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Abstract—Study of community in time-varying graphs has
been limited to its detection and identification across time. How-
ever, presence of time provides us with the opportunity to analyze
the interaction patterns of the communities, understand how each
individual community grows/shrinks, becomes important over
time. This paper, for the first time, systematically studies the
temporal interaction patterns of communities using a large scale
citation network (directed and unweighted) of computer science.
Each individual community in a citation network is naturally
defined by a research field – i.e., acting as ground-truth – and
their interactions through citations in real time can unfold the
landscape of dynamic research trends in the computer science
domain over the last fifty years. These interactions are quantified
in terms of a metric called inwardness that captures the effect
of local citations to express the degree of authoritativeness of a
community (research field) at a particular time instance. Several
arguments to unveil the reasons behind the temporal changes
of inwardness of different communities are put forward using
exhaustive statistical analysis. The measurements (importance
of field) are compared with the project funding statistics of
NSF and it is found that the two are in sync. We believe
that this measurement study with a large real-world data is an
important initial step towards understanding the dynamics of
cluster-interactions in a temporal environment. Note that this
paper, for the first time, systematically outlines a new avenue of
research that one can practice post community detection.

Keywords—community analysis; ground-truth communities; ci-
tation network; computer science; temporal network

I. INTRODUCTION

Detecting clusters or communities in real-world graphs
such as large social networks, web graphs, and biological
networks is a problem of considerable practical interest and
has of late received a great deal of attention [1] [2]. The studies
on community formation has gradually moved away from
finding exclusive community [3] [4] for each individual node
to the domain of “overlapping communities” [5] where it is
believed that a node may be a member of several communities.
Recently, significant research indicating the existence of a
consistent partition of nodes across multiple snapshots of an
evolving network have been conducted which has shifted the
community related study in the direction of “temporal/time-
varying communities” [6] [7].

Though several works on detecting and tracking commu-
nities in a temporal environment have been conducted [8] [9],
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the interactive patterns of the detected communities over a
temporal scale still remain unexplored mainly due to the lack
of standard ground-truth communities. More specifically, one
can ask for a metric to understand the dynamics and also rank
the importance of various communities over time. This paper
stresses on developing ground-truth overlapping communities
in terms of the research fields of a large-scale directed citation
network of computer science. It then systematically explores
the longitudinal (i.e., with the progress of time ) inter-cluster
interactive patterns to unfold the latent characteristics of the
network that indeed explains the rise and fall of the impact of
scientific research communities over the last fifty years.

The major contribution of our work is fourfold. To start
with, we describe for the first time a large-scale paper-paper
directed citation network of the computer science domain with
the fields annotated thus representing the natural partitioning
of the network into ground-truth community structures. Each
field represents a community [10], the communities overlap
as some papers belong to multiple fields; we rigorously check
the goodness of these community structures with well-known
community-centric metrics [11]. Next, we propose a simple
edge-centric measurement called “inwardness” of a community
(research field in this case) to capture the dynamics of inter-
cluster interactions across time points which can explain the
varying degree of impact of the scientific research commu-
nities. Subsequently, to understand this phenomena in more
granular level, we postulate several explanations to unveil the
possible reasons for such a dynamical behavior of research
communities using exhaustive statistical analysis. In particular,
we quantify the impact of a scientific community, the influence
imparted by one community on the other, the distribution of the
“star” papers and authors, the degree of collaboration and sem-
inal publications; all these properties converge to a consensus
in quantifying the typical dynamics of research communities
efficiently. Finally, we validate our proposed framework with
the evidence of another extraneous statistics of the project
funding decisions made by NSF (National Science Foundation
of the USA). We also believe that this work additionally
makes important contributions purely from the perspective of
citation network. This is one of the first large scale studies
to understand the trends in a research field. A recent work
on the computer science knowledge networks [12] has been
carried out with the aim to understand its structure and to
determine clusters of similar and high-prestige venues. Yang
and Leskovec [13] developed ground-truth communities of
real-world undirected static networks and detected overlapping
communities from these networks [11]. In this experiment,
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we adopt a longitudinal framework to represent the ground-
truth communities of citation network, and understand their
evolution using simple statistical analysis. Note that through
this work we present for the first time a precise methodology
for post-hoc analysis of the community structures obtained
from a large scale network.

Besides, the study leads to several interesting findings,
some of which are noted below. In almost all cases, the
field constituting the current major area of research within the
domain is overtaken in the immediate future by its strongest
competitor. The density of high impact publications within a
field plays a pivotal role in pulling as well as sustaining the
field at the forefront. Certain fields produce a huge number
of citations (i.e., act as hubs [14]) for a particular field
and, thereby, push it to the forefront; an abrupt fall in the
number of such received citations, in many cases, triggers the
decline of the field currently at the forefront. The inception
of seminal papers in a field might trigger the emergence of a
field at the forefront. The degree of team work (both within
and across continents) in the form of joint publications seem
to significantly contribute to the shape of the evolutionary
landscape. We also find the fields that are presently at the
forefront influence the current funding decisions much less
than the funding decisions influence the emergence of a field
at the forefront in the immediate future.

