern take to form

(construction time), (ii) the degree of heterogeneity of a

group in terms of the research experience of the constituent

researchers (experience diversity), (iii) the variation of

scientific impact of the constituent researchers (citation

variance) and (iv) the period of stability of a motif since its

formation (recency). We observe that while productivity is

not affected by (i), it is directly proportional to (iii) and (iv)

and is inversely proportional to (ii). On the other hand,

longevity is directly proportional to (i), inversely propor-

tional to (ii) and (iii) and is not affected by (iv). In addition,

we also investigate another important dynamical charac-

teristic of a motif—their time-transition behavior and the

correlation of the same with the gain in produc-

tivity/longevity. Here we observe that, in general, any

transition in the structure of the motif causes an increase in

the longevity, while a transition from any configuration to a

4-clique causes an increase in the productivity. As a final1 http://www-personal.umich.edu/*mejn/.

Fig. 1 (Color online) Three types of connectivity patters (motifs)

centered around Mark Newman (M). Here, Wav and Wt correspond to

the average productivity and the total productivity, respectively, as

described in Sect. 5. Note that these examples are directly taken from

our dataset
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objective, we develop two predictive models to suitably

identify and predict the longevity and the productivity of a

group (motif) based on the features discussed above. Both

the models show reasonably high accuracy in predicting

the longevity/productivity of a collaboration and the results

are remarkably good for the 4-clique (overall accuracy of

longevity prediction is 87 % and that of productivity pre-

diction is 95 % in this case). Finally, we conduct a shallow

level analysis of motif distribution in different fields of

research and observe two distinct patters emerging from

the distribution.

2 Related work

Research on collaboration network was started with the

pioneer work of Newman (2001). After that, a large

number of research works have been conducted on the

statistical analysis of collaboration network (Ding 2011;

Kronegger et al. 2012; Martinez-Romo et al. 2008; Said

et al. 2008) and modeling collaboration network through

simulations (Huang et al. 2008; Liu et al. 2012; Tambay-

ong 2007). Similarly, few related researches on col-

laboration network, namely developing author-ranking

scheme through ‘‘supportiveness’’ analysis (Han et al.

2009), ego-centric network analysis of collaboration net-

work (Abbasi et al. 2012), classifying personal names

through collaboration network (Biryukov 2008), discover-

ing the relationship between authors and research domains

(Hassan and Ichise 2009), understanding and modeling

diverse scientific careers of researchers (Chakraborty et al.

2015) etc. have been conducted. Recently, Pan and Sar-

amäki (2011) study the correlations between tie strengths

and topology in networks of scientific collaboration and

show that collaboration networks are very different from

ordinary social networks.

In parallel, a group of researchers are engaged in ex-

perimenting another direction of research on collaboration

network called ‘‘collaboration prediction’’. It includes

nonparametric random effects model (Yu et al. 2009),

maximum margin matrix factorization model (Rennie and

Srebro 2005), proximity-based approach (Liben-Nowell

and Kleinberg 2007), Supervised random work model

(Backstrom and Leskovec 2011), etc. Recently, Krumov

et al. (2011) conduct an experiment to demonstrate that

motifs in the collaboration network represent different

collaboration patterns and the success of individual authors

or publications depends unexpectedly strongly on these

intermediate scaled structures of collaboration networks.

Choobdar et al. (2012) propose a motif-based approach to

compare coauthorship networks across scientific fields.

Similarly, Wu et al. (2012) classify Wikipedia articles us-

ing network motif counts and ratios. Shi et al. (2008)

propose a scientific collaboration network evolution model

based on motif emergence. Baras and Hovareshti (2011)

develop a systems engineering-oriented approach to the

design of networks of mobile autonomous systems. Yeang

et al. (2012) modify and improve the method proposed by

Milo et al. (2002) to detect significantly enriched motifs in

both directed and undirected networks. They apply this

method on the datasets of 18 networks including coau-

thorship network and show that the presence and absence

of enriched motifs provide rich information regarding each

type of network relations. Wu et al. (2008) use motifs to

analyze the entire citation pattern of the journals indexed

by CSTPC from year 2003 to 2006 and develop trend on

journal networks. Lü and Zhou (2010) show that weak ties

play a more significant role than the strong ties in the

collaboration network using motif analysis.

To the best of our knowledge, this experiment is the first

attempt whether motifs in collaboration networks are ex-

tensively studied over the years and their utilities are fully

explored in different classification models. Moreover,

tracking the motif transition over successive time periods

not only explores different modes of individuals’ col-

laboration patterns, but also aids in the overall productivity

due to motif transition.

The rest of the paper is organized as follows. In Sect. 3,

we give a brief description of our dataset. Following this,

the technique to detect motifs is briefly narrated in Sect. 4.

Then we present a detailed description of two goodness

measures in Sect. 5. In Sect. 6, we study the author-level

analysis of motifs and the author classification model. A

detailed description of the set of features and their indi-

vidual correlations with two goodness measures are shown

in Sect. 7. Next in Sect. 8, we present two classification

models to study the motifs at group level. Following this,

an empirical correlation is drawn between two goodness

measures in Sect. 9. Then a field-level analysis of motifs is

shown in Sect. 10. Few real examples of productive motifs

curated from our dataset are presented in Sect. 11. Finally,

we conclude the paper with discussion and future work in

Sect. 13.

3 Dataset and network construction

We have used the dataset of the computer science domain

developed by Chakraborty et al. (2013). The dataset con-

tains the name of the research paper, index of the paper, its

author(s), the year of publication, the publication venue,

the citations of a given paper and (in some cases) the ab-

stract of the papers. The dataset is further distributed over

24 fields of the computer science domain (see Table 1).

To make the data suitable for our experiments, we ex-

tract only those entries which contain the information about

Soc. Netw. Anal. Min.  (2015) 5:16 Page 3 of 21  16 

123



the paper index, the title, author(s), the year of publication

and the citations. Some of the general information per-

taining to the filtered dataset of computer science are

presented in Table 2.

For the author name disambiguation, we use ‘‘Rank-

Match’’ algorithmproposed byLiu et al. (2013).2 There are a

couple of reasons behind adopting this algorithm. First of all,

it is a completely unsupervised approachwhich is required in

our study. In addition, the algorithm has been proved to be

effective for the same types of scientific dataset (Liu et al.

2013). The algorithm first assigns a unique index ID to all the

author names present in the dataset. Then it follows a two-

step strategy. (i) For each indexing author ID, it tries to pull

out all the authors whose author names are possible varia-

tions of the indexing author name. To come upwith the pool,

it takes into account a number of cases where names can

mutate or be disturbed. (ii) In the second step, it trims the

candidate pool based on authors’ publication features. Ex-

amples of publication features include co-authorship net-

work, publication venues, years, and title words. These

features turn out to be discriminative for identifying real

duplicates from the candidate pool. The number of authors

after author name disambiguation is shown in Table 2.

The next task is to construct the collaboration network

from the tagged dataset. Formally, a collaboration network is

defined as a graph G ¼ hV ;Ei; where each node vi 2 V

represents a researcher and an undirected edge eij between vi
and vj is drawn if the two researchers represented by vi and vj
collaborate at least once via publishing a paper. From the

above dataset, an overall collaboration network G has been

constructed with researchers representing nodes and undi-

rected edges representing collaborations between two re-

searchers. As a new researcher starts her research career, she

may enter or leave different collaborations. We track the

changes in collaborations for a particular researcher over her

entire research career. For this purpose, we analyze the

collaboration network Gi composed of all nodes and edges

between t0 and ti where t0 is the earliest year present in the

dataset. We call each such Gi a ‘‘snapshot’’ throughout the

rest of the paper. Thus, in each snapshot all the edges of a

collaboration since the beginning of the career of an author is

present; in other words, we do not consider the deletion of a

collaboration edge and if such an edge is ever established it

continues to be present in all the subsequentGis constructed.

