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Uncapacitated facilities location

Facilities location

The uncapacitated facilities location problem and clustering

problems have been studied extensively, like the k-median

problem and the k-center problem.

Typically, in the given n-vertex graph, non-negative edge
weights obey the triangle inequality.

In the k-center problem we minimize the maximum distance
from a facility, whereas in the k-median problem we minimize
the total sum of distances from facilities.

In both these problems we do not consider and costs for the
facilities, unlike in the uncapacitated facilities location
problem.
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Facilities location (cont.)

The uncapacitated facility location problem is a combinatorial
optimization problem. It has applications in setting up facility
distribution centres.

In the uncapacitated facility location problem, we have a set
of clients or demands D and a set of facilities F.

For each client j ∈ D and facility i ∈ F , there is a cost cij of
assigning client j to facility i .

Furthermore, there is a cost fi associated with each facility
i ∈ F . The aim is to choose a subset T ′ ⊆ F so as to
minimize the total cost of the facilities in T ′ and the cost of
assigning each client j ∈ D to some facility in T ′.

79 / 118



AOA

Uncapacitated facilities location

Facilities location (cont.)

In other words, we wish to find T ′ ⊆ F and a function f

mapping clients to facilties, such that the following cost is
minimised,

∑

i∈T ′

fi +
∑

j∈D,f (j)∈T ′

cf (j)j

where the first part is called facility cost and the second part
is called assignment cost or service cost.

This is an NP-hard problem and therefore we need to design
approximation algorithms.
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Integer programming formulation and its linear programing
relaxation

The integer programming formulation for this problem has
decision variables yi ∈ {0, 1} for each facility fi ∈ F .

If we decide to open facility i , then yi = 1, and yi = 0,
otherwise.

We also introduce decision variables xij ∈ {0, 1} for all i ∈ F

and all j ∈ D.

If we assign client j to facility i , then xij = 1 while xij = 0,
otherwise.

The objective function becomes

Minimize
∑

i∈F

fiyi +
∑

i∈F ,j∈D

cijxij
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Integer programming formulation and its linear programing
relaxation (cont.)

We need to make sure that each client j ∈ D is assigned to
exactly one facility. This can be done by stating

∑

i∈F

xij = 1

We also need to make sure that the client is assigned to a
facility that is open. This can be done by ensuring

xij ≤ yi
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Integer programming formulation and its linear programing
relaxation (cont.)

Thus, the integer linear programming (ILP) formulation of the
facility location problem can be summarized as follows:

minimize
∑

i∈F

fiyi +
∑

i∈F ,j∈D

cijxij

subject to
∑

i∈F

xij = 1, ∀j ∈ D,

xij ≤ yi , ∀i ∈ F , j ∈ D,

xij ∈
{

0, 1}, ∀i ∈ F , j ∈ D,

yi ∈
{

0, 1}, i ∈ F .
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Integer programming formulation and its linear programing
relaxation (cont.)

The linear programming relaxation (LPR) from the ILP can be
obtained by replacing the constraint xij ∈ {0, 1} and
yi ∈ {0, 1} with xij ≥ 0 and yi ≥ 0. Thus, the relaxed linear
program (LPR) can be summarized as follows:

minimize
∑

i∈F fiyi +
∑

i∈F ,j∈D cijxij (10)

subject to
∑

i∈F xij = 1, ∀j ∈ D, (11)

xij ≤ yi , ∀i ∈ F , j ∈ D, (12)
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Integer programming formulation and its linear programing
relaxation (cont.)

xij ≥ 0, ∀i ∈ F , j ∈ D,

yi ≥ 0, i ∈ F .
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Lower bounding using dual linear programs

The dual maximizing LP, which we will call DLP
(corresponding to the minimizing primal LPR), is used to
achieve as high lower bounds as possible for the primal ILP
objective function.

Typically, we may start any algorithm for computing a feasible
solution for the ILP by initializing all primal ILP and DLP
variables to zeros.

In the course of the algorithm, primal ILP variables can be
assigned only integral values whereas DLP variables can be
assigned rational values.

The respective values of the objectives functions for the ILP
and the DLP is the approximation ratio achieved in the
developing solution.
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Lower bounding using dual linear programs (cont.)

We now discuss the formulation of a dual linear program

(DLP) corresponding the relaxed linear program (LPR) as in
[3].

If we ignore costs of facilities by setting fi = 0 for all i ∈ F ,
the best strategy would be to open all the facilities and assign
each client to its nearest facility. We introduce a variable vj
and set it as vj = min i∈F cij to denote the cost of connecting
client j to its nearest facility.