The rest of the paper is organized as follows. The process
of collecting citation dataset, tagging and the construction
of network and ground-truth communities are elaborated in
section II. In section III, several community scoring functions
are used to judge the goodness of the ground-truth commu-
nities. Then in section IV, we outline the time profile of the
evolution of scientific communities after analyzing the inter-
cluster interactions. Next we present a detailed analysis of the
possible causes explaining this temporal dynamics of research
communities in section V. In section VI, we point out how our
results are correlated to research funding and finally conclude
the paper in section VII.

II. DATASET AND CONSTRUCTION OF THE NETWORK

The traditional information pertaining to citation networks
like papers and citation distributions are not adequate in
this study to meet all the experimental needs. The analysis
needs several other related information about each paper, e.g.,
publication year, research field, authors and their continents.
Note that the authors and continent information are required
to pose one of the arguments behind the global dynamics of
inter-cluster interactions as described in the section V. We have
used the dataset of the computer science domain developed
by Tang et al. [15]1 for our experiments. It was constructed
using the DBLP web repository which contains information
about various research papers from different fields of computer
science domain published over the years. This information
includes the name of the research paper, index of the paper,
its author(s), the year of publication, the publication venue,
the list of research papers the given paper cites and (in some
cases) the abstract of the papers. Certain general information
pertaining to the downloaded raw dataset is noted in the second
column of Table I.

1http://arnetminer.org/citation, named as DBLP-Citation-network V4

TABLE I. GENERAL INFORMATION OF RAW AND FILTERED DATASET.

Raw Filtered
dataset dataset

Number of valid indices 1,079,193 702,973

Number of entries with no venue 582 –
Number of entries with no author 5,773 –

Handbook 1,649 –
Archive 86,169 –

Number of papers before 1960 886 –
Number of papers having no in-citation –

and out-citation 272,325 –
Partial data of the year 2009 8,836 –

Number of authors 662,324 495,311
Average number of papers by an author 3.82 3.52

Average number of authors per paper 2.615 2.609
Number of unique venue name 2,319 1,705

In order to make the data suitable for our experiments,
we extract only those entries which contain the information
about the paper index, the title, publication venue (confer-
ence/journal) of the paper (required for field tagging), the year
of publication and the citations. In general, the trend shifts of
scientific communities are affected manifold by contributory
papers than by reviews, surveys and text books, and therefore
we exclude these items from our data. Further, in order to
make our data bounded we consider only those papers that
cite or are cited by at least one paper. Some of the general
information pertaining to the filtered dataset are presented in
Table I.

A. Field Tagging

The natural intuition behind considering each scientific
field as a separate community is that the intra-field citation
density is generally much higher than the cross-field citation
density which concurs with the traditional definition of a com-
munity (higher edge-density within a community than across
communities) in a network [16]. People tend to inherently build
these natural groupings due to their common research interest.
Moreover, the increasing rate of interactions across multiple
research communities now-a-days enhances the possibility of
overlapping communities resulting in the emerging trend of
interdisciplinary research (e.g., computational biology). Since
the filtered dataset does not have the necessary field informa-
tion of the papers, we tag them using the Microsoft Academic
Search Engine2. This website covers more than 38 million
publications and over 19 million authors across a wide variety
of domains with updates added every week. It categorizes
papers of computer science domain into the fields as noted
in Table II. We have crawled the site to find the field(s) of
papers present in the filtered dataset using the title of the
paper. Approximately, 88.12% of the papers could be tagged
with their respective fields when searched with the paper title.
Fields of rest 11.88% of the papers have been inserted using
the conference/journal name of the paper. About 11.23% of the
papers have more than one field. Table II notes the percentages
(decreasing order) of papers in various fields in the tagged
dataset. We also show in the table the average ten-year impact
(Equation 1) for each field between the years 1960 and 2008.
Note that this value indicates the average impact of a research
community due to the incoming citations emanating from the
papers of the other communities.

2http://academic.research.microsoft.com/

2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

427



TABLE II. PERCENTAGE OF PAPERS IN VARIOUS FIELDS AND THEIR AVERAGE INWARDNESS IN EACH DECADE (FOR EACH DECADE, TOP AND SECOND

RANKED INWARDNESS MEASURES ARE IN BOLD FONT).

No. Subject Abbreviation % of papers Average Inwardness
60-69 70-79 80-89 90-99 00-08

1. Artificial Intelligence AI 15.30 0.02 0.67 4.94 5.14 3.29
2. Algorithms and Theory ALGO 14.09 4.13 4.49 3.39 2.12 0.55
3. Networking NW 8.63 0.19 0.53 1.06 3.42 1.76
4. Databases DB 8.12 3.75 3.67 1.80 1.14 0.17
5. Distributed and DIST 7.63 0.02 2.02 2.86 1.55 0.56

