Does Emotion Influence the Use of Autosuggest during Smartphone Typing?

Surjya Ghosh, Kaustubh Hiware, Niloy Ganguly, Bivas Mitra Indian Institute of Technology Kharagpur

Pradipta De Georgia Southern University

Background

Text-entry in small touch-based devices

relatively inconvenient due to limited space

• To facilitate, different techniques like *auto-complete, auto-suggest* are used

Background

- However,
 - reserves fixed space in keyboard layout

- increase cognitive load
 - to read, parse and select correct word ^[CHI 2016]

Opportunity to improve the layout by making these techniques adaptive

Objective

- Multiple factors can guide auto-suggest usage
 - typing volume
 - application type
 - user emotion
 - as it influences typing behaviour [MobileHCI 2017, ACII 2017]

• Can auto-suggestion usage be determined based on human emotion?

Auto-suggest Usage Scenario

- Auto-suggest usage
 - tracing user typing and providing suggestions
 - labelling auto-suggest usage
 - **accepted** \rightarrow if at least one suggestion is used in a session

 ∇

0

П

- **skipped** \rightarrow if no suggestion is used in a session
- tracking emotion during typing session

Experiment Apparatus

(a) App keyboard

(b) Emotion collection UI

(c) Circumplex model

- Custom keyboard
 - tracing user typing and providing suggestions (based on English dictionary)
- Emotion self-report collection UI
 - collects emotions at end of a session
 - four emotions *happy, sad, stressed, relaxed* (based on Circumplex model)

Auto-suggest Usage Prediction Model

- Auto-suggest usage prediction model
 - Personalized
- \checkmark
- Random Forest
- Two classes
 - accepted
 - skipped

• Emotion-related features

Feature name	Feature description
Emotion _{curr}	Emotion associated with current session
Emotionprev	Emotion associated with previous session
Time	Elapsed time between previous and current
Timeelapsed	session emotion recording timestamp

Table 2: Features used for auto-suggest usage prediction

User Study

Study parameters	Value			
Study duration	3-weeks (in-the-wild)			
Total participants	20 (15 M, 5 F) \rightarrow university students			
Age range	20 – 35 years			
Installed the app in the participants mobile phones				
Excluded participants	7 (as recorded less than 20 suggestions)			
Final participants	13 (10 M, 3 F)			

Dataset

Parameter	Value	
Total typing sessions	3,284	
No Response sessions	330 (~ 10%)	
Effective sessions	2954	
Avg. session per user	227 (std dev. 151.7)	
Auto-suggest accepted	841 (~28%)	
Auto-suggest skipped	2,113 (~ 72%)	

Role of Emotion on Auto-suggest Usage

Does auto-suggest usage vary across emotions?

Role of Emotion on Auto-suggest Usage

Does auto-suggest usage vary across individual user emotions?

Auto-suggest usage comparison across different emotions for individual user

- Majority of the users use auto-suggest in relaxed
- Distribution of emotions in accepted and skipped is statistically significant (p < 0.05) using chi-square test

- Experiment setup
 - 10-fold cross validation
 - Metrics: AUCROC, F-score
- Baselines
 - Most-represented Emotion (MRE)
 - Auto-suggest usage \rightarrow highest in one emotion
 - Personalized model, which determines auto-suggest usage in these emotions
 - Generalized (GEN)
 - Aggregating data from all other users
 - Leave-one-out-cross-validation

• How accurate is the auto-suggest usage prediction model?

• How effective are the features to predict auto-suggest usage?

Feature	Rank	Avg. IG
Emotion _{curr}	1	0.1194
Emotion _{prev}	2	0.1098
Time _{elapsed}	3	0.0794

Ranking different features based on InformationGain

Current session emotion is the most discriminating one

- How to improve auto-suggest usage prediction performance?
 - Balancing the dataset (accepted and skipped class)

Classification performance after balancing the dataset

- Classification performance improves after balancing dataset
 AUCROC 82%
 - F-score (Accepted) 75%
 - F-score (Skipped) 78%

Conclusion

- Auto-suggest usage is related with human emotion
 - more likely to use in *sad* or *relaxed* state
- Based on emotion, auto-suggest usage can be detected with an accuracy of 82%

Thank You!!

Acknowledgement

- Microsoft Research India
- LRN Foundation India
- IUI student travel grant

Dataset

• How close to the typing session, the emotion is collected?

Distribution of elapsed time between typing and emotion recording for all sessions across all users.

• Median elapsed time is less than 5 minutes; 75th and 90th percentile elapsed time is less than 30 minutes and 1 hour respectively.

Dataset

Outline

- Auto-suggest Usage Scenario
- Methodology
 - Experiment Apparatus
 - Model Construction
- User Study
 - Field Study
 - Dataset
- Evaluation
- Take-home Points

Background

- Text-entry in small touch-based devices
 relatively inconvenient due to limited space
- To facilitate, different techniques like *auto-complete, auto-suggest* are used
 - However,
 - need additional space
 - increase cognitive load to read, parse and select correct word [CHI 2016]
- Making auto-suggestions <u>adaptive</u>, <u>when the users</u> <u>are more likely to use</u> can overcome these

Thank You!!

Acknowledgement

- Microsoft Research India
- LRN Foundation India
- IUI student travel grant

Background

- Text-entry in small touch-based devices
 relatively inconvenient due to limited space
- To facilitate, different techniques like *autocomplete, auto-suggest* are used • Ishall trad
 - However,
 - reserves fixed space in keyboard layout
 - increase cognitive load
 - to read, parse and select correct word [CHI 2016]

Opportunity to improve the layout by making these techniques adaptive

tra

, 😳

 \wedge

?123

transfer

 $r^{2} e^{3} r^{4} t^{5} y^{6} u^{7} i^{8} o^{9}$

q h

zxcvbnm 🗵

training

 \leftarrow