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Abstract—One of the key aspects instrumental in the
advancement of science relates to “team science,” or in other
words “group” collaborations. There have been extensive studies
analyzing various statistical properties of collaborations of
individual or pairs of authors. However, the number of studies
pertaining to groups/teams of scientists working together is
limited in number. In this paper, we set an objective to study
the productivity of group collaborations where groups are
represented as small substructures usually termed as network
motifs in the literature. A preliminary observation is that star-like
motifs have the largest productivity (defined as a function
of citation count) followed by 4-cliques. We then introduce a
bunch of features and study their individual relations with
the productivity of a team. Building on these observations, we
develop a supervised classification model that can automatically
distinguish the highly productive teams from the low productive
ones based on the set of identified features. The accuracy
of the classification is 82% on an average for all the motifs
with the accuracy reaching as high as 95% for 4-cliques.
Finally, we present a detailed analysis of the time-transition
behavior of different motifs along with some of the real world
highly productive motifs found in our dataset. This empirical
study is a first step toward the development of a full-fledged
recommendation system that can predict how productive a team
would be in the future.

I. INTRODUCTION

One of the key aspects of a scientific community is the
prevalence of “team science” or group level collaborations. In
fact, such group level collaborations constitute the building
blocks of any collaboration network, i.e., a network where
nodes represent authors and two authors are connected by
an edge if they have co-authored one or more papers
[1]. Now-a-days, collaboration among researchers seems to
be increasing in popularity due to the increasing extent
of “knowledge sharing” and cross-hybridization of multiple
ideas [2]. One can leverage on the idea of local connectivity
patterns of nodes, i.e., small groups/teams usually referred to
as network motifs as a means for exploring the characteristic
properties of a collaboration network since such recurrent
local substructures often provide a crucial mesoscopic view
at the intermediate scale between the whole network and the
individual node.

The study of collaboration formation is an older research
topic and started in parallel with the general research
on collaboration networks [1] [3] [4] [5] [6]. All these
analysis mostly concentrate on pair-wise collaboration between
researchers. However, we identify that besides such one-to-one
collaborations, the processes and outcomes of collaborative,

team-based research, known as group collaboration where
more than two researchers actively participate as a team in
order to produce quality research can be extremely important
and of significant interest to the scientific community. For
example, Figure 1 shows three typical connectivity patterns
centered around Mark Newman1, a renowned British physicist
at the University of Michigan. One can notice from the three
patterns (Figures 1(a)-(c)) that even if Newman plays an
important role in each case, the overall impact of each of these
local groups (in terms of productivity as defined in section IV)
varies significantly. This immediately indicates that there is
a latent micro-dynamics governing the formation of different
local substructures that needs to be investigated in order to
understand the actual role of an individual within a team and
to predict the fate of such groups in future.

Here, for the first time, we particularly investigate the
group collaborations in a collaboration network in terms of
“network motifs” [7] which are small subgraphs with a specific
interaction pattern recurrently appearing in the network [8] [9]
(see Figure 2). Note that, a group collaboration does not refer
to the fact that all individuals are connected with each other;
rather several combinations of a fixed set of individuals with
different connectivities may form distinct group structures.
Understanding such network motifs in a collaboration network
has various utilities – (i) it can provide us an idea of the
micro-level behavior of a group collaboration, (ii) the role of
an individual in a group can be systematically investigated,
(iii) success of different motifs over the years might enable
a rising scientist to build new patterns of connectivity among
her collaborators, (iv) network motifs which are mostly known
as the functional blocks in biological science [8] might also
help to unfold the functional role of network context around
different individuals in the collaboration network.

The contributions of our work are manifold. We begin
by defining a fundamental goodness measure of group
collaborations – productivity (section IV). A simple analysis
of productivity leads us to various interesting observations
such as the star and the 4-clique motifs have relatively higher
productivity than the rest of the lot; this observation is in
sharp contrast with previous results reported by Krumov et
al. [10]. Subsequently, we conduct a detailed investigation of
a set of static features of motifs and try to draw correlation
between productivity and these features (section V). The
features that we consider are – (i) how long does a particular
motif pattern take to form (construction time), (ii) the degree
of heterogeneity of a group in terms of the research experience

1http://www-personal.umich.edu/∼mejn/
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Fig. 1: (Color online) Three types of connectivity patters
(motifs) centered around Mark Newman (M). Here, Wav ,
Wt correspond to the average productivity and the total
productivity respectively as described in section IV. Note that,
these examples are directly taken from our dataset.