Parallel Computing
6. Hardware & Architecture ARC 7.29 0.41 2.49 2.29 1.12 1.04
7. Software Engineering SE 6.40 1.98 3.21 1.89 1.67 0.52
8. Machine Learning ML 6.09 0 0.43 2.51 2.97 2.62

and Pattern Recognition
9. Scientific Computing SC 4.02 0 1.14 2.38 2.91 0.19

10. Bioinformatics BIO 3.88 0 0 0.71 1.27 0.56
& Computational Biology

11. Human-Computer HCI 3.42 0 0.03 1.65 2.05 1.39
Interaction

12. Multimedia MUL 3.34 0 0.53 2.51 2.22 1.33
13. Graphics GRP 3.32 0 0.56 2.58 2.63 1.07
14. Computer Vision CV 3.03 0 0.86 1.29 2.73 1.27
15. Data Mining DM 3.02 0 0.27 1.80 1.83 1.02
16. Programming Languages PL 3.00 0.41 2.49 3.86 2.46 1.29
17. Security and Privacy SEC 2.94 0 0.86 3.80 2.56 1.59
18. Information Retrieval IR 2.26 0 0.42 1.32 2.62 1.79
19. Natural Language NLP 2.11 0 0.13 1.16 2.82 1.92

and Speech
20. World Wide Web WWW 1.76 0 0 1.86 2.10 1.83
21. Computer Education EDU 1.67 0 0 0.80 0.83 0.39
22. Operating Systems OS 1.07 0.31 1.73 1.39 1.98 1.20
23. Real Time RT 0.90 0 0.67 1.56 2.52 0.54

Embedded Systems
24. Simulation SIM 0.14 0 0.30 1.20 2.70 0.87

B. Continent Tagging

As mentioned earlier, the continent information of an
author is used for analyzing probable reasons behind the
rise and fall of scientific research communities described in
section V. Microsoft Academic Search also provides location
of the authors like the name of the university/company they
are affiliated to and the continent information (North America,
South America, Asia-Oceania, Europe and Africa) of all the
universities. In order to tag the authors with their respective
continents, we search for their location through the search
engine. Initially, “exact name” of an author is searched in the
site to get the location. In case of more than one match, i.e.,
the case where many authors have exactly the same name, the
continents of all the matching authors are checked and the
continent of an author is approximated by the continent name
that recurs the largest number of times across the search results.
Almost 71% of the authors get tagged after this step. For
tagging the rest of the authors, we attempt to match an author
name with names which have all tokens (ignoring unit length
tokens) of the query author name. For instance, the query
“Jason A Blake” can be matched with “Jason Blake Audrey”.
About 9% of the authors get tagged after this step. For tagging
the rest of the authors, we find names that have maximum
overall token match with the query author name. Around
12.4% of the authors get matched with this step. In both the
previous steps, continent of query author is approximated by
the one that appears the largest number of times across the
search results.

Out of the 7.6% data to be tagged, we could approximate
the continent of 6.6% by the most common continent that the
collaborators of an author belong to. This is because we find
that within the tagged set 73% of times the continent of an
author matches with the continent that is most common across
his/her collaborators. At the end of the above steps, 99% of

the authors finally get tagged while the rest 1% of the authors
are left untagged and are not used further in our analysis.
The above steps are summarized in Table III. The number of
authors from Africa, South America and Asia-Oceania being
relatively low, we merge them together into a new category
called “Others” which we use for our future experiments.

TABLE III. HEURISTICS APPLIED FOR CONTINENT TAGGING.

Heuristics Percentage
Exact matching with query name 71%

Matching with all tokens of 9%
query name (except unit tokens)
Maximum overall token match 12.4%

Tagging approximated by the most 6.6%
common continent of the collaborators

Untagged authors 1%

Since our method is primarily based on suitable statistical
analysis of various properties of paper-paper citation network
that in turn characterizes the inter-cluster interactions, the
next task is to construct the citation network from the tagged
dataset. Formally, a citation network is defined as a graph
G =< V,E > where each node vi ∈ V represents a paper
and a directed edge eji pointing from vj to vi indicates that
the paper corresponding to vj cites the paper corresponding
to vi in its references. From our tagged dataset, a citation
network was constructed by the papers representing nodes
and the citations representing directed edges from the citing
paper to the cited paper. At a higher tier, each field (i.e., a
collection of papers) can be thought of as a single community
and two communities can again be linked by a directed
edge with edge-weight calculated using Equation 1 mentioned
in section IV. Following this strategy, we essentially obtain
a field-field directed and weighted network on top of the
paper-paper citation network which attempts to capture the
interaction patterns of the scientific communities. Note that
in each year, there are at most 24 communities (if there exists
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Fig. 1. (Color online) Community scoring functions for real-world ground-truth communities (sold lines) in different time windows (2004-2008, 1994-2003,
1960-1981, 1982-2008 and 1960-2008). Results from the randomized versions (10% and 100%) of the ground-truth communities are presented in the right-most
panel (indicated by RN). For better visualization, all the functional values are rescaled between 0 and 1. In each slice of the figure, Pearson’s correlation
coefficient (ρ) between two similar functions is reported.

at least one paper from each of the fields) and the size of
each community changes over the years depending upon the
number of publications in that field. A community at time t
can interact with any other communities at or before t.