Further note that, from our data it is possible to obtain a list of

characterizing features of an author node as well as a col-

laboration edge—the total number of citations received by

the authors, the year when an author makes her first/last

publication, the number of co-citations obtained by an author

pair and the year when an author pair makes their first/last

joint publication.

4 Motif detection in collaboration network

To detect the motif, we use the ‘‘FANMOD’’ proposed by

Wernicke and Rasche (2006) which is a tool for fast net-

work motif detection.3 It relies on recently developed al-

gorithms to improve the efficiency of network motif

Table 1 Percentage of papers

in various fields (with

abbreviations) of the computer

science domain

Fields % of papers Fields % of papers

Artificial intelligence (AI) 12.64 Algorithms and theory (ALGO) 9.89

Networking (NETW) 9.41 Databases (DB) 5.18

Distributed systems (DIST) 4.66 Hardware and architecture (ARCH) 6.31

Software engineering (SE) 6.26 Machine learning (ML) 5.00

Scientific computing (SC) 5.73 Bioinformatics (BIO) 2.02

Human computer interaction (HCI) 2.88 Multimedia (MUL) 3.27

Graphics (GRP) 2.20 Computer vision (CV) 2.59

Data mining (DM) 2.47 Programming language (PL) 2.64

Security (SEC) 2.25 Information retrieval (IR) 1.96

Natural language and speech (NLP) 5.91 World wide web (WWW) 1.34

Education (EDU) 1.45 Operating systems (OS) 0.90

Embedded systems (EMB) 1.98 Simulation (SIM) 1.04

2 The code is publicly available in https://github.com/remenberl/

KDDCup2013. 3 http://www.minet.uni-jena.de/*wernicke/motifs/.

Table 2 General information of the filtered dataset of computer

science domain

Number of valid indices of papers 702,973

Number of authors before author name disambiguation 501,425

Number of authors after author name disambiguation 495,311

Average number of papers by an author 3.52

Average number of authors per paper 2.609

Time interval of the used dataset 1980–2005
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detection by some orders of magnitude over existing tools

(Kashtan et al. 2004). FANMOD can detect network motifs

up to a size of eight vertices using a novel algorithm called

RAND-ESU (Wernicke 2005). We detect all 3-node and 4-

node motifs from the overall collaboration graph (G) and

each of the incrementally cumulating graphs (Gi) con-

structed for every year. We obtain two different combi-

nations of 3-node motifs and six different combinations of

4-node motifs as shown in Fig. 2a and b. Note that,

FANMOD algorithm detects 3-node and 4-node motifs in

two separate runs. For instance, if we consider the network

context depicted in Fig. 2c, we obtain various induced

subgraphs composed of three and four nodes representing

different motifs as follows: three 3-cliques ({A, B, C}, {A,

B, D}, {A, B, E}), two star motifs ({C, A, D, E}, {C, B, D,

E}), four 3-loop out motifs ({C, A, B, D}, {E, A, B, D},

{C, B, A, D}, {E, B, A, D}) and three 4-semi cliques ({A,

B, E, D}, {C, A, B, D}, {D, A, B, E}). For this, in the rest

of the experiment, we analyze the 3-node and 4-node

motifs separately. In the rest of our analysis, we have re-

moved all such anomalous cases where the ‘‘longevity’’ of

a motif—that is the difference in the number of years be-

tween the author pair who collaborated latest in the motif

and the author pair who stopped collaborating earliest in

the motif—is negative (discussed in further detail in

Sect. 5). The motif distribution of the filtered collection of

motifs in the overall collaboration graph G is shown in

Fig. 3a. Chain motifs are found to be most prevalent. This

result is also true for all year-wise subgraphs (Gi) as shown

in Fig. 3b. Interestingly, we notice in Fig. 3b that the dif-

ference between the number of Motif 1 (3-chain) and Motif

2 (3-clique) gradually decreases over the years, i.e, most of

the 3-chain motifs tend to shift to 3-clique motifs. This is

perhaps due to the transitive relationship among the

coauthors, which seems to become prominent over the

years, as a result of which new edge gets attached with two

Motif 3
(4−star)

Motif 4
(4−chain)

Motif 5
(3−loop out)

A B

C D E

Motif 2

Motif 6 Motif 7

(a)

(b)

(c)

Motif 1
(3−chain) (3−clique)

(4−box) (4−semi clique) (4−clique)
Motif 8

Fig. 2 The eight possible

undirected a 3-node and b 4-

node motifs with their standard

names taken from the literature

(Alon 2007). c Example of a

local neighborhood structure in

a collaboration network—

motifs are extracted from the

structure
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Fig. 3 (Color online) a Fraction of each type of 3-node motifs among all 3-node motifs and the fraction of each type of 4-node motifs among all

4-node motifs in the overall collaboration graph G (Mi stands for motif i) and b their year-wise distributions
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coauthors who have at least one common coauthor. How-

ever, we observe that for 4-node motifs, the pattern is al-

most similar over the years.

5 Measuring effectiveness of motifs

In this section, we measure the effectiveness of the motifs

through the formulation of two fundamental dimensions of

collaborations: productivity and longevity. In particular, we

quantify these two measures and report their distributions

for different motifs.

5.1 Productivity

Since the number of papers published is not a quality

metric, we define the productivity of a motif in terms of the

average citation frequency per edge of all the involved

publications. These citation frequencies serve as our sur-

rogate measure for the impact of the publication. A crucial

step is to convert the impact of publications into edge

weights in the collaboration network. This conversion can

be done in several different ways. We adopt two most ef-

fective measures proposed by Krumov et al. (2011) for

quantifying productivity of a motif.

For an edge e in the motif, let PðeÞ denote the set of

publications represented by e. For a publication p, cðpÞ
denotes the citation frequency of p. Then the productivity

of a motif can be defined as follows:

Wt ¼
1

jEj
X

e2E

X

p2PðeÞ
cðpÞ; ð1Þ

where E is the set of edges in a motif. The subscript t is

used to indicate the ‘‘total’’ productivity not normalized by

the number of publications. Alternatively, if we wish to

normalize with the number of publications, then the

equation can be rewritten as

Wav ¼
1

jEj
X

e2E

1

jPðeÞj
X

p2PðeÞ
cðpÞ: ð2Þ

It is not a priori clear which of the two normalized mea-

sures defined above is the best way to define productivity,

and each has its own justification. Therefore, we use both

the measures separately while calculating productivity of a

motif in the rest of the experiments.

5.2 Distribution of productivity

We plot the distribution of productivity for all the motifs in

Fig. 4. We observe that both the productivity measures

follow a similar distribution. Therefore, for the sake of

clarity and conciseness, we only plot the distribution ofWav

in Fig. 4. In each plot we draw a vertical line to indicate the

threshold that marks a high-productive motif (mostly

concentrated in the tail of the distribution) from the rest of

the lot. The threshold is selected based on value in the x-

axis corresponding to which the first dip is observed in the

line for most of the motifs (here, the threshold is 10).
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Fig. 4 (Color online) Distributions of Wav for all motifs. The vertical line in each frame indicates the cutoff based on which we develop a binary

SVM classification model to predict the productivity of motifs
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Moreover, we observe in Fig. 4 that the productivity dis-

tribution for Motif 8 (4-clique) is different from the rest in

that there are a large number of 4-clique motifs which have

productivity higher than the threshold, and there is a sharp

decline at the threshold. The reason could be that in general

the 4-clique motifs are highly productive (see Fig. 5).