of the constituent researchers (experience diversity), (iii) the
variation of scientific impact of the constituent researchers
(citation variance), (iv) the period of stability of a motif since
its formation (recency) and (v) how long does a motif survive
(longevity). As a second objective, we develop a classification
model that can categorize high and low productive groups
using the set of features mentioned above. The classification
model shows reasonably high accuracy in classifying the
motifs and the results are remarkably good for the 4-clique
motifs (95% overall accuracy) (section VI). Then, we present
a detailed discussion of our results by showing a dynamical
characteristic of a motif – their time-transition behavior and
the correlation of the same with the gain in productivity along
with some real world examples of highly productive motifs
(section VII). Finally, we conclude the paper by mentioning
some interesting insights of this study and some immediate
future directions (section VIII).

II. DATASET AND NETWORK CONSTRUCTION

We have used the dataset of the computer science domain
used by Chakraborty et al. [11]. The dataset contains the name
of the research paper, index of the paper, its author(s), the
year of publication, the publication venue, the list of research
papers the given paper cites and (in some cases) the abstract
of the papers. In order to make the data suitable for our
experiments, we extract only those entries which contain the
information about the paper index, the title, author(s), the
year of publication and the citations. Some of the general
information pertaining to the filtered dataset of computer
science are presented in Table I.

For the author name disambiguation, we use “RankMatch”
algorithm2 proposed by Liu et al. [12]. There are a couple
of reasons behind adopting this algorithm. First of all, it is
a completely unsupervised approach which is required in our
study. In addition, the algorithm has been proved to be effective
for the same types of scientific dataset [12]. The algorithm first

2The code is publicly available in https://github.com/remenberl/
KDDCup2013.

assigns an unique index ID to all the author names present
in the dataset. Then it follows a two-step strategy. (i) For
each indexing author ID, it tries to pull out all the authors
whose author names are possible variations of the indexing
author name. To come up with the pool, it takes into account
a number of cases where names can mutate or be disturbed. (ii)
In the second step, it trims the candidate pool based on authors’
publication features. Examples of publication features include
co-authorship network, publication venues, years, title words.
These features turn out to be discriminative for identifying real
duplicates from the candidate pool. The number of authors
after author name disambiguation is shown in Table I.

TABLE I: General information of the filtered dataset of the
computer science domain.

Number of valid indices of papers 702,973

Number of authors before author name disambiguation 501,425

Number of authors after author name disambiguation 495,311

Average number of papers by an author 3.52

Average number of authors per paper 2.609

Time interval of the used dataset 1980 – 2005

The next task is to construct the collaboration network
from the tagged dataset. Formally, a collaboration network is
defined as a graph G =< V,E > where each node vi ∈ V
represents a researcher and an undirected edge eij between
vi and vj is drawn if two researchers represented by vi and
vj collaborate at least once via publishing a paper. From the
above dataset, an overall collaboration network G has been
constructed with researchers representing nodes and undirected
edges representing collaborations between two researchers.
As a new researcher starts her research career, she may
enter or leave different collaborations. We track the changes
in collaborations for a particular researcher over her entire
research career. For this purpose, we analyze the collaboration
network Gi composed of all nodes and edges between t0 and
ti where t0 is the earliest year present in the dataset. We call
each such Gi a “snapshot” throughout the rest of the paper.
Thus in each snapshot, all the edges of a collaboration since the
beginning of the career of an author is present. In other words,
we do not consider the deletion of a collaboration edge and if
an edge is ever established it continues to be present in all the
subsequent Gis constructed. Further note that, from our data
it is possible to obtain a list of characterizing features of an
author node as well as a collaboration edge – the total number
of citations received by the authors, the year when an author
makes her first/last publication, the number of co-citations
obtained by an author pair and the year when an author pair
make their first/last joint publication.