III. COMMUNITY SCORING FUNCTIONS

We now discuss various scoring functions defined by Yang
and Leskovec [13] that characterize how “community-like” is
the connectivity structure of a given set of nodes. The idea
is that given a community scoring function, one can find sets
of nodes with high/low score (depending upon the function)
and consider these sets as communities. All scoring functions
are built on the common intuition that communities are sets of
nodes with many connections between the members and few
connections from the members to the rest of the network. Out
of 13 commonly used scoring functions proposed in [13], a few
have been proved to be necessary to capture the effect of all the
functions. We will discuss five such effective functions that are
again naturally grouped into three coarse-grained categories.

Let G(V,E) be a graph with n = |V | nodes
and m = |E| edges. Given a set of nodes S
with nS = |S|, mS = |(u, v) ∈ E : u ∈ S, v ∈ S|,
cS = |(u, v) ∈ E : u ∈ S, v /∈ S| and d(u) the degree of
node u, we consider a function f(S) that characterizes how
community-like is the connectivity of nodes in S.

(A) Based on external connectivity:
1. Expansion (EXPN): It measures the number of edges per
node that point outside the cluster, i.e., f(S) = cS

nS
.

2. Cut Ratio (CUT): It is the fraction of edges (out of all
possible edges) leaving the cluster, i.e., f(S) = cS

nS×(n−nS)
.

(B) Based on internal connectivity:
3. Fraction over median degree (FOMD): It is the
fraction of nodes of S that have internal degree higher than
the median degree of a vertex in the entire network, i.e.,
f(S) = |u:u∈S,|(u,v):v∈S|>dm|

ns
where dm is the median value

of d(v) for all v ∈ V .

(C) Combining internal and external connectivity:
4. Conductance (COND): It measures the fraction of
total edge volume that points outside the cluster, i.e.,
f(S) = cS

mS+cS
.

5. Flake-ODF (ODF): It is the fraction of nodes in S that
have fewer edges pointing inside than to outside of the cluster,
i.e., f(S) = |u:u∈S,|(u,v)∈E:v∈S|<d(u)/2|

nS

Note that, the less the values of EXPN, CUT, COND, and
ODF, the better is the community structure of the network. But
for FOMD, the reverse argument is true. However, the above
mentioned functions have been proposed for the undirected
graphs [13]. In the present experiment, we calculate each of
the functions separately for incoming and outgoing edges and
report the value after averaging them. These scoring functions
are used to obtain individual scores for each community, and
by averaging them we get the scores for the entire network. For
the purpose of comparison, all the scores reported are rescaled
within the range of 0 and 1. Since the present work deals with
the time-varying communities, we report the above functions
for the network in five time-windows (2004-2008, 1994-2003,
1960-1981, 1982-2008 and 1960-2008)3 to demonstrate the
robustness of these natural groupings to different sample sizes
of data (ranging from 5-year aggregate to 49-year aggregate)
(see Figure 1). For each time-window, we calculate Pearson’s
correlation coefficient (ρ) [17] between the functions in each
category (except FOMD). Across all different time points
and for all different data sets we observe that the correlation
between the scoring functions from within a group of measures
is always almost close to one. In order to further show that
the ground-truth communities are not arbitrarily formed and
are actually tightly knit, we randomly swap members between
communities (10% and 100% of all the nodes) keeping the
community sizes intact and show that the scores as well as
the correlations heavily degrade as one increases the degree

3Note that, these results are representative and therefore hold for any
reasonable size sampling of the data. The first set represents a period of the
most recent 5 years; the second set corresponds to a period of 10 years from
the immediate past; the third and fourth sets represent the full data partitioned
into two chunks and the last set presents the results on the entire dataset.
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TABLE IV. COMMUNITY SCORING FUNCTIONS OF THE NETWORK IN
DIFFERENT TIME-WINDOWS WITH THE GROUND-TRUTH (GT) AND

RANDOM (RN) COMMUNITIES.

Time-windows EXPN CUT COND ODF FOMD
GT (04-08) 0.411 0.84e(-6) 0.251 0.003 0.542
GT (94-03) 0.437 1.40e(-6) 0.332 0.004 0.522
GT (60-81) 0.710 1.02e(-6) 0.381 0.006 0.538
GT (82-08) 0.701 9.06e(-6) 0.283 0.002 0.559
GT (60-08) 0.610 1.02e(-6) 0.270 0.002 0.593

RN-10% (60-08) 0.768 1.18e(-6) 0.328 0.006 0.465
RN-100%(60-08) 0.985 2.15e(-6) 0.485 0.008 0.216

of random swaps (see the last column of Figure 1). We report
further the actual value of the functions for the entire network
in Table IV. Once again, note that for all different time points
and sample sizes, the ground-truth data have significantly
better scores as compared to their randomized counterparts.