Therefore, most of the 4-cliques exhibit nearly similar

higher productivity, which causes the line to be almost

consistent in the initial part of the plot. However for the

other motifs, since the number of highly productive motifs

is less, the plot tends to decrease gradually. Figure 5a

shows the average productivity (both Wt and Wav) of each

motif. To show that the productivity of the motifs do not

manifest arbitrarily, we randomize the citation frequencies

of the publications and recompute the productivity of

motifs in the null-model scenario of shuffled citation fre-

quencies. A uniform distribution of these null-model edge

weights across the motifs indicates a successful elimination

of the residual influences (see Fig. 5a). It should be noted

that in contrast to many case network analysis, we do not

randomize the network architecture, but rather shuffle the

weights of the edges. In this way, we do not consider the

possible deviations of motif counts resulting from ran-

domness, but only the effect the motifs have in shaping the

dynamical output (here productivity) of the network. We

observe in Fig. 5 that both the proposed measures are

significantly different from the outcomes of the null model.

To further test the robustness of our results, we plot the

year-wise behavior of the productivity of different motifs

in Fig. 5b. Both Fig. 5a and b indicate that the star motif

(Motif 3) and the 4-clique motif (Motif 8) have a relatively

higher productivity. Similar results are obtained when we

measure the year-wise productivity—the star and the 4-

clique motifs indicate relatively higher productivity in

comparison to the rest of the structures. The reason for the

high productivity of these two motifs can be intuitively

explained as follows—while for the star motif the central

node is possibly representative of a very important scientist

and a majority of the productivity of such a star motif can

be attributed to this ‘‘center of power’’, the 4-clique is the

ultimate ‘‘stable point of attraction’’ for all the other

structures. Note that, the concentration of 4-cliques is not

very high (see Fig. 2) in the system which indicates that it

takes long enough (due to ‘‘add-edge one’’ behavior as we

shall see later) before other structures can finally land up at

this highly productive penultimate configuration. Another

important point that is reflected in the year-wise analysis is

that while Wav for all motifs start coinciding in the years

after 2000, the same is not true for Wt. This is possibly

because there is an exponential increase in the total number

of publications, and the normalization of the citation counts

with such ‘‘astronomic’’ number of publications forces the

Wav of all the different motifs to coincide. These obser-

vations are in sharp contrast with previous results reported

by Krumov et al. (2011) where they attribute that the box

motif has maximum productivity as compared to others.

5.3 Longevity

The goodness of a group collaboration can also be captured

by its longevity, i.e., the time the group has sustained

without any structural imbalance. This point has been ad-

dressed by the social scientists multiple times by analyzing

the longevity as a factor of the off-line groups to attract

new members (Kairam et al. 2012). The proliferation of

citation network and groups, however, has created new

opportunities to study, at a large scale and with very fine

resolution, the mechanisms which lead to characterize a
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Fig. 5 (Color online) a The average productivity of the motifs compared to the null motifs according to the two measures of productivity and

b year-wise productivity distribution per motifs (Mi stands for Motif i)
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successful collaboration in a group level. We define the

longevity of a motif as the number of years between the

commencement of the last collaboration and the termina-

tion of one of the collaborations. For instance, let us as-

sume a 3-chain motif M having edges e1, e2 and e3. Each

individual edge denotes a one-to-one collaboration. Let us

denote the creation times (when two end researchers of an

edge published their first paper together) of these three

collaborations by Crðe1Þ, Crðe2Þ and Crðe3Þ [say,

Crðe2Þ�Crðe1Þ;Crðe3Þ], respectively, and the times when

two end researchers of an edge published their last paper

together with these three collaborations by Dlðe1Þ, Dlðe2Þ
and Dlðe3Þ [say, Dlðe1Þ�Dlðe2Þ;Dlðe3Þ], respectively.

Then the longevity of M is ðDlðe1Þ � Crðe2ÞÞ þ 1 (we also

consider the year when the last edge has been created).

Formally, the longevity (s) of a motif M is defined by the

following equation. Formally, the longevity (s) of a motif

M is defined by the following equation:

sðMÞ ¼ minðDlðeiÞÞ �maxðCrðeiÞÞ þ 1; 8ei 2 M; ð3Þ

where CrðeiÞ and DlðeiÞ denote the creation and deletion

years of the edge ei; respectively. For example, if a 3-node

motif M is constructed by three edges e1, e2 and e3, and

Crðe1Þ ¼ 1972, Crðe2Þ ¼ 1973, Crðe3Þ ¼ 1974,

Dlðe1Þ ¼ 1976, Dlðe2Þ ¼ 1979 and Dlðe3Þ ¼ 1984, then

according to Eq. (3), the longevity of M is

sðMÞ ¼ ð1976� 1974Þ þ 1 ¼ 3 years. Note that it may

happen that s becomes negative for a certain motif when

the motif contains such an edge which is created after the

year when one of the edges of that motif has already been

destroyed. As mentioned in Sect. 4, we completely ignore

such motifs in all our experiments.

5.4 Distribution of longevity

We plot the distribution of longevity for all motifs in

Fig. 6. In each plot, we draw a vertical line to indicate the

threshold that marks a long-lasting motif (mostly concen-

trated in the tail of the distribution) from the rest of the lot.

Here also, the threshold is selected based on the value in

the x-axis corresponding to which the first dip is observed

in the line for most of the motifs (here the threshold is 5).

Furthermore, we observe that the average longevity is

highest for the 4-semi clique (6.72 years), followed by the

3-loop out motifs (6.63 years). Note that this result is quite

unintuitive as one would, in general, anticipate that the

3-loop out and the 4-semi clique structures are incomplete

in their construction as compared to the 3-clique and

4-clique structures, and should hence be less stable. Then

to understand the average longevity of motifs over the

years, we plot the year-wise longevity of each motif in

Fig. 7. Here also, the results comply with the initial aver-

age behavior that the first three positions are dominated by

semi-clique (Motif 7), 3-loop out (Motif 5) and box motif

(Motif 6) in terms of the average longevity. Note that, all

these three structures are very close to their penultimate

stable form, i.e., the 4-clique. It seems that it becomes

increasingly difficult to build new collaborations as a motif

becomes more dense—this is similar to the idea of

metastability that features quite often in real systems; the

system becomes more rigid to change as it grows over time

resulting in large relaxation times. The semi-clique has one

edge left to form and therefore stays for the longest time in

this state before it metamorphoses into the 4-clique through

the formation of the last collaboration edge. The other two
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structures are two edges away from the final configuration

and stays longer than any other structure, but the semi-

clique.

6 Author-level analysis

In this section, we address the first among the two principal

objectives outlined in the introduction. In particular, we in-

vestigate the behavior of the individual authors within their

local neighborhood. We observe that while the highly cited

authors tend to be a part of a few specific motifs, namely, the

4-star, 4-clique and 3-loop out motifs, the motif distribution

of the less-cited authors is almost uniform. It indicates a

latent relationship between highly cited authors and high-

productivemotifs (star/4-cliquemotifs). Therefore, based on

only themotif footprints, we try to design a supervisedmodel

that can efficiently predict the citation-based classification of

authors. In this section, first we introduce several standard

measures bymeans of whichwe evaluate the results obtained

from all of our proposed predictive models and then we

elaborate the model and the outcomes.

6.1 Evaluation metrics

To evaluate the performance of a binary-classification

model, one can simply measure the overall accuracy of the

system in comparison to the gold-standard dataset. The

Overall Accuracy (OA) can be defined as follows:

OA ¼ Number of correct predictions

Total number of predictions
: ð4Þ

However, measuring only the OA may not properly indi-

cate the true performance of the system, especially when

the population on which the system is evaluated is biased

toward a single class. For instance, if 95 % of the

population belongs to the positive class (frequent class) and

rest in the negative class (rare class),4 randomly predicting

all the samples as positive can produce a very high accu-

racy. In this case, the more challenging task is to precisely

detect the negative classes. Therefore, to measure the

performance of the system at a more granular level, we also

estimate the following metrics along with the OA:

SensitivityðRþÞ ¼ Correctly classifed positive samples

True positive samples
;

ð5Þ

SpecificityðR�Þ ¼ Correctly classifed negative samples

True neagtive samples
;

ð6Þ

PositivePredictionðPþÞ ¼ Correctly classified positive samples

Positive classified samples
;

ð7Þ

NegativePredictionðP�Þ ¼ Correctly classified negative samples

Negative classified samples
:

ð8Þ

6.2 Author classification model

We build a supervised model using only the clues of the

motif distribution that can classify the authors based on the

number of citations they obtain. From the citation distri-

bution, we empirically set up a threshold on the number of

citations (here, we consider the citation threshold as 3500).

