CS19101 PDS laboratory Assignment 3

Write programs for problems 1,2 and 3 in three different files named A3_1_ $<$ Roll no. $>$.c, A3_2_ $<$ Roll no. $>$.c and A3_3_ $<$ Roll no. $>$.c respectively (without the ' $<$ ' and ${ }^{\prime}>$ '). Put these three files into a compressed directory named A1_<Roll no. $>$.zip and submit it.

Example: If your roll number is 19DEP99999, then the names of your files should be A3_1_19DEP99999.c, A3_2_19DEP99999.c and A3_3_19DEP99999.c.

This is an assignment on loops. You are not allowed to use array or function.

1. Take integers n and k as inputs through the keyboard. Compute square root of n up to k digits of accuracy by the Babilonian method. You can read the method from here: https://blogs.sas.com/content/iml/2016/05/16/ babylonian-square-roots.html. Use a variable of type double for the square root. Use 5 as your initial guess. Use for loop.
2. Ask the user for a date in in 2019 mmdd format. For example: February 8 will be represented as 0208 . Once the user enters a date and presses enter, ask the user if she wishes to enter more date. If she types ' Y ', then take one more date from her. If she types ' N ', print the earliest and the latest of the dates that she has entered, in words (see sample output below).
Sample input/output:
Enter a date: 0105
Enter more dates? Y
Enter a date: 1226
Enter more dates? Y
Enter a date: 0819
Enter more dates? N

Earliest: January 5
Latest: December 26
[20 marks.]
3. Consider the following sequence of integers in which the first two terms are 1 , and for $n>2$, the n-th term $F(n)$ is given by the following recurence:

$$
F(n)=F(n-1)+F(n-2)
$$

Take an integer n as input through the keyboard, and print the first n numbers of this sequence, separated by comma's.
Sample input and output:
Enter n: 8
1,1,2,3,5,8,13,21
[20 marks.]