IV. TIME TRANSITION OF SCIENTIFIC COMMUNITIES

In this section, we analyze the time profile of scientific
research communities showing how one community has taken
over another during the temporal evolution of the computer
sciences. In particular, we measure the impact of a field so as
to construct the time transition diagram reflecting the trend
shifts. Some of the previous experimental results [18][19]
show that the pattern of citations received by a paper after
its publication period is not linear in general; rather there
is a fast growth of in-citations within the initial few years
after the publication, followed by an exponential decay. We
notice the same property in our dataset and observe that the
average number of inward citations per paper peaks within
three years from the publication and then slowly declines over
time (see Figure 2). Note that this property is also prevalent
across the different fields of the domain (see inset of Figure 2).
Therefore, all our analysis throughout the rest of the paper
assume only the citations received by a paper within three
years from its publication since it is more appropriate to
predict the emergence of a field in the forefront based only
on the recently received citations by its constituent papers. We
quantify the importance of a paper (aka inwardness) in terms of
the total number of inward citations to the paper. Consequently,
the temporal inwardness of a field fi at time t denoted by
In(f t

i ) that captures the local citation count (within three-year
window) suitably normalized by the number of papers in that
field can be defined as

In(f t
i ) =

∑

j �=i

wt
j→i (1)

where wt
j→i =

ctj→i

nt
i

with ctj→i corresponding to the number of
citations received by the papers of field fi from the papers of
field fj , nt

i corresponding to the total number of papers in field
fi and 1 ≤ t ≤ 3. Note that for all our estimates, in addition to
this three-year window we also include the year of publication
of the paper. This inwardness metric is a measure of the degree
of authoritativeness of a research community proposed here for
the first time and defined in the line of what has been already
discussed in the context of individual publications [14].

In order to investigate the global time transition pattern
(i.e., the worldwide behavior) we compute the inwardness
of each scientific community (Equation 1) and rank them
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Fig. 2. (Color online) Average distribution pattern of inward citations (with
variances) for a paper after publication (inset: same measure for every field).

accordingly. For better visualization, we plot the top two values
(see the solid and broken lines respectively in Figure 3(a))
as a function of time. Each field is uniquely color coded
and the relative height of the y-axis shows the inwardness
of the field for a particular year. In each trend-window, we
also mention the name of the top hub (backup) field that on
an average produces the largest number of the citations for
the top ranking field. This information, as we shall see in the
next section, forms one of the major arguments explaining
the dynamics of scientific communities. The total number of
transitions of research trend during 1960 to 2005 is 11. A
careful inspection of the behavior of the curves shows that
in every trend-window, a similar pattern is followed with the
inwardness of the top field first rising and then gradually
declining near the transition. Simultaneously, the second rank
field which comes to the top position in the next trend-window
in every case starts reflecting a relative growth of inwardness
at the middle of the current trend-window. Bornholdt et al. [20]
mention a similar observation that the competing communities
are as if running in a continuous race to dominate others and
when the magnitudes of dominance (in this case, it is In) are
nearly equal between top and second top ranked communities,
a sudden chaos among the research communities suppresses
one of them and makes the other popular. However, in their
model once a field declines it never rises again; in contrast,
real data analysis here shows that there are at least two cases
(Algorithm: 3 times, AI: 3 times) where a field can decline
and then rise again at a later time. Another important issue
is that the differences of inwardness between the top and the
second top ranked fields in the long-ranged and short-ranged
trend-windows are largely different. We plan to investigate this
property in more detail in the next section. The average values
of inwardness of all the fields in each decade are mentioned in
Table II that precisely illustrate the “trending” of the research
communities in the last fifty years.

V. REASONS FOR TRANSITIONS

In this section, we conduct an exhaustive set of experiments
to investigate the reasons behind the typical dynamics of
scientific communities in the longitudinal scale observed in
the previous section. We focus on different orthogonal char-
acteristics all of which converge to reasons for the transitions
observed. While the first cause that we propose is from an
overall estimate of the data, the following three are time-
varying estimates of the data.
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Fig. 3. (Color online) (a) Top two scientific communities (based on inwardness) at the forefront of scientific research trend (names of topmost backup
communities for the communities in the forefront of every trend-window are mentioned). Cause analysis: Fig.(b) fraction of papers for top and second ranked
communities among the 10% high impact papers in each year; Fig.(c) change of citations from the topmost backup communities; Fig.(d) fraction of papers for
top and second ranked communities among the 10% highly influential papers in each trend-window. To smoothen the curves, the best sliding window size of
five years has been used.

TABLE V. RANKING OF TOP FIELDS IN EACH TREND-WINDOW IN TERMS OF COLLABORATIVE PAPERS, MULTI-CONTINENT PAPERS AND DIVERSITY
(AVERAGE RANKS OF TOP FIELDS IN TWO SEGMENTS OF 6 TREND-WINDOWS ARE SHOWN IN THIRD, FIFTH AND SEVENTH ROWS).