If an author gets the total number citations more than the

selected threshold, she is marked as a highly cited author

(negative class), otherwise she is marked as a less-cited

author (positive class). Naturally, the entire population is

biased toward the positive class (88.44 % of the entire

population). We use support vector machine (SVM)

(Cortes and Vapnik 1995) as a supervised model to classify

the authors. For training and classification phases of SVM,

we use YamCha5 toolkit and TinySVM-0.0756 classifier,

respectively, with binary decision method and a linear
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4 Note that, we refer to the rare class as negative class and frequently

observed class as positive class in the rest of the paper.

5 http://chasen.org/*taku/software/yamcha/.
6 http://chasen.org/*taku/software/TinySVM/.
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kernel. In the training sample, each instance corresponds to

an author, and the eight features correspond to the count of

the eight different motifs to which the author belongs to.

We adopt a tenfold cross-validation technique where the

whole population is randomly partitioned into ten equal

size subsamples. A single subsample is retained as the

validation data for testing the model, and the remaining

nine subsamples are used as training data. The cross

validation process is then repeated ten times, with each of

the ten subsamples used exactly once as the validation data.

Then we average the ten results from the folds and plot in

Fig. 8. We observe that while the overall accuracy of the

model is 0.87, the model quite accurately identifies the

instances of the rare class, i.e., the negative class

(R� ¼ 0:8732, P� ¼ 0:94). Note that, such a high level of

accurate classification is not observable through direct ci-

tation-based analysis. However, the current result imme-

diately unfolds the fact that simple motif counts have a

remarkable discriminative power that not only allows the

model to make accurate predictions for the frequently ob-

served class, but also for the rare class.

7 Motif characteristics

Toward the second objective outlined in the introduction,

we first identify a set of discriminative features that could

be attributed as characteristics of a group (i.e., a network

motif). In this section, therefore, we analyze such a set of

distinctive features of group collaborations derived from

the characteristics of the constituent authors. We also

analyze the correlation of the following features with two

goodness metrics discussed in Sect. 5 for all the motifs.

7.1 Construction time (CT)

Since each individual edge in a motif indicates a one-to-

one collaboration, each edge is associated with a year, the

year when two collaborators published their first joint pa-

per. Therefore, an edge is created by the first publication of

the authors constituting this edge. For an occurrence of a

motif, the construction time is the time between the earliest

and the latest year of creation of the edges that constitute

the motif. Formally, the Construction Time (CT) of a motif

M is defined as: CTðMÞ ¼ MaxðCrðeiÞÞ �MinðCrðeiÞÞ
þ1; 8ei 2 M, where CrðeiÞ ¼ year of creation of edge

ei 2 M. For example, if a 3-node motif M is constructed by

three edges e1, e2 and e3, and Crðe1Þ ¼ 1972,

Crðe2Þ ¼ 1973, Crðe3Þ ¼ 1974, then the construction time

of M is CTðMÞ ¼ ð1974� 1972Þ þ 1 ¼ 3 years.

We intend to examine whether the construction time has

any effect on the productivity and longevity of a motif. The

top two frames in the first column of Fig. 9 show the av-

erage productivity of all occurrences of a particular motif

that have the same construction time. The curves show that

the construction time does not bear a very strong correla-

tion with the productivity for any of the motifs. This

indicates that the time required for a group to come to

existence does not, in general, strongly determine the

overall quality of the group. However, the longevity dis-

tribution versus construction time in the bottom frame of

the first column in Fig. 9 depicts that for all the motifs, the

longevity increases with the increase in construction time.

In other words, a motif that has taken a larger time to come

into existence usually persists for a larger time in future.

The possible reason could be that a longer construction

time allows the constituent authors to build trust among

each other resulting in a large persistence of the col-

laboration in future.

7.2 Experience diversity (ED)

The group collaborations can be categorized based on the

duration of research experience of the constituent re-

searchers forming the group. For instance, a group com-

prising a supervisor and her students is different from a

group containing contemporary researchers. Note that, by

the term ‘‘research experience’’ of a researcher, we mean

the time difference from the earliest year when she pub-

lished her first paper to the present time. The more the

diversity (variance) of the research experience of the con-

stituent collaborators in a motif, the more is the motif

indicating a group led by the senior researcher(s) with

young fellows (e.g., supervisor–student group). We would

like to check whether there is an effect of overall experi-

ence diversity of a group on both productivity and

longevity. The top two frames in the second column of

Fig. 8 (Color online) Performance analysis of author classification

model (Mi stands for motif i)
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Fig. 9 show the productivity of all the motifs arranged in

various ranges of experience diversity. We observe that the

average productivity (for both the measures) decreases

with the increase of experience diversity of a group. A

similar pattern is observed in the bottom frame of the

second column of Fig. 9 where the longevity also declines

with increasing degree of experience variance. From these,

we might conclude that the groups comprising peer re-

searchers of similar experience are much more productive

and the collaborations are sustained for a longer period of

time compared to the groups led by a single experienced

researcher. The possible reason could be that groups of

researchers with the same research experience usually have

enough scope of open discussion and arguments that would

eventually lead to productive outcomes and to retain the

groups intact for a long time; on the other hand, this is

mostly missing in a highly diverse group of people where

the group is mostly dominated by the most experienced

researchers.

7.3 Citation variance (CV)

Another important feature that makes a researcher recog-

nized in the scientific community is the average number of

citations received by the papers she has published. A long

span of research experience of an author may not indicate a

high number of average citations per paper she published.

Here, for a researcher, we extract the overall number of

citations (normalized by the number of papers) received by

that researcher. Then similar to the earlier experiment, we

find out the variance of the normalized citation counts of

all constituent researches in a motif. Essentially, we are

interested to see how the citation variance drives the pro-

ductivity and longevity of a group collaboration, i.e., are

the groups containing all highly cited researchers superior

than the less-cited groups? The top two frames of the third

column in Fig. 9 show that except in star motif (Motif 3),

all other motifs show a consistent pattern that average

productivity increases with the increase of citation vari-

ance. This result is markedly in contrast to the earlier re-

sults described in Sect.7.2. Therefore, these two results

imply that experience diversity and citation variance are

not at all correlated when measuring with respect to the

productivity of a motif. We shall discuss this in more detail

in the feature correlation subsection of Sect. 8. However,

the longevity declines with the increase in citation variance

(bottom frame in the third column of Fig. 9) which is

similar to the earlier result of experience diversity.

7.4 Recency (RC)

As the citation counts accumulate over time, it is important

to have a measure of the age of a group and to observe its

relationship with the longevity and the productivity met-

rics. The recency of a motif indirectly indicates the amount

of time the motif is staying in the system without getting

converted to a different motif [note that the clique motifs

(M2 and M8) cannot get converted as we do not consider

deletion of edges]. We study as a feature the number of

years since the motif was fully created. To find out the

recency of a motif, we map the motifs between two con-

secutive years and measure how long the motif under in-

spection is stable without any further edge addition. We

expect that the longer a group (motif) stays, the more
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citations it might receive. The top two frames of the last

column in Fig. 9 show that the productivity of all the

motifs increases with the increase in the stabilization time.

The possible reason could be that as long as a motif is

stable and does not get converted to other motifs, it keeps

on producing effective results. However, no such strong

correlation is observed between this feature and the

longevity of a collaboration; in fact, longevity seems to

remain flat as one varies RC (bottom frame of the last

column of Fig. 9).