Observe that a lower bound for the primal integer program’s
objective function cost in an integral solution (of the ILP), is
∑

j∈D vj therefore; we certainly cannot have a better
assignment of facilities.
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Lower bounding using dual linear programs (cont.)

We can improve this lower bound estimate by considering
non-zero facility costs as well, as follows.

Each facility may be viewed as distributing its cost fi , sharing
it apportioned amongst the clients it provides service to, that
is, fi =

∑

j∈D wij , where each wij ≥ 0.

A client j needs to pay this share only if it uses facility i . So,
we can now set vj = min i∈F (cij + wij).

This can be enforced in a linear programming formulation
with constraints vj ≤ cij + wij (see inequality 15), for each
client j (where i ranges over all facilities), with the objective
function maximizing

∑

j∈D vj , subject to further inequality 14.
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Lower bounding using dual linear programs (cont.)

Observe that any feasible solution to this dual linear program
therefore has objective function value lower bounding the cost
of optimal primal objective function value for the (integral)
facility location problem ILP.

We summarize the dual linear program (DLP) for the primal
linear program relaxation (LPR) as:

maximize
∑

j∈D vj (13)

subject to

∑

j∈D wij ≤ fi , ∀i ,∈ F (14)
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Lower bounding using dual linear programs (cont.)

vj − wij ≤ cij , ∀i ∈ F , j ∈ D (15)

wij ≥ 0, ∀i ∈ F , j ∈ D (16)

vj ≥ 0, ∀j ∈ D (17)
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The design of the algorithm: Phase I

In Phase I of the algorithm, we first compute (i) a maximal

dual solution, (ii) a tentative set T of facilities to be opened,
and (iii) a temporary facilities mapping for clients, assigning a
connecting witness facility for each client.

In the second Phase II, we restrict the facilities allocated to a
subset T ′ of T , reworking some assignments of facilites to
clients, albeit some additional cost of connectivity, but well
within the 3-factor limit (by virtue of triangle inequality).

A maximal dual solution (v∗,w∗) is such that we cannot
further enhance the value of any v∗j and still work out a
feasible assignment to variables w∗

ij .
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The design of the algorithm: Phase I (cont.)

For such maximal dual LP solutions, consider the definitions
(a) of a client j neighbouring a facility i when v∗j ≥ cij (edges
(i , j) are called tight edges, and i and j are mutually
neighbours of each other),
(b) a saturated dual constraint Inequality 14 obeying equality
when a facility i becomes tight or paid up, and
(c) when it is said that a client j contributes to a facility i , or
wij > 0; such edges (i , j) are called special edges.

Furthermore, recall that the neighbours of a facility i are in
the set N(i) of clients, and the neighbours of a client j are in
the set N(j) of facilities.

We sketch the algorithm below as in [3].

92 / 118



AOA

Uncapacitated facilities location

The 3-factor algorithm: Phase I

The design of the algorithm: Phase I (cont.)

The algorithmic issues are as follows, providing intuition about
its design, correctness and performance bound.

Suppose the largest w∗
ij satisfying the dual inequality 15 with

equality, for some i ∈ F and some j ∈ D, is non-zero.

If such a w∗
ij is non-zero, we have v∗j > cij . [So, (i , j) is both

special as well as tight, as per the above definitions.]

Due to the maximality of w∗
ij , we can set v∗j to cij + w∗

ij , for
the smallest such value over all i ∈ F , keeping the solution
feasible for the dual LP.

Such an i ∈ F is called saturated, and is included in the set T
of tentatively opened facilities if inequality 14 is satisfied.

For such a set T we now argue, as in [3], that every client
neighbours a facility in T .
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The 3-factor algorithm: Phase I

Every client neighbours a facility in T

First we note that the dual solution being maximal, it must be
that v∗j = mini∈F (cij + w∗

ij ), for some i ∈ F .

Otherwise, we must have v∗j < mini∈F (cij + w∗
ij ) for all i ∈ F ,

in which case we can enhance v∗j , contradicting that we have
a maximal dual solution.

So, now suppose client j has no neighbour in T , that is,
vj < cij for all i ∈ T .

However, the dual solution being maximal, we must have v∗j
as the smallest of cij + w∗

ij for some i , and if all such clients i
are outside T then it must have been the case that for all
such i ∈ T ∩ F ,

∑

k∈D w∗
ij < fi .

So, i was not selected to be in T .