60-64 65-69 70-73 74-77 78-79 80-81 82-87 88-91 92-96 97-99 2000-2002 2003-2005
Collaborative Rank 13 8 13 11 3 13 6 12 2 6 1 6

Avg. 10.16 5.5
Multi-continent Rank 12 8 12 10 1 12 7 11 3 7 2 7

Avg. 9.87 6.17
Diversity Rank 11 8 11 13 12 11 3 9 10 3 4 3

Avg. 11 5.33

Cause I: Impact of collaborations
In this section, we show that, in the current years, the ex-

pansion of collaborative work within and across continents as
well as diversity in research interest can have direct influence
on the emergence of a scientific community at the forefront. To
this purpose, we measure the impact of collaborative research
by ranking all fields globally based on (i) the number of papers
in that field having multiple authors (collaborative papers),
(ii) the number of papers involving authors from multiple
continents (multi-continent papers) and (iii) the diversity of a
field measured by the average number of fields that the authors
of that particular field have worked. Note that in case (iii), the
more the diversity the higher is the rank of the field. Table V
notes the ranks in cases (i), (ii) and (iii) for those fields that are
at the forefront in terms of inwardness in each trend-window
and the average rank of these fields in two segments each
composed of six trend-windows. We observe that in all the
three cases the average rank in the second segment is much
higher4 than that in the first segment. This indicates that in
the current years, those fields that enjoy a higher number of
collaborations and a higher overall diversity in the research
interests of its constituent authors have an increased chance of
emerging at the forefront.

Cause II: High impact papers
We extract the top 10% of the papers that have the highest

number of in-citations (considering the last three years and the
current year) from among all the papers published in a year. We
call them as high-impact papers. Next we measure the fraction

4Note that, in this case, the rank x is higher than rank y if x < y conforming
to the usual notion of any ranking system.

of papers out of this 10% that belong to a particular field.
The fields are then ranked by this fraction and the fractional
values are plotted in Figure 3(b) for the top and the second
ranked fields. We observe that in 9 out of 11 cases a decline
in the fraction of high-impact papers of the top ranked field
and the simultaneous increase of high-impact papers in the
second ranked field trigger a transition in Figure 3(a). Another
important point to note is that in the later years, out of the
10% high impact papers, the fractions from the top and the
second ranked fields diminish rapidly. While in the initial years
this fraction is found to be close to 1, in the later years it
drops to 0.5. This could indicate the presence of a tremendous
competitive pressure from the other fields many of which now
have a place in the list of 10% high-impact papers unlike in
the earlier years.

Cause III: Citation patterns of backup communities
The impact of a paper in our experiment is determined

by the citations received from other papers. Therefore, one
of the important factors that helps a particular scientific
community to rise up to the top is the contribution of its
backup communities that direct most of their outward citations
to push this community to the top. In Figure 3(c), we plot bars
for each year indicating the fraction of citations that the top
ranked community (according to Figure 3(a)) received from its
primary backup community (i.e., the backup community that
brings in the largest number of citations). Note that, in 75%
of the cases, the citation received from the primary backup
community falls abruptly close to the transition indicating
that they play a pivotal role in keeping the dominant field
“dominant”. This abrupt fall could be possibly caused because
the citations coming from the backup communities start get-
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ting shared by other competing communities and the current
community at the forefront start losing its charm owing to
its member topics slowly becoming dated, thereby, losing the
“timeliness” advantage.

Cause IV: Effect of seminal papers
The two causes discussed above have a direct bearing with

the time transition of the research trend. However, there can
be indirect factors affecting the rank of a community – one
such factor could be the inception of seminal papers that have
potential to completely mould the direction of research in the
immediate future. In this section, we attempt to quantify the
impact of such papers by introducing a metric called Influence.
In particular, we consider only those citations that a paper
receives from the papers belonging to its own field published
within the three-year window, however, ensuring that the paper
being cited does not have any author in common with the
paper citing it. This expresses how important a particular
paper is within its own scientific community. The influence
(Influence(pti)) of paper pi at time t is defined as follows:

Influence(pti) =
∑

pj∈P t

1

dpj

(2)

where P t is the set of all papers that cite pi within the three
year window (1 ≤ t ≤ 3) and belong to the same field as of pi,
and dpj

corresponds to the total number of outward citations
from the paper pj .

We extract the top 10% influential papers in each trend-
window and find out from among them the fraction of influ-
ential papers for each field. We then rank the fields based
on this fraction and plot once again the top and second
ranked influential fields in each trend-window in Figure 3(d).
The results corroborate our hypothesis that the top rank field
(inwardness based) in a certain trend-window has the highest
number of influential papers in the previous window (almost
in 65% cases). In the earlier years (1960 to 1975), the two
fields namely Algorithm and Databases completely shadow all
other fields in terms of papers and citations. The competitive
pressure starts to appear mainly after 1975. If we measure this
fraction from after 1975, we observe that in six out of seven
cases (excluding the last window) the field that sees the birth
of the largest number of influential papers in a trend-window
emerges in the forefront in the immediate next trend-window.
This observation points to the fact that the influential papers
can play a very crucial role in determining the shape of the
future research trend.

