Analysis and Modeling of
Lowest Unique Bid Auctions

Tanmoy Chakraborty
Google India PhD Fellow
Indian Institute of Technology, Kharagpur, India

In collaboration with:
Vihar Tammana (Microsoft Corporation, Bellevus, WA)
Niloy Ganguly, Animesh Mukherjee
(Indian Institute of Technology, Kharagpur, India)

The Sixth ASE International Conference on Social Computing, May 27-31, Stanford, CA
Outline

• Introduction
 o What is Lowest Unique Bid Auctions (LUBA)?
 o Problem Definition

• Dataset

• Analysis
 o Network Analysis
 o Winners under the Lens
 o Profit Analysis

• Synthesis
 o Modeling user behavior in LUBA

• Conclusion
Outline

• Introduction
 ○ What is **Lowest Unique Bid Auctions (LUBA)?**
 ○ Problem Definition

• Dataset

• Analysis
 ○ Network Analysis
 ○ Winners under the Lens
 ○ Profit Analysis

• Synthesis
 ○ Modeling user behavior in LUBA

• Conclusion
Lowest Unique Bid Auction (LUBA)

Quite popular in many European countries

Winner is the bidder whose bid is **lowest** and **unique**

General Auction

- (A) $3
- (B) $5
- (C) $3
- (D) $6

LUBA

- (A) $3
- (B) $5
- (C) $3
- (D) $6
Outline

- Introduction
 - What is Lowest Unique Bid Auctions (LUBA)?
 - Problem Definition

- Dataset

- Analysis
 - Network Analysis
 - Winners under the Lens
 - Profit Analysis

- Synthesis
 - Modeling user behavior in LUBA

- Conclusion
Problem Definition

• **Analysis:**
 - Whether bidders learn from their experiences or participations?
 - Whether this mechanism is a game/lottery/scam?
 - On what parameters do winners rely on?
 - Can winning be correlated with activity, co-activity, value of item, competition etc.?

• **Synthesis:**
 - Modeling LUBA which explains user behavior
Outline

- Introduction
 - What is Lowest Unique Bid Auctions (LUBA)?
 - Problem Definition

- Dataset

- Analysis
 - Network Analysis
 - Winners under the Lens
 - Profit Analysis

- Synthesis
 - Modeling user behavior in LUBA

- Conclusion
Dataset

- We collected data from uniquebidhomes.com [Radicchi et al., PloS ONE, 2012]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Auctions</td>
<td>189</td>
</tr>
<tr>
<td>Number of Bidders</td>
<td>3740</td>
</tr>
<tr>
<td>Number of Bids</td>
<td>55041</td>
</tr>
</tbody>
</table>

- Detailed information of all parameters of auction (value etc.) and bid (amount, timestamp etc.) are collected
Outline

• Introduction
 o What is Lowest Unique Bid Auctions (LUBA)?
 o Problem Definition

• Dataset

• Analysis
 o Network Analysis
 o Winners under the Lens
 o Profit Analysis

• Synthesis
 o Modeling user behavior in LUBA

• Conclusion
Bidder–Auction Bipartite Network

Bidders

Auctions

Bipartite Network

One mode projection on bidder node
Bidder–Auction Bipartite Network

Cumulative degree distributions of bidder nodes

(a) Unweighted one mode projection.

(b) Weighted one mode projection.
Outline

- Introduction
 - What is Lowest Unique Bid Auctions (LUBA)?
 - Problem Definition

- Dataset

- Analysis
 - Network Analysis
 - Winners under the Lens
 - Profit Analysis

- Synthesis
 - Modeling user behavior in LUBA

- Conclusion
Top winners

- Out of 3740, only 52 bidders won at least one auction.
 - Seems to be an addiction

- Top 5 winners
 - Participated 70% auctions
 - Won 57% of auctions
 - Seem to be very efficient
 - Are they so ???
Top winners: Other Properties

“Mean Item Value” per bidder => Bid Selection

<table>
<thead>
<tr>
<th>Rank 1</th>
<th>Rank 2</th>
<th>Rank 3</th>
<th>Rank 4</th>
<th>Rank 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>-52%</td>
<td>+154%</td>
<td>+211%</td>
<td>+284%</td>
<td>+190%</td>
</tr>
</tbody>
</table>

Avg: 76421.61

“Mean Number of Bids” per bidder => Aggressiveness

<table>
<thead>
<tr>
<th>Rank 1</th>
<th>Rank 2</th>
<th>Rank 3</th>
<th>Rank 4</th>
<th>Rank 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>58</td>
<td>24</td>
<td>94</td>
<td>34</td>
</tr>
</tbody>
</table>

Avg: 5.81

“Mean Number of other Bidders” per bidder => Competition

<table>
<thead>
<tr>
<th>Rank 1</th>
<th>Rank 2</th>
<th>Rank 3</th>
<th>Rank 4</th>
<th>Rank 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>87</td>
<td>101</td>
<td>124</td>
<td>91</td>
</tr>
</tbody>
</table>