III. MOTIF DETECTION IN COLLABORATION NETWORK

In order to detect motifs, we use the “FANMOD”3

proposed by Wernicke and Rasche [13] which is a tool for
fast network motif detection. It relies on recently developed
algorithms to improve the efficiency of this task by some orders
of magnitude compared to existing tools [14]. FANMOD can
detect network motifs up to a size of eight vertices using
a novel algorithm called RAND-ESU [15]4. We detect all

3http://www.minet.uni-jena.de/∼wernicke/motifs/
4Since RAND-ESU is a randomized algorithm, it produces different number

of motifs in different iterations. Therefore after 50 iterations, we use the results
obtained from that iteration which produces the maximum number of motifs.
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Fig. 2: The eight possible undirected (a) 3-node and (b)
4-node motifs with their standard names taken from the
literature [7]. (c) Example of a local neighborhood structure
in a collaboration network - 4-node motifs are extracted from
the structure.

3-node and 4-node motifs from the overall collaboration graph
(G) and each incrementally cumulating graph (Gi) constructed
for every year. We restrict our analysis to 3- and 4-node
motifs since the average number of authors per paper is
found to be approximately 3 in our dataset (see Table I) We
obtain two different combinations of 3-node motifs and six
different combinations of 4-node motifs as shown in Figure 2
((a) and (b)). For instance, in Figure 2(c), we obtain five
different induced subgraphs (motifs) composed of four nodes
for a example hypothetical network. Note that, FANMOD
algorithm detects 3-node and 4-node motifs in two separate
runs. Therefore, in the rest of the experiment, we analyze the
3-node and 4-node motifs separately. We have removed all
such anomalous cases where the “longevity” of a motif – that
is the difference in the number of years between the author
pair who collaborated latest in the motif and the author pair
who stopped collaborating earliest in the motif – is negative
(discussed in further details in section V) which essentially
indicates that such group collaboration never existed in the
network. This filtration in turn deletes the invalid groups from
the entire motif set. The motif distribution of the filtered
collection of motifs in the overall collaboration graph G is
shown in Figure 3(a). Chain motifs are found to be most
prevalent. This result is also true for all year-wise subgraphs
(Gi) as shown in Figure 3(b).
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Fig. 3: (Color online) (a) Fraction of each type of 3-node
motifs among all 3-node motifs and the fraction of each
type of 4-node motifs among all 4-node motifs in the overall
collaboration graph G (Mi stands for Motif i), and (b) their
year-wise distributions.

IV. MEASURING EFFECTIVENESS OF MOTIFS

In this section, we measure the effectiveness of the
motifs through the formulation of a fundamental quantifier of
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Fig. 4: (Color online) Cumulative distributions of Wav for all
motifs. The vertical line in each frame indicates the cutoff
based on which we develop a binary SVM classification model
to distinguish productive motifs from the others.

group collaborations: productivity. Since the number of papers
published is not a quality metric, we define the productivity of
a motif in terms of the average citation frequency per edge of
all the involved publications. These citation frequencies serve
as our surrogate measure for the impact of the publication. A
crucial step is to convert the impact of publications into edge
weights in the collaboration network. This conversion can be
done in several different ways. We adopt two most effective
measures proposed by Krumov et al. [10] for quantifying
productivity of a motif.

For an edge e in the motif, let P (e) denote the set of
publications represented by e. For a publication p, c(p) denotes
the citation frequency of p. Then the productivity of a motif
can be defined as follows:

Wt =
1

|E|

∑

e∈E

∑

p∈P (e)

c(p) (1)

where E is the set of edges in a motif. The subscript t is
used to indicate the “total” productivity not normalized by the
number of publications. Alternatively, if we wish to normalize
with the number of publications then the equation can be
rewritten as

Wav =
1

|E|

∑

e∈E

1

|P (e)|

∑

p∈P (e)

c(p) (2)

It is not a priori clear which of the two measures defined
above is the best way to define productivity since each has
its own justification. Therefore, we use both the measures
separately while calculating productivity of a motif in the rest
of the experiments.
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Fig. 5: (Color online) Year-wise productivity distribution per
motifs. Mi stands for Motif i.

Distribution of productivity: We plot the distribution of
productivity for all the motifs in Figure 4. We observe that
both the productivity measures follow similar distribution.