VI. CORRELATION WITH RESEARCH FUNDING

It could be interesting as well as important to validate our
measurements with other extraneous real-world statistics di-
rectly or indirectly reflecting the evolution of scientific research
in computer science domain. To this purpose, we collect the
fund disbursal data of one of the major funding agencies of
the United States – the National Science Foundation (NSF)5.
Although this agency has a long funding history, the publicly
available data that we could gather is from 2003 to 2009.
In Table VI, we compare the top three fields ranked by our

5http://www.nsf.gov/

inwardness metric with the top three fields ranked by (i)
the number of NSF proposals submitted and (ii) the number
of proposals accepted in that field. The high-impact fields
predicted by our method match accurately with the trend of
proposal submission. To compare the two statistics, we propose
a similarity metric τ that is defined as

τ =
s

n
(3)

where s is the number of similar pairs and n is the number
of data points. As the number of data points are not many,
exact similarity might be a very strict assumption in this case.
Therefore, we relax τ by calling a pair similar if there is
any match between the top two pairs (instead of top one).
In Table VII, we report the pairwise similarity (τ ) between
the fields ranked by our method and fields ranked by (a) the
number of proposals submitted and (b) the number of proposals
granted in those fields. While measuring the similarity using
equation 3, we increment the value of s when (i) at least one
field is matching, and (ii) at least two fields are matching
with 50% weight for each matching. We report the similarity
values in the first row (OUR vs. SUBMIT) and fourth row
(OUR vs. AWARD) of Table VII for the same year. The results
clearly show that our predictions are very well aligned with
proposal submission while it is moderately aligned with the
fund disbursal patterns.

It is often observed that the current funding patterns sig-
nificantly affect the research directions of the future. Further,
at times, the current research trend seems to strongly influence
the funding decisions of the immediate future. The above
observations can be illustrated quantitatively here. In order to
do so, we introduce lagging6 and leading7 similarities between
fields ranked by the inwardness metric and those ranked
by the number of proposals submitted/awarded. We measure
two different similarity values – lead(fund, inwardness, 1)
and lag(fund, inwardness, 1). From the results depicted in
Table VII, we observe that the influence of funding decisions
on the future research trend is much more (lead) than the
influence of the current research trend on the future funding
decisions (lag). This shows that our results are remarkably in
line with the decisions made by the expert researchers involved
in such important proposal selection committees. However, we
remark that all our results are based on only a small number
of data points and should therefore be considered indicative.
TABLE VI. FUNDING STATISTICS COMPARED WITH THE INWARDNESS

RESULTS (TOP THREE RANKED FIELDS ARE TABULATED FROM LEFT TO
RIGHT).

NSF
Yrs Inwardness Proposal Proposal

results submitted awarded
03 AI/IR/NW NW/AI/HCI NW/ALGO/SE
04 AI/IR/NW AI/HCI/RT RT/ARC/DIST
05 AI/IR/NW AI/ML/HCI GRP/SE/ALGO
06 IR/ML/AI ML/ALGO/SEC ALGO/SEC/ML
07 ML/AI/ALGO ALGO/ML/HCL ALGO/HCI/SEC
08 ML/AI/ALGO ML/ALGO/SE ALGO/ML/SE

VII. CONCLUSION

The lack of reliable ground-truth communities has made
network community detection a very challenging task. In this

6lag(x, y, t) means the event x took place t years after the event y.
7lead(x, y, t) means the event x took place t years before the event y.
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TABLE VII. CORRELATIONS BETWEEN OUR RECOMMENDATIONS
(OUR) WITH THE SUBMIT (SUBMIT) AND AWARD (AWARD) PATTERNS

OF GRANTS.
τ

Pairs At least 1 At least 2
matching matching

OUR Same year 1 0.78
vs. lead(SUBMIT,OUR, 1) 1 0.83

SUBMIT lag(SUBMIT,OUR, 1) 0.83 0.50
OUR Same year 0.71 0.50
vs. lead(AWARD,OUR, 1) 0.75 0.42

AWARD lag(AWARD,OUR, 1) 0.33 0.25

paper, we developed ground-truth overlapping communities
of a directed paper-paper citation network that emerge from
the natural grouping of research papers into the fields of
the computer science domain. Subsequently, we validated
the existence of such tightly knit ground-truth communities
through well-established scoring functions proposed in the
literature. We demonstrated the dynamics of inter-community
interactions across a longitudinal timescale that in turn unfolds
the research trend in the computer sciences for the last fifty
years. We conclude by summarizing our main observations and
outlining some of the possible future directions. We observe
that
(i) the ground-truth communities effectively capture the notion
of natural groupings in scientific research world,
(ii) the shift in the trend of research communities is, quite
strikingly, similar across past fifty years, i.e., the community
that is the strongest competitor of the community currently
at the forefront, emerges as the top ranker in the next trend-
window,
(iii) a research community that declines after remaining at the
top for sometime, can again emerge as the top ranker in future,
(iv) the citation support received by a field from its backup
fields plays an important role in keeping the field in the
forefront,
(v) presence of a significant number of high-impact papers and
the inception of seminal papers in a field accelerate it to the
forefront,
(vi) collaborative research, in general, seems very effective in
producing high impact publications,
(vii) finally, funding statistics obtained from NSF is in very
good agreement with the results predicted by our method.

