Switching Circuits and Logic Design CS21002 (section-1) Tutorial 2

1. Show that if there is a n-bit single-error correcting code for encoding objects in $\{0, \ldots, m-1\}$, then $m(n+1) \leqslant 2^{n}$. Conclude that there is no single error correcting 6-bit code for decimal digits.
2. Show that the only sum-of-products representation of the parity function is the canonical sum of minterms representation.
3. Design a two-level code converter from BCD to 2-out-of-5.
4. You are supplied with just one NOT gate and an unlimited amount of AND and OR gates and are required to design a circuit that realizes the expression $\mathrm{T}(w, x, y, z)=$ $w^{\prime} x+x^{\prime} y+x z^{\prime}$. Only unprimed variables are available as inputs.
Hint: You may find the map of T helpful.
5. (a) Define a half subtractor, show its truth tables, and derive logic expressions for difference (D) and borrow (B) outputs.
(b) Define a full subtractor, show its truth tables, and derive logic expressions for difference (D) and borrow (B) outputs.
6. A communication system is designed to transmit just two code words, $A=0010$ and $B=1101$. However, owing to noise in the system, the received word may have as many as two errors. Design a combinational circuit that receives the words and that can correct one error and detect the existence of two errors. The circuit receives a 4-bit word ($X=X_{0} X_{1} X_{2} X_{3}$) as input, and produces three switching output A, B and C. On each input, exactly one output bit is 1 . Output A will be equal to 1 if the transmitted word is A and there has been at most one error, output B will be equal to 1 if the transmitted word is B and there has been at most one error, and output C will be equal to 1 if the word received has two errors and thus cannot be corrected.
7. With the aid of a four-variable Karnaugh map, derive minimal sum-of- products expressions for each of the following functions:
(a) $\mathrm{f} 1(w, x, y, z)=\sum(0,1,2,3,4,6,8,9,10,11)$;
(b) $\mathrm{f} 2(w, x, y, z)=\sum(0,1,5,7,8,10,14,15)$;
(c) $\mathrm{f} 3(w, x, y, z)=\sum(0,2,4,5,6,8,10,12)$.
8. Find the minimal sum-of-products and minimal product-of-sums expressions for $f(w, x, y, z)=\Pi(1,4,5,6,11,12,13,14,15)$. Is your answer unique?
9. Given the function $\mathrm{T}(w, x, y, z)=\sum(1,2,3,5,13)+\sum(6,7,8,9,11,15)$:
(a) find a minimal sum-of-products expression;
(b) find a minimal product-of-sums expression;
(c) compare the expressions obtained in (a) and (b); if they do not represent identical functions, explain why.
10. Figure out the adjacencies of a six-variable map. Show the representation of $\mathrm{T}(u, v, w, x, y, z)=u^{\prime} w^{\prime} y^{\prime}+u w y+w^{\prime} x y^{\prime} z$.
11. Show maps for four-variable functions with the following specifications. If this is impossible, explain why.
(a) A function with eight minterms for which
(i) there are no essential prime implicants.
(ii) all the prime implicants are essential.
(b) Repeat (a) for functions with nine minterms.
(c) A function with an even number of prime implicants, of which exactly half are essential.
(d) A function with six prime implicants, of which four are essential and two are covered by essential ones.
12. (a) Let f ($\mathrm{x} 1, \mathrm{x} 2, \ldots, \mathrm{x} \mathrm{n}$) be equal to 1 if and only if exactly k of the variables equal 1 . How many prime implicants does this function have?
(b) Repeat (a) for the case where f assumes the value 1 if and only if k or more of the variables are equal to 1 .