7.5 Motif transition

As mentioned earlier, one of the primary objectives of our

study is to analyze the motif transition over the time pe-

riods that indicates the propensity of each motif to convert

into another. We have already mentioned the use of motif

transition in Sect. 7.4 when describing the recency of a

motif. In a time-varying environment, if a single edge is

added to a motif in each pass keeping the number of nodes

constant, the structure of the motif changes into another

form. For instance, addition of an edge can convert a 3-

chain into 3-clique. For 4-node motifs, the process follows

a little complicated dynamics as shown in Fig. 10 (upper).

For instance, addition of single edge in the system one at a

time can lead to any of the following three paths (or the

sub-paths): a� c� e� f , b� d � e� f and b� c� e� f .

However, in the real-world scenario, it can be possible that

more than one edge gets added between two consecutive

timestamps.

We extract motifs from each of the year-wise graphs Gi.

Now the next task is to map each motif in year ti to one of

the motifs in year tiþ1. Instead of one-to-one mapping, we

adopt a one-to-many functional mapping technique shown

in Fig. 10 (lower). Here, if n nodes in a motif M at time ti
get divided between two motifs (say, M1 and M2) at tiþ1

keeping m and ðn� mÞ nodes of M; respectively, then we

consider m
n
fraction ofM is transformed intoM1 and the rest

n�m
n

of M is transformed into M2. In this way, we compute

the fraction of changes of one motif to others across all

time transitions present in our dataset. Figure 11a shows

this fraction (in %) for all the motifs. For instance, Motif 3

is transformed into Motif 5, Motif 7 and Motif 8 in 72.26,

12.56 and 15.18 % of overall transformations, respectively.

One important observation is that most of the motif tran-

sitions show a similar behavior that they usually follow
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Fig. 10 Transition of 4-node motifs after adding a single edge (upper) and the toy example of mapping motif(s) across successive timestamps

(TS) (lower)
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‘‘add-edge one’’ behavior discussed in Fig. 10 (upper), i.e.,

the fraction of transitions of one motif to the other mo-

tif(s) due to the addition of a single edge is higher than the

fraction of transitions to other motif(s) through the addition

of multiple edges. The possible reason is that once a re-

searcher chooses her immediate collaborators, she would

become a good proxy for those collaborators to build new

collaborations among themselves. However, new col-

laborations are usually formed one at a time. For instance,

when a 4-star motif is created, the possibility of one edge to

be added among the neighbors around the center node

tends to become higher, which results in the formation of

3-loop out motif. Therefore, these results imply that the

dynamics of group formation is usually not an arbitrary

process, rather it evolves in a steady and systematic fashion

with single edge addition in each transition.

We further study the cost of motif transitions in terms of

the gain/loss of productivity. We define the gain of pro-

ductivity (DW) due to motif transition as follows: DW ¼
Wnew�Wold

Wold
(W can be replaced by Wav or Wt). Similarly, we

measure the gain/lose of longevity due to motif transition.

Figure 11b shows that in all the transitions, the gain in

productivity is positive when the final structure is the

4-clique (Motif 8). This again corroborates that 4-clique

acts as the final reservoir for all the other structures and,

therefore, the evolution is driven toward this structure. On

the other hand, the average time of longevity increases for

most of the cases due to the motif transition. Some inter-

esting observations here are that the productivity increases

when a star motif gets converted to a clique motif, although

in general astar motif is more productive than a clique

motif (see Fig. 5). However, the chance of this conversion

is rare (see Fig. 11); hence in most cases, the clique motif

appears after passing through several other intermediate

motif configurations with subsequent decrease in the

productivity.

8 Group-level analysis

In this section, we discuss two predictive models that can

help forecast the longevity and productivity of a motif by

analyzing a set of discriminating features discussed in

Sect. 7. Essentially, for a single motif, the following fea-

tures are used in these models: construction time (CT),

experience diversity (ED), citation variance (CV), recency

(RC), average productivity (Wav), change in average pro-

ductivity (DWav), total productivity (Wt), change in total

productivity (DWt), longevity (s) and change in longevity

(Ds), while longevity and Ds are only used in productivity

prediction model, the four features related to productivity

(Wav, Wt, DWav and DWt) are used only in the longevity

prediction model. the rest of the features are used in both

models. It is important to note that while computing DWav

and DWt of a motif, instead of considering to which mo-

tif(s) the present motif would transform at a later time, we

consider the previous history of the motif, i.e., from where

the motif was itself created. We adopt this policy so that we

could refrain from using quantities that are observable only

in future time points, since it is inappropriate (leading to

information leakage) to employ quantities from the future

to predict the future. Note that the motivation behind de-

veloping these two prediction models is as follows: if we

know the longevity and the productivity of different types

of collaborations (represented by motifs), it would be

helpful for new researchers to gain ideas on (i) how to build

effective collaborations, (ii) which collaborations they

should maintain, (iii) what is the dynamics that could lead

to an effective collaborations, etc.

8.1 Feature correlations

Before entering into the detailed description of the two

models, we perform a systematic analysis of the correla-

tions between the features to identify if any of the features
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is fully determined by some other feature(s) and thus may

be dispensed. For this, we calculate the Pearson correlation

among the features and plot them in a heat map in Fig. 12.

We observe the maximum correlation between Wav and Wt

(0.67), followed by DWav and DWt (0.293) which is also

quite intuitive, since both of these are derived from the

same hypothesis. The highest negatively correlated pair is

DWt and ED (�0.32), followed by DWav and s (�0.29).

Most of the correlations among the pairs of features are

very small or negative, which implies that the feature set is

highly discriminative and uncorrelated. Note that, as we do

not observe any of the features to be highly related (cor-

relation of the order of 0.9 or more) to any other, it is not

possible to dispense with some of them in lieu of the other.

Therefore, we use all the features in the subsequent ana-

lysis and predictions made in the rest of this section.

8.2 Model 1: longevity prediction model

We develop a supervised binary classification model to

predict the longevity of a motif. To decide the cutoff

among the spectrum of longevity values of motifs shown in

Fig. 6, we observe that in most of the cases, the first dip-

ping of the distribution of longevity occurs at the value of 5

in the x-axis. Therefore, we consider all motifs having s\5

as ‘‘short-lived motifs’’ (frequent class, positive class,

short-term collaborations) and others as ‘‘long-lived mo-

tifs’’ (rare class, negative class, long-term collaborations).

From Fig. 6, it is apparent that the population is highly

biased toward the positive class. Here, we retain our earlier

experimental setup discussed in Sect. 6. The performance

of the classifier after tenfold cross validation is measured

for each of the motifs separately and pictorially depicted in

Fig. 13. We observe that while the average overall accu-

racy of the system is 0.72, the system performs reasonably

well to predict the longevity of 4-cliques (OA ¼ 0:87,

Rþ ¼ 0:89, R� ¼ 0:69, Pþ ¼ 0:91 and P� ¼ 0:50). For

most of the motifs, the sensitivity (Rþ) and PositivePre-

diction (Pþ) of the model are above 0.70. This result im-

mediately shows that 4-cliques have a markedly different

behavior as was also observed in the previous sections.

Since they represent the penultimate configuration, the

accuracy of the model should be highest for them, and

indeed so is the case. This again clearly justifies the sig-

nificance of the use of motifs in this entire study as opposed

to any other form of structural analysis. In addition, we

observe that the overall performance of the model for

4-node motifs is reasonably high compared to the 3-node

motifs.