Therefore, for the sake of clarity and conciseness, we only
plot the distribution of Wav in Figure 4. In each plot, we
draw a vertical line to indicate the threshold that marks a
high-productive motif (mostly concentrated in the tail of the
distribution) from the rest of the lot. We further plot the
year-wise behavior of the productivity of different motifs in
Figure 5. This indicates that the star motif (Motif 3) and the
4-clique motif (Motif 8) have a relatively higher productivity.
The reason for the high productivity of these two motifs can
be intuitively explained as follows – while for the star motif
the central node is possibly representative of a very important
scientist and a majority of the productivity of such a star motif
can be attributed to this “center of power”; the 4-clique on the
other hand is the ultimate “stable point of attraction” for all
the other structures. Note that, the concentration of 4-cliques
is not very high (see Figure 2) in the system which indicates
that it takes long enough (due to “add-edge one” behavior as
we shall see later) before other structures can finally land up
to this highly productive penultimate configuration. Another
important point that is reflected in the year-wise analysis is that
while the values of Wav for all motifs start coinciding in the
years after 2000, the same is not true for Wt. This is possibly
because there is an exponential increase in the total number of
publications and the normalization of the citation counts with
such “astronomic” number of publications that forces the Wav

of all the different motifs to coincide. These observations are
in sharp contrast with previous results reported by Krumov et
al. [10] where they report that the box motif has the maximum
productivity as compared to others.

V. MOTIF CHARACTERISTICS

In this section, we first identify a set of discriminative
features that could be attributed to the characteristics of a
group (i.e., a network motif). All the distinctive features of
group collaborations are derived from the characteristics of
the constituent authors. We also analyze the correlation of the
following features with productivity for all the motifs.

A. Construction Time (CT)

Since each individual edge in a motif indicates an
one-to-one collaboration, it is associated with a year, the
year when two collaborators published their first joint paper.
Therefore, an edge is created by the first publication of the
authors constituting this edge. For an occurrence of a motif,
the construction time is the time between the earliest and the
latest year of creation of the edges that constitute the motif.
Formally, the Construction Time (CT) of a motif M is defined
as: CT (M) = Max(Cr(ei)) −Min(Cr(ei)) + 1, ∀ei ∈ M ,
where Cr(ei) = year of creation of edge ei (ei ∈ M ). For
example, if a 3-node motif M is constructed from three edges
e1, e2 and e3, and Cr(e1) = 1972, Cr(e2) = 1973, Cr(e3) =
1974; then the construction time of M is CT (M) = (1974 -
1972) + 1 = 3 years.

We intend to examine whether the construction time has
any effect on the productivity of a motif. The frames in
the first column of Figure 6 show the average productivity
of all occurrences of a particular motif that have the same
construction time. The curves show that the construction time
does not bear a very strong correlation with the productivity
for any of the motifs. This indicates that the time required for

a group to come to existence does not, in general, strongly
determine the overall quality of the group.

B. Experience Diversity (ED)

The group collaborations can be categorized based on the
duration of research experience of the constituent researchers
forming the group. For instance, a group comprising a
supervisor and her students is different from a group containing
contemporary researchers. Note that, by the term “research
experience” of a researcher, we mean the time difference from
the earliest year when she published her first paper to the
present time. The more the diversity (variance) of the research
experience of the constituent collaborators in a motif, the more
the motif indicates a group led by the senior researcher(s)
with young fellows (e.g., supervisor-student group). We would
like to check whether there is an effect of overall experience
diversity of a group on productivity. The frames in the second
column of Figure 6 show the productivity of all the motifs
arranged in various ranges of experience diversity. We observe
that the productivity (for both the measures) decreases with
the increase of experience diversity of a group. From this, we
might conclude that the groups comprising peer researchers of
similar experience are much more productive compared to the
groups led by a single experienced researcher.

C. Citation Variance (CV)

Another important feature that makes a researcher
recognized in the scientific community is the average number
of citations received by the papers she has published. A long
span of research experience of an author may not indicate
high number of average citations per paper she published.
Here, for a researcher, we extract the overall number of
citations (normalized by the number of papers) received by
that researcher. Then similar to the earlier experiment, we
find out the variance of the normalized citation counts of all
constituent researches in a motif. Essentially, we are interested
to see how the citation variance drives the productivity of a
group collaboration, i.e., are the groups containing all highly
cited researchers superior than the less cited groups? In the
two frames of the third column in Figure 6, we observe that
except in star motif (Motif 3), all the other motifs show a
consistent pattern that the average productivity increases with
the increase of citation variance. This result is markedly in
contrast to the earlier results shown for experience diversity.
Therefore, these two results imply that experience diversity
and citation variance are not at all correlated when measuring
with respect to the productivity of a motif. We shall discuss
this in more details in section VI.