94 / 118



AOA

Uncapacitated facilities location

The 3-factor algorithm: Phase I

Every client neighbours a facility in T (cont.)

In this case however, we can enhance v∗j and w∗
ij , without

violating dual constraint inequalities 14 and 15. This
contradicts that we had a maximal dual solution.

We therefore conclude that all clients will have a neighbour in
T once we have computed a dual maximal feasible solution at
the termination of Phase I.
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Summarizing Phase I

In this phase we maintain feasibility in the dual solution and
devleop a maximal dual solution (v∗,w∗) as already defined.

We set S = D, the set of clients, and T = φ, the set of
temporarily selected facilities.

We raise vj ’s and wij ’s uniformly until either (Case 1) some
client j ∈ D neighbours some facility i ∈ T , or (Case 2) some
facility i ∈ F becomes tight, or paid for, or saturated.

Such clients j ∈ S as in Case 1, that neighbour some facility
i ∈ T (vj ≥ cij), are removed from S .

Such saturated facilities i as in Case 2 (
∑

j∈D wij = fi ) are
moved into the set T .
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Summarizing Phase I (cont.)

Whenever a facility i is added to T , we remove all clients in
the neighbouring set N(i) of facility i from the set S .

When the set S becomes empty and each client neighbours
some facility, and Phase I is terminated.

More precisely, vj are increased uniformly for all j ∈ S .

Once vj = cij for some i , we increase wij and vj uniformly so
that the complemetary slackness condition (i) 18, that is,
vj − wij = cij , resulting from dual constraint 15 will continue
to hold.

However, this raising of wij will not be necessary when the
facility i is already paid up or saturated or tight, as per dual
inequality 14 and complementary slackness condition (ii) 19.
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Summarizing Phase I (cont.)

In this case, all client neighbours j ∈ N(i) are also removed
from S . Consequently, we also stop raising wi ′j for any i ′ ∈ F ,
where i ′ 6= i for clients j removed from S .

We observe that the maximality of the dual solution ensures
that all clients have finally got tight edges to some facility,
thereby acquiring a connecting witness as that facility.

Some client j may have a connecting witness i with wij = 0.
Other edges (i , j) will have wij non-zero, which we have
already named as special edges.
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Phase II

Once the whole set S is exhausted and we have computed a
maximal feasible DLP solution (v∗,w∗), we assign facilities
from a set T ′ ⊆ T to clients.

Note one important point that each client has a neighbouring
facility in T .

This is due to the maximality of (v∗,w∗) in the Phase I
process. We refer to the proof of this fact to section 7.6 of
[3], as also elaborated in the above discussion.

Once T is computed in Phase I, a subset T ′ ⊆ T of facilities
is opened by selecting one facility at a time to cover a number
of clients.
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Phase II (cont.)

Whenever any such facility i is moved into T ′, all other
facilities h ∈ T are also removed from T if both h and i are
contributed to by some common client j , that is, if both wij

and whj are positive.

Therefore, finally opening up only the facilities surviving in T ′

will ensure contribution from each client to its respective
assigned facility, the only facility to which that client
contributes (see the genesis of the dual inequality 14).

Finally, opened facilities from T ′ are assigned to all clients as
follows.

If a client j ∈ D neighbours a facility i ∈ T ′ then j is assigned
to i and has connection cost cij , lower bounding v∗j , that is,
v∗j ≥ cij .
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Phase II (cont.)

Otherwise, we see due to Lemma 7.13 in [3] (and also as we
discuss below) that although j does not have a neighbour in
T ′, there is a facility i ∈ T ′ such that v∗j ≥

cij
3 .
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The analysis: Relaxed complementary slackness

The 3-factor approximation result of Theorem 7.14 of [3]
follows from Lemma 7.13 of [3]; we explain these results in
more detail now.

We know that even if client j ∈ D neighbours no facility in
T ′, it does neighbour a facility in T , as argued above, by
virtue of the method used to construct the set T .

It turns out that such a client j neighbours some saturated
facility h /∈ T ′ such that some other client contributed to both
h and some facility i ∈ T ′.

The client j must have neighboured some h ∈ T \ T ′ in the
algorithm’s execution when increasing vj was stopped; it is
known that j does not neighbour any facility in T ′.
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The analysis

The analysis: Relaxed complementary slackness (cont.)

How was h ∈ T excluded from being in T ′? Another client k
was there that contributes to both h and another facility
i ∈ T ′.

It is now our goal to show that the cost cij of assigning j to i

is at most 3vj .

