CS19101 PDS laboratory Assignment 5

Write programs for problems 1,2 and 3 in three different files named A5_1_<machine number $>-<$ Roll no. $>$. c, A5_2_ $<$ machine number $>-<$ Roll no. $>$.c and A5_3_ $<$ machine number $>$ _ $<$ Roll no. $>$.c respectively (without the ' $<$ ' and ' $>$ '). Put these three files into a compressed directory named A5_ $<$ machine number $>_{-}<$Roll no. $>$.zip and submit it.

Example: If your roll number is 19DEP99999 and your machine number is 99, then the names of your files should be A5_1_99_19DEP99999.c, A5_2_99_19DEP99999.c and A5_3_99_19DEP99999.c.

This is an assignment on functions and one-dimensional arrays. Use of multidimensional arrays, pointers and global variables are not allowed.

1. Take integers m, n and p as inputs through the keyboard. Then take $m n$ integers as inputs through keyboard. They will be interpreted as entries of a $m \times n$ matrix, and stored in a 1-dimensional integer array A of size mn (see sample input/output below). Then take another $n p$ integers as inputs, interpret them as entries of a $n \times p$ matrix, and store them in another 1-dimensional integer array B of size np. Then print the product of matrices A and B onto the screen (see sample input/output).

Enter m: 2
Enter n: 3
Enter p: 4
Enter A11: 1
Enter A12: -1
Enter A13: 2
Enter A21: 0
Enter A22: 4
Enter A23: 6
Enter B11: 4
Enter B12: -2

Enter B13: -3
Enter B14: 0
Enter B21: 0
Enter B22: 1
Enter B23: 2
Enter B24: 5
Enter B31: 3
Enter B32: 0
Enter B33: 3
Enter B34: 0
The product matrix is:
10-3 1-5
1842620
[20 marks.]
2. Write a recursive function with the following prototype:
int f(int A[], int i, int s);
The function takes in a 1-d array and two integers i and s. The function returns 1 if there exists a subset of $\{\mathcal{A}[0], \mathcal{A}[1], \ldots, \mathcal{A}[i]\}$ whose sum is equal to s, and returns 0 otherwise. In main(), take 10 integers as inputs through the keyboard, and store them all in a $1-\mathrm{d}$ array A of size 10. Then take an integer s through the keyboard. Then compute if there exists a set of integers in the array A whose sum is equal to s by a call to $f(\cdot, \cdot, \cdot)$ with appropriate arguments, and print "yes" or "no" accordingly.
Sample input/output:
Enter number 1: 2
Enter number 2: 50
Enter number 3: 6
Enter number 4: -4
Enter number 5: -24
Enter number 6: 30
Enter number 7: 0
Enter number 8: -2
Enter number 9: 8
Enter number 10: -100
Enter s: 33
no
[20 marks.]
3. In the previous question, if the answer is "yes" print a subset as a comma separated sequence of integers, the sum of whose elements is s. If necessary, change the prototype of the function f.

Hint: Use a new array $\mathrm{B}[10]$ to represent a subset of $\{1, \ldots, 10\}$ as follows: $\mathrm{B}[\mathrm{i}]=1$ if $A[i]$ is in the subset and $B[i]=0$ otherwise.

Sample input/output:
Enter number 1: 2
Enter number 2: 50
Enter number 3: 6
Enter number 4: -4
Enter number 5: -24
Enter number 6: 30
Enter number 7: 0
Enter number 8: -2
Enter number 9: 8
Enter number 10: -100
Enter s: 84
yes
$2,50,-4,30,0,-2,8$