D. Recency (RC)

As the citation counts accumulate over time it is important
to have a measure of the age of a group and observe its
relationship with the productivity metric. The recency of a
motif indirectly indicates the amount of time the motif is
staying in the system without getting converted to a different
motif. Note that, the clique motifs (M2 and M8) cannot get
converted as we do not consider deletion. We study as a feature
the number of years since the motif was fully created. In order
to find out the recency of a motif, we map the motifs between
two consecutive years and measure how long the motif under
inspection is stable without any further edge addition (see
section VII-A). We expect that the longer a group (motif) stays,
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the more citations it might receive. The frames in the forth
column of Figure 6 show that productivity of all the motifs
increases with the increase in the stabilization time.

E. Longevity

Longevity of a group collaboration is also one of the
important characteristics. We define the longevity of a motif
as the number of years between the commencement of the last
collaboration and the termination of one of the collaborations.
For instance, let us assume a 3-chain motif M having edges
e1, e2 and e3. Each individual edge denotes an one-to-one
collaboration. Let us denote the creation times (when two
end-researchers of an edge published their first paper together)
of these three collaborations by Cr(e1), Cr(e2) and Cr(e3)
(say, Cr(e2) 1 Cr(e1), Cr(e3)) respectively and the time
when two end-researchers of an edge published their last paper
together of these three collaborations by Dl(e1), Dl(e2) and
Dl(e3) (say, Dl(e1) 6 Dl(e2), Dl(e3)) respectively. Then the
longevity of M is (Dl(e1) - Cr(e2)) +1 (we also consider
the year when the last edge has been created). Formally,
the longevity (τ ) of a motif M is defined by the following
equation: τ(M) = min(Dl(ei))−max(Cr(ei))+1, ∀ei ∈ M ,
where Cr(ei) and Dl(ei) denote the creation and the deletion
years of the edge ei respectively. For example, if a 3-node
motif M is constructed by three edges e1, e2 and e3, and
Cr(e1) = 1972, Cr(e2) = 1973, Cr(e3) = 1974, Dl(e1) =
1976, Dl(e2) = 1979 and Dl(e3) = 1984; then according to
the equation, the longevity of M is τ(M) = (1976 - 1974)
+ 1 = 3 years. Note that, it may happen that τ becomes
negative for a certain motif when the motif contains such
an edge which is created after the year when one of the
edges of that motif has already been destroyed. As mentioned
in section III, we completely ignore such motifs in all our
experiments. Surprisingly, in Figure 6 (last column) we notice
that although Wav decreases with the increase of longevity,
Wt increases significantly with longevity for all the motifs.
This is probably an indication of the saturation of productivity
of an existing collaboration with the increase of longevity,
though they accumulate significant amount of citations for
their published papers. Note that, recency and longevity are
two completely independent measures, where the former is
calculated based on the motif transition behavior, the latter is
measured based on the time stamp associated with each edge
of a motif.

VI. CLASSIFICATION MODEL

In this section, we discuss a classification model that can
help classify the motifs based on their productivity measure. It
takes into account a set of discriminating features as discussed
in section V: construction time (CT ), experience diversity
(ED), citation variance (CV ), recency (RC) and longevity
(τ ).

A. Feature correlations

Before entering into the detailed description of the model,
we perform a systematic analysis of the correlations between
the features in order to identify if any of the features is
fully determined by some other feature(s) and thus may be
dispensed. For this, we calculate the Pearson correlation among
the features and plot them in a heat map in Figure 7. We
observe maximum correlation between recency and longevity
(0.31), followed by recency and construction time (0.21). The
highest negatively-correlated pair is recency and experience
diversity (-0.25), followed by citation variance and recency
(-0.12). Most of the correlations among the pairs of features
are very small or negative which imply that the feature set
is highly discriminative and negatively-correlated. Note that,
as we do not observe any of the features to be highly related
(correlation of the order of 0.9 or more) to any other it is
not possible to dispense some of them in lieu of the other.
Therefore, we use all the features in the subsequent analysis
and the classification model made in the rest of this section.
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B. Evaluation metrics

To evaluate the performance of a binary-classification
model, one can simply measure the overall accuracy of the



system in comparison to the gold-standard dataset. The Overall
Accuracy (OA) can be defined as follows:

OA =
Number of correct classifications

Total number of samples
(3)

However, measuring only the OA may not properly indicate
the true performance of the system, especially when the
population on which the system is evaluated is biased towards
a single class. Therefore, in order to measure the performance
of the system at a more granular level, we also estimate the
following metrics along with the OA:

Sensitivity(R
+
) =

Correctly classifed positive samples

True positive samples
(4)

Specificity(R
−
) =

Correctly classifed negative samples

True neagtive samples
(5)

PositivePrediction(P
+
) =

Correctly classified positive samples

Positive classified samples
(6)

NegativePrediction(P
−
) =

Correctly classified negative samples

Negative classified samples
(7)
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Fig. 8: (Color online) Performance of SVM model to classify
motifs based on the productivity measure. Mi stands for Motif
i.