In this context, view the client-facility pairs (j , h),(k , h) and
(k , i), and the path along these three edges from client j to
facility i , through facility h and client k .

Clearly the cost of connecting j to i is cij ≤ chj + chk + cik , by
triangle inequality.

To show vj ≥
cij
3 , it is enough to show the vj is at least as

large as each of chj , chk , and cik .

First, we note that vj ≥ chj as j neighbours h.
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The analysis: Relaxed complementary slackness (cont.)

Second, we also show below that vj ≥ vk . Therefore, vk being
at least as large as both of cik and chk (since k contributes to
and thus also neighbours both h and i), we conclude that vj
at least as large as all the three of chj , chk , and cik .

Now we show that vj ≥ vk . We know that vj stopped
increasing when it neighboured a facility in T .

Since j neighbours h ∈ T , we understand that h must have
already been in T or must have been included in T when vj
stopped increasing.

Now since k contributes to h, and therefore also neighbours h,
vk too must have stopped increasing before or when vj
stopped increasing.
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The analysis: Relaxed complementary slackness (cont.)

Furthermore, since dual variables are increased uniformly in
the algorithm, we have vj ≥ vk .

Now that we have explained how vj ≥
cij
3 (Lemma 7.13 of

[3]), we establish the 3-factor bound of Theorem 7.14 of [3] as
follows.

The cost
∑

i∈T ′ fi of opening facilities has now been shown to
be apportioned to clients j that contribute to the respective
finally opened facilities f (j) in T ′ to which j is connected;
note that i ∈ T ′ means saturating inequality 14 is satisfied as
an equality for facility i .
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The analysis: Relaxed complementary slackness (cont.)

So, the total facility opening cost
∑

i∈T ′ fi =
∑

i∈T ′

∑

j∈A(i) wij , is apportioned to neighbouring

clients assigned to facilities i ∈ T ′, where A(i) is the set of
these clients.

The connection costs for these clients is
∑

i∈T ′

∑

j∈A(i) cij .

Summing these two costs for neighbouring clients of facilities
in T ′ gives

∑

i∈T ′

∑

j∈A(i)(wij + cij) =
∑

i∈T ′

∑

j∈A(i) vj ,

because the dual inequalities 15 for all i ∈ T ′ attain equality.

Clients j ∈ D, not neighbouring facilities in T ′ have
connection costs assigned to respective facilities f (j) ∈ T ′

such that cf (j)j ≤ 3vj , as established already, resulting in a
total cost of at most
∑

j∈D\∪i∈T ′A(i) cf (j)j ≤ 3
∑

j∈D\∪i∈T ′A(i) vj .
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The analysis: Relaxed complementary slackness (cont.)

So, the total cost including costs apportioned to neighbouring
clients of T ′ and connection costs of clients not neighbouring
facilities in T ′ add up to 3

∑

j∈D vj ≤ 3× OPT .

The 3-factor bound thus follows.

Note that even if we took three times the cost
∑

i∈T ′

∑

j∈A(i)(wij + cij) =
∑

i∈T ′

∑

j∈A(i) vj , of directly
connected clients, we still get the same bound of 3

∑

j∈D vj
for the total cost (Exercise 7.8 in [3]).
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More on relaxed complementary slackness

We will now view the same algorithm (giving 3-factor
approximation) using relaxed complementary slacknesss

conditions as in [2].

See inequalities 14 and 15. We continue with the same
notations.

Consider the primal and dual complementary slackness
conditions (implications) (i)-(iv) here.
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More on relaxed complementary slackness (cont.)

(i) xij > 0→ vj − wij = cij , (18)

(ii) yi > 0→
∑

j∈D

wij = fi , (19)

(iii) ∀j ∈ D yj > 0→
∑

i∈F

xij = 1 (20)

(iv) ∀i ∈ F ∀j ∈ D wij > 0→ yi = xij (21)

Suppose the optimal LPR solution is integral. Then, each
open facility is tight, that is, its cost is fully paid up as per
primal slackness condition (ii), Implication 19.
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More on relaxed complementary slackness (cont.)

Now consider the (dual) slackness condition (iv)
wij > 0→ yi = xij (Implication 21); given that a client j ∈ D

is not connected to open facility i ∈ F , that is yi = 1 6= xij , it
follows that wij = 0, indicating j does not contribute to any
facility apart from the one to which it is connected.

Also, by primal slackness condition (i), Implication18, for any
cient j connected to an open facility i , we have vj = cij + wij .