Error analysis We systematically analyze the sig-

nificance of the features used in this model by dropping

them one at a time and measuring the performance of the

model. In Fig. 14, we plot the average error (with standard

deviation) that occurs due to the drop of each of the fea-

tures. Each frame in the figure corresponds to the error due

to the drop of one feature mentioned in the frame. For

better comparison, in each frame we also plot the average

error which occurs when all the features are used (broken

line). From the error analysis, it is apparent that the features

related to productivity (Wav andWt) significantly contribute

in predicting the accurate results. Surprisingly, in certain

cases (for Motif 4), dropping the construction time from the

feature set enhances the performance of the system. We

have mentioned earlier in Fig. 9 (Sect. 7) that the con-

struction time does not indicate any uniform pattern within

or across different classes of motifs. The results of error

analysis also corroborate this observation, thus pointing to

the fact that this feature does not have strong discriminative

power.

8.3 Model 2: productivity prediction model

The second model is again a binary classifier that tries to

classify the motifs based on their productivity. Here also,

we detect the threshold for binary classification of pro-

ductivity similarly as in the earlier experiment. We observe

that both Wav and Wt follow similar distributions. In Fig. 4,

we plot only the distribution ofWav to decide the threshold.

The threshold is decided to be 10, i.e., the motifs having

Wav\10 are considered as ‘‘low productive’’ (positive
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class) and the rest as ‘‘high productive’’ (negative class).

Again, the system is mostly biased toward the positive

class. Here also, we use SVM with linear kernel and the

results are reported after tenfold cross validation. Note that,

in this model we use six features, namely construction

time, experience diversity, citation variance, recency,

longevity and change in longevity to predict the produc-

tivity (Wav). Figure 15 presents the accuracy of the model

for each of the motifs. On an average, the performance of

the second model is better than the earlier model where

most of the values cross 80 % accuracy. Here also, the

model more accurately predicts the productivity of 4-cli-

ques (OA ¼ 0:95, Rþ ¼ 0:98, R� ¼ 0:62, Pþ ¼ 0:96 and

P� ¼ 0:74). While R� is greater than 60 % throughout, P�

for the 4-node motifs is greater than 60 %.

Error analysis Since the performance of the second

model is superior to the earlier one in spite of the less

number of features used, it would be interesting to analyze

the influence of each feature to enhance the performance of

the prediction model. For this, we again measure the im-

portance of each feature by dropping one at a time and

comparing the relative decline of the average accuracy.

Figure 16 displays the error that occurs due to omitting

each feature. Here, while four features, namely construc-

tion time, experience diversity, recency and longevity,

show their reasonable importance in predicting the pro-

ductivity, the citation variance proves to be immensely

important in this model for all the motifs. More par-

ticularly, for star motif (Motif 4), dropping the citation

variance can degrade the performance of the model nearly

three times lower than the original. This result not only

signifies the extent of importance of this feature among the

others, but also reflects its enormous power of predicting

productivity of group collaborations.

9 Correlating longevity and productivity

In this section,we finally look back at the entire population of

motifs and try to relate the two goodness measures of col-

laborations. Since we classified the entire dataset into two

classes in terms of longevity and productivity individually,

the entire population can be divided further into four regions:

long-term high productive collaborations, long-term low

productive collaborations, short-term high productive col-

laborations and short-term low productive collaborations. In

Table 3, we present two confusion matrices for 3-node and

4-node motifs separately showing the fraction of population

in each of the regions obtained directly from the real dataset

(i.e., gold-standard). Thus, the interpretation of an individual
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entry in this matrix for the 3-node (4-node) motifs is as fol-

lows—59 % (44 %) of the motifs are short lived as well as

less productive, 15 % (16 %) are short lived but highly

productive, 20 % (29 %) are long lived but less productive

and only 6 % (11 %) are long lived as well as highly pro-

ductive. The values in Table 3 within parenthesis are the

same quantities obtained from our prediction models. As

discussed earlier, for both the models, we have used tenfold

cross validation on the entire dataset and performed 50 such

iterations to obtain the average performance. Therefore, in

each iteration, one-tenth of the entire population serves as the

test dataset and we obtain 50 such confusion matrices. The

values within parenthesis in Table 3 are the average of these

confusionmatrices. It is evident from the table that the results

obtained from the models are remarkably similar to those

indicated by the gold-standard statistics. From these tables,

we concludewith reasonably high confidence that short-term

collaborations are generally less productive. One general

argument could be that since short-term collaborations

generally do not persist for long, the scope of the growth of

productivity is severely limited. This immediately points to

the fact that short-term collaborations would generally not

lead to the production of high-quality research output leading

to very low gain in citations. Further, there is a feedback

effect in that if a collaboration is repeatedly failing to pro-

duce high-quality output, the chances that it would persist

longer automatically diminishes. On the other hand, we

cannot make any strong conclusion regarding long-term

collaborations due to the lack of enough statistical evidences.

In short, the main observation here is that none of the

goodness metrics can alone completely determine the other.

10 Motif distributions for different fields

The rich metadata information of our dataset further allows

us to measure the distribution of motifs for different fields

of computer science domain. Since we know the field of

research for a particular paper present in our dataset, we

mark each author by the field in which she has published

maximum papers. Following this, a motif is marked by the

field which is the research interest of majority of its con-

stituent authors. In case there is a tie, we resolve by

marking the motif as a part of all the fields that are in tie.

Therefore, each field now constitutes motifs of different

kinds.
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Table 3 Confusion matrices

showing four regions of the

population of the gold-standard

dataset

Longevity Productivity

Low High

(a) 3-node motifs

Short 0.59 0.15

(0.54) (0.12)

Long 0.20 0.06

(0.25) (0.09)

(b) 4-node motifs

Short 0.44 0.16

(0.44) (0.17)

Long 0.29 0.11

(0.32) (0.07)

The values within parenthesis

are obtained from the two pre-

diction models
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Table 4 shows the count of motifs of different kinds in

each field of the computer science domain. We also plot the

fraction of each 3-node motif among all 3-node motifs and

fraction of each 4-node motifs among all 4-node motifs

(the global pattern is shown in Fig. 3). We observe two

distinct patterns as shown in Fig. 17. For few fields such as

information retrieval, World Wide Web etc. (as denoted by

red colored line), the proportion of 4-chain motif is higher

than that of 4-star motif, whereas for few fields such as

scientific computing, networking, etc. (as denoted by green

colored line), the proportion is just opposite. Since the

reason is not very clear to us, more deeper analysis on the

motifs in different fields would remain as a potential area to

be unfolded in the future.

11 Real examples of productive motifs

Here, we refer to some real-world highly productive motifs

found in our dataset and provide some interesting results

for those motifs.

• Jon Kleinberg’s collaborations We find a star motif

comprising Y. Rabani, E. Tardos, J. Kleinberg and F.T.

Leighton (where J. Kleinberg7 is placed at the center of

the motif) to be the most productive group in our

dataset in terms of Wav. However, the construction time

of this group is 2 years and the experience diversity is

also high. This group lasted around 10 years which is

reasonably high in our dataset. On the other hand, if we

Table 4 Number of motifs of different kinds in each fields of computer science domain