C. Classification model based on productivity

This model is a binary classifier that tries to classify
the motifs based on their productivity. To decide the cutoff
among the spectrum of productivity values of motifs, we
draw the distributions of Wav and Wt. We observe that both
the distributions follow similar patters for all the motifs.
Therefore, we only consider the distribution of Wav as shown
in Figure 4 to decide the threshold. We observe that in
most of the cases, the first dipping of the distribution of
Wav occurs at the value of 10 in the x-axis of Figure 4.
Therefore, the threshold is decided to be 10, i.e., the motifs
having Wav <10 are considered as “low-productive” (positive
class) and the rest as “high-productive” (negative class). From
Figure 4, it is apparent that the population is highly biased
towards the positive class. Here, we use Support Vector
Machine (SVM) [16] as a supervised machine learning model
to classify the motifs. For training and classification phases of
SVM, we use YamCha5 toolkit and TinySVM-0.0756 classifier
respectively with binary decision method and a linear kernel.
We adopt a 10-fold cross validation technique where the whole
population is divided into 10 chunks. We perform 50 different
iterations and in each iteration, nine of them are randomly
sampled out for training purpose and the rest one for testing.

5http://chasen.org/∼taku/software/yamcha/
6http://chasen.org/∼taku/software/TinySVM/

The performance of the classifier is measured for each of the
motifs separately and pictorially depicted in Figure 8. On an
average, this model shows nearly 82% accuracy for all the
motifs. Here, the model more accurately classifies 4-clique
motifs based on productivity (OA=0.95, R+=0.98, R−=0.62,
P+=0.96 and P−=0.74) which is followed by semi-clique
and box motifs. This result immediately shows that 4-cliques
have a markedly different behavior as was also observed in
the previous sections. Since they represent the penultimate
configuration, the accuracy of the model should be the best
for them and indeed so is the case. This again clearly justifies
the significance of the use of motifs in this entire study as
opposed to any other form of structural analysis. In addition,
we observe that while R− is greater than 60% throughout,
P− for the 4-node motifs is greater than 60% which is again
a good achievement of the model.
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Fig. 9: (Color online) Error analysis for the classification
model. Each frame shows the average error of the model when
removing the corresponding feature mentioned in the frame.
The broken green line depicts the average error when using
all features. The number i in x-axis stands for Motif i.

Error analysis: We systematically analyze the significance
of the features used in this model by dropping each of
them in isolation and measure the performance of the model.
Figure 9 displays the error that occurs due to omission of each
feature. Here, while four of the features, namely construction
time, experience diversity, recency and longevity seem to be
only marginally important in the classification model, the
citation variance (CV ) turns out to be an extremely important
classification feature for all the motifs. In particular, for 4-chain
motifs (Motif 4) and 3-loop out motifs (Motif 5), dropping the
citation variance can degrade the performance of the model
nearly by three times. We also observe that it has highest
correlation with the productivity measures (Pearson correlation
of 0.29 and 0.39 with Wav and Wt respectively) compared to
the other features. Therefore for a deeper analysis, we use
only CV as a feature in the SVM model and measure the
accuracy. Interestingly, we observe that though CV has highest
correlation with the productivity measure and dropping it from
the classification model causes maximum decrease in accuracy,
keeping only CV in the model results in 62% average accuracy
for all the motifs, which is quite low compared to the combined
effect (82% average accuracy). Further analysis on the absolute
values of the citation variance for all the motifs reveals
that alone is not sufficient to determine proper discriminative
boundaries corresponding to the two classes of productivity
(high/low). Further, to examine the combined effect of the
feature set, we include each feature one at a time along with
CV in the SVM model in the following order (decreasing
order of average error obtained from Figure 9): RC, CT ,



ED, τ . Then we measure the average accuracy for each
addition and obtain accuracy values as 76%, 80%, 81%, 82%
according to the ordered sequence mentioned above. Here, one
can clearly notice that the combined effect also follows the
same ordering as mentioned earlier along with the maximum
gain obtained due to the addition of RC with CV . However,
longevity seems to be less effective for classification model.
This analysis indeed reflects the importance of individual
features for distinguishing productive groups from the others.