The availability of ground-truth communities allows for a
range of interesting future investigations. For example, further
examining the connectivity structure in and across ground-truth
communities could lead to novel community detection methods
especially in citation network. Moreover, the present empirical
study marks the foundation for the design and implementation
of a specialized recommendation engine that would be capable
of answering search queries pertaining to the (a) impact of
papers/authors, (b) fields at the forefront (currently and in the
near future), (c) seminal papers within a field and many such
other factors. These results can be useful for (i) the funding
agencies to make appropriate decisions as to how to distribute
project funds, (ii) the universities in their faculty recruitment
procedure. The dataset shall be available at http://cnerg.org
for the research community to facilitate further investigations.
In summary, this paper shows that the usual consensus on the
fact that suggesting an efficient community detection technique
usually marks the “endpoint” in research in this area might
not be true; in contrast, it possibly triggers the beginning of a

new dimension of research, whereby, the temporal interaction,
influence, shape and size of the communities so obtained can
be suitably analyzed thus allowing for newer insights into the
complex system under investigation.

REFERENCES

[1] M. Girvan and M. E. J. Newman, “Community structure in social and
biological networks,” PNAS, vol. 99, no. 12, pp. 7821–7826, Jun. 2002.

[2] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi,
“Defining and identifying communities in networks,” PNAS, vol. 101,
no. 9, p. 2658, 2004.

[3] G. W. Flake, S. Lawrence, and C. L. Giles, “Efficient identification of
web communities,” in Proceedings of the sixth ACM SIGKDD, New
York, USA, 2000, pp. 150–160.

[4] A. Clauset, “Finding local community structure in networks,” Phys. Rev.
E, vol. 72, no. 2, p. 026132, Aug. 2005.

[5] J. Xie, S. Kelley, and B. K. Szymanski, “Overlapping community
detection in networks: the state of the art and comparative study,” CoRR,
vol. abs/1110.5813, 2011.

[6] V. Kawadia and S. Sreenivasan, “Sequential detection of temporal
communities by estrangement confinement,” Scientific Reports, vol. 2,
Nov. 2012.

[7] D. Greene, D. Doyle, and P. Cunningham, “Tracking the evolution of
communities in dynamic social networks,” in Proceedings of ASONAM
’10. Washington, DC, USA: IEEE Computer Society, 2010, pp. 176–
183.

[8] M. Spiliopoulou, I. Ntoutsi, Y. Theodoridis, and R. Schult, “Monic:
modeling and monitoring cluster transitions,” in Proceedings of the 12th
ACM SIGKDD, New York, USA, 2006, pp. 706–711.

[9] D. M. Blei and J. D. Lafferty, “Dynamic topic models,” in Proceedings
of the 23rd international conference on Machine learning, ser. ICML
’06. New York, USA: ACM, 2006, pp. 113–120.

[10] N. Shibata, Y. Kajikawa, Y. Takeda, and K. Matsushima, “Detecting
emerging research fronts based on topological measures in citation
networks of scientific publications,” TECHNOVATION, vol. 28, no. 11,
2008.

[11] J. Yang and J. Leskovec, “Overlapping community detection at scale: a
nonnegative matrix factorization approach,” in WSDM, 2013, pp. 587–
596.

[12] M. C. Pham and R. Klamma, “The structure of the computer science
knowledge network,” in Proceedings of ASONAM ’10. Washington,
DC, USA: IEEE Computer Society, 2010, pp. 17–24.

[13] J. Yang and J. Leskovec, “Defining and evaluating network communities
based on ground-truth,” in Proceedings of the ACM SIGKDD Workshop
on Mining Data Semantics, ser. MDS ’12, New York, USA, 2012, pp.
3:1–3:8.

[14] J. Kleinberg, “Authoritative sources in a hyperlinked environment,” J.
of the ACM, vol. 46, no. 5, pp. 604–632, 1999.

[15] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “Arnetminer:
extraction and mining of academic social networks,” in ACM SIGKDD,
2008, pp. 990–998.

[16] N. Shibata, Y. Kajikawa, Y. Takeda, and K. Matsushima, “Detecting
emerging research fronts based on topological measures in citation
networks of scientific publications,” TECHNOVATION, vol. 28, no. 11,
2008.

[17] L. Egghe and L. Leydesdorff, “The relation between Pearson’s correla-
tion coefficient r and Salton’s cosine measure,” Journal of the American
Society for Information Science and Technology, vol. 60, no. 5, pp.
1027–1036, 2009.

[18] R. Guns and R. Rousseau, “Real and rational variants of the h-index
and the g-index,” J. of Informetrics, vol. 3, no. 1, pp. 64–71, 2009.

[19] B. Jin, L. Liang, R. Rousseau, and L. Egghe, “The R- and AR-indices:
Complementing the h-index,” Chin. Sci. Bull., vol. 52, no. 6, pp. 855–
863, Mar. 2007.

[20] S. Bornholdt, M. H. Jensen, and K. Sneppen, “Emergence and Decline
of Scientific Paradigms,” Phys. Rev. Lett., vol. 106, no. 5, p. 058701,
2011.

2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

433