Fields Motif 1 Motif 2 Motif 3 Motif 4 Motif 5 Motif 6 Motif 7 Motif 8

SC 1,688,886 194,877 53,383,245 52,474,614 11,776,366 23,359 454,191 289,657

IR 868,678 62,076 37,947,595 39,805,361 6,923,663 25,124 269,414 94,430

WWW 309,723 30,174 14,290,517 15,869,177 3,591,709 15,370 167,841 51,526

SEC 1,335,591 74,987 49,576,069 60,556,754 8,665,075 51,306 323,305 89,930

EDU 843,551 92,844 18,846,701 25,900,113 5,866,133 18,012 210,945 123,778

DIST 4,848,263 288,864 2,50,298,270 2,47,938,091 40,606,341 133,592 1,527,534 497,202

PL 649,086 48,650 17,652,040 26,929,675 4,408,607 20,600 153,060 69,716

ALGO 4,470,929 220,619 1,54,086,899 2,09,587,945 25,720,651 256,572 990,753 262,807

NETW 12,751,861 578,930 6,38,477,904 6,52,386,924 73,236,665 298,477 2,128,468 699,272

ML 2,534,953 1,80,008 1,08,080,837 1,01,363,927 15,556,938 44,520 562,106 225,303

MUL 2,358,571 236,411 1,09,790,561 1,12,837,986 18,697,906 65,554 808,017 407,547

DB 4,904,153 243,998 2,36,692,742 2,74,019,047 36,943,158 202,607 1,230,156 349,173

HCI 2,853,505 191,620 1,11,550,010 1,15,121,687 19,951,664 68,071 710,443 270,388

NLP 4,205,876 289,228 1,29,624,546 1,57,391,508 26,957,671 100,780 1,031,139 392,589

AI 12,694,180 669,806 5,61,295,885 5,58,603,229 73,590,521 248,410 2,500,253 875,519

EMB 783,880 38,291 26,096,515 28,746,135 4,128,207 14,159 141,237 38,218

BIO 2,118,607 328,327 62,475,465 68,578,080 17,897,512 19,538 608,051 502,223

ARCH 6,823,624 435,287 2,80,054,454 2,63,184,366 42,823,227 117,702 1,512,624 589,613

DM 902,885 72,630 59,850,936 55,049,523 7,691,422 26,924 227,344 99,499

GRPH 2,217,349 121,457 91,395,885 93,698,746 15,010,651 51,757 530,306 160,896

SE 3,915,726 247,149 1,35,119,019 1,61,843,896 24,726,027 90,184 852,323 3,08,106

CV 1,776,528 94,266 8,8,906,676 83,042,560 12,292,303 41,360 413,241 127,687

SIM 308,241 29,598 7,987,495 9,930,622 1,911,701 3833 64,057 38,394

OS 242,635 24,192 8,130,245 12,016,895 2,399,418 8987 93,908 42,784

M1 M2 M3 M4 M5 M6 M7 M80

0.2

0.4

0.6

0.8

1

Motifs

Fr
ac

tio
n 

of
 m

ot
ifs

IR, WWW, SEC,EDU, PL, ALGO
DB, NLP, EMB, BIO, GRP, SIM

SC, NETW, DIST, HCI, ML, AI, 
MUL, ARCH, DM, SE, CV, OS 

Fig. 17 (Color online) Fraction of motifs in different fields of the

computer science domain. The fraction is calculated independently

for 3-node and 4-node motifs

7 http://www.cs.cornell.edu/home/kleinber/.
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observe another star motif constituting A. Aggarwal,

M. Charikar and D. Williamson in the three peripheral

nodes and centered around J. Kleinberg, we get

significantly different statistics. Although the construc-

tion time is similar to the earlier one, its productivity

and longevity are very less. As expected, we observe

that the second motif gets converted to a 4-clique

(comprising A. Aggarwal, M. Charikar, J. Kleinberg

and others) and a 3-loop out (comprising D. Williamson

and others) to gain productivity.

• Jiawei Han’s collaborationsWe have noticed in Sect. 7

that a 4-chain tends to get converted to a 4-clique motif

more often to gain high productivity. A prominent

evidence found in our dataset is the 4-chain comprising

Jiawei Han,8 Yongjian Fu, Zhaohui Xie and Wei Wang

(where three collaboration edges are formed between

first–second, second–third and third–fourth authors

sequentially in order). This motif lasted for 3 years

before augmenting three other edges to form a 4-clique,

and this transformation produces a gain in 12 % of Wav

and 15 % of Wt.

• Michael I. Jordan’s collaborations Interestingly, we

observe that Michael I. Jordan9 is present in star motifs

maximum number of times and the recency of those

motifs is also very small in comparison to the other star

motifs. However, the 3-clique motif containing David

M. Blei, Andrew Y. Ng, Michael I. Jordan seems to be

the most productive in our dataset in terms of Wt. A

deeper look into this collaboration reveals that this

motif gets maximum citations due to the famous paper

on ‘‘latent Dirichlet allocation’’.

• James Allan’s collaborations Similar to the earlier

observations, James Allan10 is found to occur a

maximum number of times in 4-cliques. However, the

maximum productivity is observed for the star motifs

comprising J.Allan., J. Callan,W.B.Croft andM.Hirsch

centered around J. Allan. This motif lasted 8 years before

converting to a 4-clique. However, this transformation

achieves very less overall gain in Wav (2 %) and Wt

(4.5 %). Themaximumproductive 4-cliquemotif among

his collaborations constitutes J. Carbonell, G. Dodding-

ton and J. Yamron along with him.

• Nicholas R. Jennings’s collaborations A typical pattern

found in most of the motifs centered around Nicholas

R. Jennings11 is that their experience diversity is quite

high even if these motifs gain significantly higher

productivity. This is counterintuitive to our earlier

observation in Sect. 7 that the groups with high

experience diversity tend to be less productive. The

motif set constituting N. R. Jennings is mostly

dominated by 4-cliques followed by the star motifs.

However, the most long-lived motif centered around

him constitutes K. P. Sycara, M. P. Georgeff and M.

Wooldridge in the periphery that lasted for 5 years.

12 Extending the results to physics dataset

To check the robustness of the important conclusions

drawn from Sects. 5 to 8, we conduct a shallow analysis on

Physics dataset. We use all published articles in Physical

Review (PR) journals12 from 1975 till the end of 2010. We

use all such entries which possess the information about

their index, title, name of the author(s), year of publication

and references. The filtered dataset contains 325,399 valid

papers and 277,154 authors. After author–name disam-

biguation, we construct collaboration network and extract

all 3-node and 4-node motifs separately. The fraction of

motifs in each category is reported in Table 5.

Here, we verify few important results that were previ-

ously observed in the computer science dataset.

– Here also, we observe that the average productivity is

higher for star motif (Wav ¼ 10:28;Wt ¼ 22:45), which

is followed by 4-clique (Wav ¼ 9:11;Wt ¼ 20:15) and

4-chain motifs (Wav ¼ 8:97;Wt ¼ 18:44). 4-box motif

seems to be least productive (Wav ¼ 4:11;Wt ¼ 12:31).

– In terms of average longevity, 4-semi clique and 3 loop

out motifs seem to be highest (6.82 and 6.21 respec-

tively), where the 4-clique seems to diminish quickly

(longevity of 2.15).

– We further build the author classification model keeping

the citation threshold as 3500 to separate highly cited and

low cited authors, and run tenfold cross validation. It

turns out to be very effective in terms of standard

Table 5 Percentage of motifs in the Physics collaboration network

Motifs Types Percentage

3-node motifs 3-chain 65.28

3-clique 34.72

4-node motifs 4-star 25.47

4-chain 28.91

3-loop out 26.10

4-box 4.48

4-semi clique 6.28

4-clique 8.76
8 http://www.cs.uiuc.edu/*hanj/.
9 http://www.cs.berkeley.edu/*jordan/.
10 http://ciir.cs.umass.edu/*allan/.
11 http://users.ecs.soton.ac.uk/nrj/. 12 http://journals.aps.org/datasets.
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evaluation metrics (OA ¼ 0:85;Rþ ¼ 0:79;R� ¼ 0:60;

Pþ ¼ 0:91;P� ¼ 0:56) to classify authors based on the

surrounding motif distribution.

– We examine each of the proposed features such as

construction time, experience diversity, citation vari-

ance and recency, and find the correlation with the

productivity and longevity. Except a couple of cases

such as experience diversity and citation variance

where the evidence is less prominent, for other cases

the correlation highly corroborates with the results

observed earlier for the computer science dataset. For

instance, longevity and productivity seem to increase

with the increase of construction time and recency.