VII. DISCUSSION

In this section, we first discuss an important dynamical
characteristics of motifs – their time-transition behavior
and the effect of the time transition in the overall gain/loss
of productivity. Then we further look back into the entire
population of motifs and put forward some real examples of
motifs comprising renowned computer science scientists found
in our dataset to infer some interesting insights regarding
group collaboration.
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Fig. 10: Transition of 4-node motifs after adding a single
edge (upper) and the toy example of mapping motif(s) across
successive timestamps (TS) (lower).

A. Motif transition

As mentioned earlier, one of the primary objectives of our
study is to analyze the motif transition over the time-periods
that indicates the propensity of each motif to metamorphose
to another. We have already mentioned the use of motif
transition earlier when describing the recency of a motif. In
a time-varying environment, if a single edge is added to a
motif in each pass keeping the number of nodes constant,
the structure of the motif changes into another form. For
instance, addition of an edge can convert a 3-chain to a
3-clique. For 4-node motifs, the process follows a little
complicated dynamics as shown in Figure 10 (upper). For
instance, addition of a single edge in the system one at a time
can lead to any of the following three paths (or the sub-paths):
(a) → (c) → (e) → (f), (b) → (d) → (e) → (f) and
(b) → (c) → (e) → (f). However, in real-world scenario, it
can be possible that more than one edge get added between
two consecutive timestamps.

We extract motifs from each of the year-wise graphs Gi.
Now the next task is to map each motif in year ti to one of
the motifs in year ti+1. Instead of one-to-one mapping, we
adopt a one-to-many functional mapping technique shown in
Figure 10 (lower). Here, if n nodes in a motif M at time ti are

divided between two motifs (say, M1 and M2) at ti+1 keeping
m and (n − m) nodes of M respectively, then we consider
m
n

fraction of M is transformed into M1 and rest n−m
n

of M
is transformed into M2. In this way, we compute the fraction
of changes of one motif to others across all time transitions
present in our dataset. Figure 11(a) shows this fraction (in
%) for all the motifs. For instance, Motif 3 is transformed
into Motif 5, Motif 7 and Motif 8 in 72.26%, 12.56% and
15.18% of overall transformations respectively. One important
observation is that, most of the motif transitions show a similar
behavior that they usually follow “add-edge one” behavior
discussed in Figure 10 (upper), i.e., the fraction of transitions
of one motif to the other motif(s) due to the addition of a
single edge is higher than the fraction of transitions to other
motif(s) through the addition of multiple edges. These results
imply that the dynamics of group formation is usually not an
arbitrary process, rather it evolves in a steady and systematic
fashion with single edge addition in each transition.

We further study the cost of motif transitions in terms of
the gain/loss of productivity. We define the gain of productivity
(∆W ) due to motif transition as follows: ∆W = Wnew−Wold

Wold

(W can be replaced by Wav or Wt). Figure 11(b) shows
that in all the transitions, the gain in productivity is positive
when the final structure is the 4-clique (Motif 8). This again
corroborates that 4-clique acts as the final reservoir for all the
other structures, and therefore, the evolution is driven towards
this structure. Another interesting observation here is that the
productivity increases when a star motif gets converted to a
clique motif, although in general star motif is more productive
than clique motif (see Figure 5). However the chance of this
conversion is rare (see Figure 11); hence in most cases clique
motif appears after passing through several other intermediate
motif configurations subsequently decreasing the productivity.
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Fig. 11: (Color online) (a) Fraction (in %) of changes of one
motif into the others across all time transitions and (b) gain in
productivity due to motif transition (Mi stands for Motif i).