Avg: 50
Top winners: Other Properties

(Contd…)

of wins might not be an efficient measure

ρ = Number of wins per participation for each user

<table>
<thead>
<tr>
<th>Rank</th>
<th>ρ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rank 1</td>
<td>3</td>
</tr>
<tr>
<td>Rank 2</td>
<td>4</td>
</tr>
<tr>
<td>Rank 3</td>
<td>5</td>
</tr>
<tr>
<td>Rank 4</td>
<td>13</td>
</tr>
<tr>
<td>Rank 5</td>
<td>35</td>
</tr>
</tbody>
</table>

Auctions sorted by the time
Outline

• Introduction
 o What is Lowest Unique Bid Auctions (LUBA)?
 o Problem Definition

• Dataset

• Analysis
 o Network Analysis
 o Winners under the Lens
 o Profit Analysis

• Synthesis
 o Modeling user behavior in LUBA

• Conclusion
Profit per bidder: Formulation

Item

Actual price: $1000

Bidder A (Winner)

A’s Bids

<table>
<thead>
<tr>
<th>Bid fee</th>
<th>Bid value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2</td>
<td>$0.02</td>
</tr>
<tr>
<td>$2</td>
<td>$0.04</td>
</tr>
<tr>
<td>$2</td>
<td>$0.05</td>
</tr>
<tr>
<td>$2</td>
<td>$0.06</td>
</tr>
</tbody>
</table>

A’s Profit = $1000 – ($2 × 4) - $0.04 = $991.96
Actual price: $1000

Profit per bidder: Formulation

Bid fee Bid value
$2 $0.02
$2 $0.04
$2 $0.05
$2 $0.06

A’s Bids

A’s Profit = – ($2 \times 4)
= - $8
Winners are not Gainers!!

- 99% of the bidders are in loss => Chance of addiction ???

- Among top 5 winners => only 2 are in top 5 high profit bidders

- Winners are in loss, even top most winner who won 37/40 has Net Profit -1127

- High loss in an auction generally followed after a win

- Top two winners win with losses => Crazy / Scam ??
Outline

- Introduction
 - What is Lowest Unique Bid Auctions (LUBA)?
 - Problem Definition

- Dataset

- Analysis
 - Network Analysis
 - Winners under the Lens
 - Profit Analysis

- Synthesis
 - Modeling user behavior in LUBA

- Conclusion
Memory–driven Agent Based Model

Auction i
Memory-driven Agent Based Model

Auction i

Preferentially selected with high participation

Bidders

$B_1, B_2, B_3, \ldots, B_u$
Memory-driven Agent Based Model

Auction i

Preferentially selected with high participation

Bidders

B_1, B_2, B_3, ..., B_u

Calculate Optimizing value

OV_1, OV_2, OV_3, ..., OV_u

f (past win, participation, profit, randomness)
Memory-driven Agent Based Model

Auction i

Bidders

B_1, B_2, B_3, ..., B_u

Preferentially selected with high participation

Calculate Optimizing value

OV_1, OV_2, OV_3, OV_u

Start Bidding:
Memory-driven Agent Based Model

Auction i

 Preferentially selected with high participation

Bidders

B_1 B_2 B_3 ... B_u

Calculate Optimizing value

$O\!V_1$ $O\!V_2$ $O\!V_3$ $O\!V_u$

Start Bidding:

○ Preferentially select bidders based on OV
Memory-driven Agent Based Model

Auction i

Bidders

Calculate Optimizing value

Start Bidding:
- Preferentially select bidders based on OV
- Place random bid
Memory-driven Agent Based Model

Auction i

Preferentially selected with high participation

Bidders

B_1 B_2 B_3 \cdots B_u

Calculate Optimizing value

OV_1 OV_2 OV_3 OV_u

Start Bidding:

- Preferentially select bidders based on OV
- Place random bid

Stop when Stopping Condition encountered

27
(a) Unweighted and (b) Weighted degree distributions of the bidders obtained from the model (circles) and from the real data (line).
The cumulative winning distribution of the bidders obtained from the model (circles) and from the real data (line).
Outline

• Introduction
 o What is Lowest Unique Bid Auctions (LUBA)?
 o Problem Definition

• Dataset

• Analysis
 o Network Analysis
 o Winners under the Lens
 o Profit Analysis

• Synthesis
 o Modeling user behavior in LUBA

• Conclusion
Conclusions

- 57% of the auctions are won by the top five winners (probably they learn from the previous wins)
- The bidder who participated in maximum number of auctions did not win a single one
- Top winners except the topmost winner participate in auctions with high item values
- Most surprisingly, about 99% of the bidders are in loss in terms of the net profit
- The stochastic agent-based model efficiently captures two fundamental characteristics of LUBAs
Acknowledgements

Financial Support: Google India Pvt. Ltd

Technical support: All the members of Complex Network Research Group (CNeRG, IIT-Kharagpur)

http://cse.iitkgp.ac.in/~tanmoyc/
http://cnerg.org/

Thank You