– Regarding the motif transition, we earlier observed that

motif evolution is not abrupt, but follows typical ‘‘add-

edge one’’ mechanism. Here surprisingly, the previous

observation remains persistent with high statistical

significance. A broad experimental result is presented

in Table 6. For motifs M5 and M6, in around 80 %

cases these two motifs transform to M7, which is much

stronger evidence compared to the earlier observation

in computer science dataset where the chance was

nearly 50 %. The reason could be that physics is a

much older field than computer science, thus facilitat-

ing this phenomenon for a longer time.

– We further examine the gain/loss in productivity and

longevity due to motif transition. We observe nearly

14.45 and 10.43 % average gain in productivity in

terms of Wav and Wt; respectively, while a motif gets

transformed into 4-clique. On the other hand, max-

imum gain in longevity (8.74 %) is observed when a

4-box motif gets converted into 4-semi clique.

– Finally, we run two group-level models for predicting

longevity and productivity of different motifs. We keep

the thresholds mentioned in Sects. 8.2 and 8.3 for

dividing the population into two classes. The average

accuracy after tenfold cross validation is reported in

Table 7. We observe that the performance of both the

models is significantly well in terms of all the

validation measures.

The above observations indicate that most of the con-

clusions drawn in this paper are highly robust and appli-

cable for different domains.

13 Conclusions

In this work, we showed that in the collaboration network,

the network contexts of individuals represented by network

motifs have significant potential to unfurl the underlying

dynamical behavior of authors within a group and along

with the group as a whole. We further established that it is

indeed possible to go beyond pairwise collaborations and

investigate the fundamentals of various types of group

collaborations represented in the form of motifs. We con-

clude the paper mentioning few interesting outcomes and

some immediate future directions as follows: (i) we ob-

serve that while star and the 4-clique motifs are highly

productive, semi-clique motifs seem to have a very high

longevity, (ii) the productivity of a motif is not random;

rather it is driven by the structural and functional impor-

tance of the different collaborations, (iii) the distribution of

network motifs neatly classifies the highly cited authors

from the rest, (iv) the characteristics of a group col-

laboration can suitably be explained in terms of a set of

distinctive features of the constituent researchers, (v) in

real world, the transition of motifs over the successive time

steps is usually not abrupt, rather it systematically follows

‘‘add-edge one’’ mechanism, (vi) transition to a 4-clique

Table 6 Matrix showing the transition of motifs

M3 M4 M5 M6 M7 M8

M3 – – 82.91 – 4.47 12.22

M4 – – 34.87 38.98 10.23 15.92

M5 – – – – 76.54 23.46

M6 – – – – 82.13 17.87

M7 – – – – – 100

The row corresponds to the initial form of the motif and the column

corresponds to the final form of the motif. The maximum percentage

of transition for a particular motif is highlighted in bold font

Table 7 Accuracy of (left) longevity and (right) productivity pre-

diction models of motifs on the physics dataset

Motifs OA Rþ R� Pþ P�

Longevity prediction model

M1 0.60 0.58 0.72 0.71 0.75

M2 0.82 0.85 0.75 0.89 0.82

M3 0.85 0.89 0.91 0.90 0.88

M4 0.78 0.82 0.89 0.79 0.80

M5 0.81 0.76 0.78 0.81 0.79

M6 0.75 0.81 0.71 0.83 0.87

M7 0.82 0.85 0.76 0.79 0.82

M8 0.89 0.87 0.82 0.85 0.81

Productivity prediction model

M1 0.81 0.89 0.71 0.80 0.78

M2 0.85 0.82 0.69 0.81 0.61

M3 0.70 0.79 0.65 0.80 0.65

M4 0.75 0.81 0.63 0.78 0.69

M5 0.86 0.82 0.79 0.81 0.63

M6 0.82 0.88 0.85 0.83 0.79

M7 0.88 0.89 0.74 0.81 0.78

M8 0.92 0.91 0.87 0.82 0.89
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produces the largest gain in productivity for all the motifs,

(vii) the characteristic features of the motifs quite effi-

ciently predict the longevity and productivity of a group

collaboration with the best predictions being for the

4-clique.

We believe that a stronger connection between the motif

patterns and the underlying elementary processes in the

system (selecting authors for a publication, selecting arti-

cles to be cited within a publication) can be achieved via

generative minimal models (Krumov et al. 2011). The

current analysis might also allow us to forecast the number

of citations that an author/collaboration could possibly

acquire in future, thus leading to the design principles of an

efficient recommendation system.

References

Abbasi A, Chung KSK, Hossain L (2012) Egocentric analysis of co-

authorship network structure, position and performance. Inf

Process Manag 48(4):671–679

Alon U (2007) Network motifs: theory and experimental approaches.

Nat Rev Genet 8(6):450–461

Backstrom L, Leskovec J (2011) Supervised random walks: predict-

ing and recommending links in social networks. In: WSDM.

ACM, New York, NY, USA, pp 635–644

Baras JS, Hovareshti P (2011) Motif-based communication network

formation for task specific collaboration in complex environ-

ments. In: ACC 2011. IEEE, Kerala, India

Biryukov M (2008) Co-author network analysis in dblp: classifying

personal names. In: MCO. Springer, Berlin, pp 399–408. http://

link.springer.com/chapter/10.1007%2F978-3-540-87477-5_43

Chakraborty T, Ganguly N, Mukherjee A (2014) Automatic classi-

fication of scientific groups as productive: an approach based on

motif analysis. In: 2014 IEEE/ACM international conference on

advances in social networks analysis and mining, ASONAM

2014, Beijing, China, August 17–20, 2014, pp 130–137

Chakraborty T, Sikdar S, Tammana V, Ganguly N, Mukherjee A

(2013) Computer science fields as ground-truth communities:

their impact, rise and fall. In: Advances in social networks

analysis and mining 2013, ASONAM ’13, Niagara, ON,

Canada—August 25–29, 2013, pp 426–433

Chakraborty T, Tammana V, Ganguly N, Mukherjee A (2015)

Understanding and modeling diverse scientific careers of

researchers. J Informetr 9(1):69–78. doi:10.1016/j.joi.2014.11.

008. http://www.sciencedirect.com/science/article/pii/

S1751157714001102

Choobdar S, Ribeiro P, Bugla S, Silva F (2012) Comparison of co-

authorship networks across scientific fields using motifs. In:

ASONAM. IEEE Computer Society, Los Alamitos, pp 147–152

Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn

20(3):273–297

Dascal M (1989) On the roles of context and literal meaning in

understanding. Cogn Sci 13(2):253–257

Ding Y (2011) Scientific collaboration and endorsement: network

analysis of coauthorship and citation networks. J Informetr

5(1):187–203

Hyun Yook S, Oltvai ZN, lszl Barabsi AL (2004) Functional and

topological characterization of protein interaction networks.

Proteomics 4:928–942

Han Y, Zhou B, Pei J, Jia Y (2009) Understanding importance of

collaborations in co-authorship networks: a supportiveness

analysis approach. In: SDM. Springer, Berlin, pp 1111–1122

Huang J, Zhuang Z, Li J, Giles CL (2008) Collaboration over time:

characterizing and modeling network evolution. In: WSDM.

ACM, New York, pp 107–116

Kairam SR, Wang DJ, Leskovec J (2012) The life and death of online

groups: predicting group growth and longevity. In: Proceedings

of the fifth ACM international conference on web search and

data mining, WSDM ’12. ACM, New York, NY, USA,

pp 673–682. doi:10.1145/2124295.2124374

Kashtan N, Itzkovitz S, Milo R, Alon U (2004) Efficient sampling

algorithm for estimating subgraph concentrations and detecting

network motifs. Bioinformatics 20(11):1746–1758

Kronegger L, Mali F, Ferligoj A, Doreian P (2012) Collaboration

structures in slovenian scientific communities. Scientometrics

90(2):631–647

Krumov L, Fretter C, Müller-Hannemann M, Weihe K, Hütt M (2011)
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