B. Analysis of productive motifs

Here we refer to some real world highly productive motifs
found in our dataset and provide some interesting results for
those motifs.
• Jon Kleinberg’s collaborations: We find a star motif
comprising Y. Rabani, E. Tardos, J. Kleinberg, F.T. Leighton
(where J. Kleinberg7 is placed at the center of the motif)
to be the most productive group in our dataset in terms of
Wav . However, the construction time of this group is 2 years
and the experience diversity is also high. This group lasted
around 10 years which is reasonably high in our dataset. On
the other hand, if we observe another star motif constituting

7http://www.cs.cornell.edu/home/kleinber/



A. Aggarwal, M. Charikar, D. Williamson in three peripheral
nodes and centered around J. Kleinberg, we get significantly
different statistics. Although the construction time is similar to
the earlier one, its productivity and longevity are very less. As
expected, we observe that the second motif gets converted to a
4-clique (comprising A. Aggarwal, M. Charikar, J. Kleinberg
and others) and a 3-loop out (comprising D. Williamson and
others) in order to gain productivity.
• Jiawei Han’s collaborations: We have noticed in section
V that a 4-chain tends to get converted to a 4-clique motif
more often in order to gain high productivity. A prominent
evidence found in our dataset is the 4-chain comprising
Jiawei Han8, Yongjian Fu, Zhaohui Xie, Wei Wang (where
three collaboration edges are formed between first-second,
second-third and third-forth authors sequentially in order). This
motif lasted for 3 years before augmenting three other edges
to form a 4-clique, and this transformation produces a gain in
12% of Wav and 15% of Wt.
• Michael I. Jordan’s collaborations: Interestingly, we
observe that Michael I. Jordan9 is present in star motifs
maximum number of times and the recency of those motifs
is also very small in comparison to the other star motifs.
However, the 3 clique motif containing David M. Blei, Andrew
Y. Ng, Michael I. Jordan seems to be the most productive in our
dataset in terms of Wt. A deeper look into this collaboration
reveals that this motif gets maximum citations due to the
famous paper on “Latent Dirichlet Allocation” [17].
• James Allan’s collaborations: Similar to the earlier
observations, James Allan10 is found to occur in maximum
number of times in 4-cliques. However, maximum productivity
is observed for the star motifs comprising J. Allan., J. Callan,
W. B. Croft, and M. Hirsch centered around J. Allan. This
motif lasted 8 years before converting to a 4 clique. However,
this transformation achieves very less overall gain in Wav

(2%) and Wt (4.5%). The maximum productive 4-clique
motif among his collaborations constitutes J. Carbonell, G.
Doddington and J. Yamron along with him.
• Nicholas R. Jennings’s collaborations: A typical pattern
found in most of the motifs centered around Nicholas R.
Jennings11 is that their experience diversity is quite high even
if these motifs gain significant higher productivity. This is
counterintuitive to our earlier observation in section V that
the groups with high experience diversity tend to be less
productive. The motif set constituting N. R. Jennings is mostly
dominated by 4 cliques followed by the star motifs. However,
the most long-lived motif centered around him constitutes K.
P. Sycara, M. P. Georgeff and M. Wooldridge in the periphery
that lasted for 5 years.

VIII. CONCLUSIONS

In this work, we showed that in the collaboration network,
motifs have significant potential to unfold the underlying
dynamical behavior of scientific teams. We proposed a set
of characteristic features to describe such motifs and related
them to productivity, a fundamental goodness measure of a
group collaboration. We conclude the paper mentioning few
interesting outcomes and some immediate future directions

8http://www.cs.uiuc.edu/∼hanj/
9http://www.cs.berkeley.edu/∼jordan/
10http://ciir.cs.umass.edu/∼allan/
11http://users.ecs.soton.ac.uk/nrj/

as follows: (i) we observe that the star and the 4-clique
motifs are highly productive, (ii) the characteristics of a group
collaboration can suitably be explained in terms of a set
of distinctive features of the constituent researchers, (iii) in
real-world, the transition of motifs over the successive time
steps is usually not abrupt, rather it systematically follows
“add-edge one” mechanism, (iv) transition to a 4-clique
produces the largest gain in productivity for all the motifs,
(v) the characteristic features of a group collaboration quite
efficiently classify network motifs based on the productivity
with the best classification obtained for the 4-clique motifs.

We believe that a stronger connection between the motif
patterns and the underlying elementary processes in the system
(selecting authors for a publication, selecting articles to be
cited within a publication) can be achieved via generative
minimal models [10]. The current analysis might also allow us
to forecast the number of citations that an author/collaboration
could possibly acquire in future thus leading to the design
principles of an efficient recommendation system.
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