So, we interpret the total price vj paid by client j as cij as
going to the connection from j to i , and wij as the
contribution of j to i .
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More on relaxed complementary slackness (cont.)

Now we observe that by relaxing the primal complementary
slackness conditions suitably, we may limit the objective
function value of the ILP solution to within thrice that of the
DLP as follows.

Assume that f (j) ∈ F is the facility to which client j ∈ D is
connected. The cost in the ILP is

∑

j∈D cf (j)j +
∑

i∈T ′ fi ,
where T ′ ⊆ F is the final set of opened facilities.

So, by altering the primal slackness conditions (i) and (ii)
respectively, as
(I) 1

3cf (j)j ≤ vj − wf (j)j ≤ cf (j)j for all j ∈ D, and

(II) 1
3 fi ≤

∑

j :f (j)=i wij ≤ fi ,
we can ensure factor three approximation because the wij

terms would cancel out on summing the primal objective
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More on relaxed complementary slackness (cont.)

function as seen in the first inequalities in conditions (I) and
(II).

We will however not use these slackness conditions. We will
consider two cases of assigning clients to facilities, and call
them direct and indirect assignments, as presented in [2].

This is done to improve the approximation factor though not
in the worst-case, as we present here in Theorem 5.

However, this analysis is important as we will use the same
technique for proving approximation bounds for another
important optimization problem, the k-median problem in
Chapter ??.
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More on relaxed complementary slackness (cont.)

For indirect assignment of a client j to a facility i , we have
wij = 0, whence the condition (I) becomes
(I’)13cf (j)j ≤ vj ≤ cf (j)j .

Primary complementary slackness condition (i) is preserved for
a directly connected facility j such that xij > 0 implies
vj − wf (j)j = cf (j)j , and condition (ii) is maintained, rather
than condition (II), so that we have
(II’)

∑

j∈D wij = fi ,
where such clients pay for the facilities costs.

Our algorithm must achieve the raising of dual variables vj ,
paying for costs of opening facilities as well as connecting
clients to facilities maintaining conditions (I’) and (II’).
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More on relaxed complementary slackness (cont.)

So, let us view vj as v
f
j + v cj , where v fj is the facilities part of

the cost and v cj is the connection cost.

For an indirectly connected client j therefore, we wish to
enforce v fj = 0 and v cj = vj .

For a directly connected client j , we know from the
complementary slackness condition (i) that
vj −wf (j)j = cf (j)j , where v fj = wf (j)j and v cj = cij , and by the
complementary slackness condition (ii) that

∑

j∈D wij = fi .

In this context we have two observations.

Observation

Observation 2:
∑

(i ,j):j∈N(i) v
f
j = fi .
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More on relaxed complementary slackness (cont.)

Clearly, here j neighbours i or j ∈ N(i) and j contributes to i .

Note that v fj = wij for the case where j is directly connected
to i and zero, otherwise.

Furthermore, we can deduce

Observation

Observation 3:
∑

i∈T ′ fi =
∑

j∈D v fj .

Here, T ′ is the set of finally opened facilities and D is the set
of clients.
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More on relaxed complementary slackness (cont.)

Now we claim the following lemma.

Lemma

Lemma 4:

cij ≤ 3v cj for j ∈ D assigned indirectly to i ∈ T ′.

We have already discussed the proof of Lemma 4 in
Subsection 6 of Section 14. The theorem follows. This
theorem is also established in Subsection 6 of Section 14.

Theorem

Theorem 5:
∑

j∈D,i∈F xijcij + 3
∑

i∈F fiyi ≤ 3
∑

j∈D vj , where the variables are

from the primal and dual solutions computed by the algorithm.
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More on relaxed complementary slackness (cont.)

Proof.

For a directly connected client j , cij = v cj ≤ 3v cj , where j is
assigned to i = f (j). Lemma 4 further asserts
∑

j∈D,i∈F cijxij ≤ 3
∑

j∈D v cj , even considering indirectly connected

clients. Now adding 3
∑

i∈T ′ fi = 3
∑

j∈D v fj from Observation 3,
concludes the proof of this theorem since
∑

j∈D,i∈F cijxij ≤ 3
∑

j∈D v cj and 3
∑

i∈T ′ fi = 3
∑

j∈D v fj imply
∑

j∈D,i∈F xijcij + 3
∑

i∈F fiyi ≤ 3
∑

j∈D(v
c
j + v fj ) = 3

∑

j∈D vj .

Here, OPT ≥
∑

j∈D vj , thereby implying the 3-factor
approximation bound, based on Theorem 5.
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