Input: An undirected graph of n vertices and m edges.
problem: To find a smallest vertex cover.

Lower bounding scheme:

1. Find a "simple" quantity m that lower bounds OPT. OPT m
2. Design an algorithm, that outputs a solution with cost $\leqslant \alpha, m$

$$
\begin{aligned}
& \forall I, C(A(I)) \leq \alpha \cdot m \leq \alpha \cdot O P T \\
& \frac{C(A(I))}{O P T} \leq \frac{C(A(I))}{m} \leq \alpha \\
&(I)
\end{aligned}
$$

For an undirected graph $G=(V, E)$, a matching in is a subset of E consisting of vertex-disjoint edges.
 Not a matching. Is a matching.

A maximal matching of a graph is a matching to which no more edge can be added without violating the matching property. A maximum matching is a matching with maximum number of edges.
 maximal but not maximum.

Let M be a maximal matching of G. Then,

$$
O P T \geq|M|
$$

size of any ${ }^{\pi}$ vertex cover ? size of any maximal matching
prof. One endpoint of each edge of the matching belong to the vertex-coven.
Maximal matching can be easily found by a "greedy" algorithm.
Algor the:

1. Find a maximal matching 19 .
2. $A:=$ set of end-points of all edges in 19. Output A.

Proof of correctness: Let $(u, v) \in E$. Towards a cmpratictim assume that neither u nor v is an end-point of some edge in Mq . Then $M \vee\{(u, v)\}$ is a matching. This contradicts the matimality of M.
Derivation of approximation ratio.

$$
|A|=2|M| \leq 2 O P T
$$

1. Can the quaranter of this algorithm be improved by a tighter analysis?.

- No. (a is a matching of w edges).

2: Con we design an algorithm with a better factor using the size of a maximal watching as the lower bounding scheme?.
Does there exist an algo A st.

No. We will exhibit a family of graphs for which

$$
\frac{O P T}{\substack{\text { Maximum } \\
\text { matching }}}=2 . \quad \Rightarrow \frac{C(A(I))}{\left\lvert\, \begin{array}{c}
\text { Maximum } \\
\text { mathis } \mid
\end{array}\right.} \geq 2
$$

Family: Complete graphs on n (vertices).
size of a maximum matching $=\frac{n-1}{2}$.

$$
\text { OPT }=n-1
$$

3. Does there exist an algorithm with approximation ratio $\leq 2-\Omega(1)$?.

- open. Assuming "Unique Games Crijéctu"e", No.

Konigs theorem:

$$
\text { Maximum mateling }=\text { Minimum }
$$

Set-Cover: Input: $V=\{1, \cdots, n\}, S_{1, \ldots}, \ldots, S_{l} \subseteq U$, $c:\left\{S_{1}, \ldots, s_{e}\right\} \rightarrow \mathbb{R}^{\geq 0}$. Task. Find a subset S of
$\left\{s_{1}, \ldots, S_{l}\right\}$ such that: (1) $\bigcup_{s \in S} s=M,(2) \sum_{s \in S} c(s)$ is minimum subject to (1).

