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Smartphone-based Emotion Detection

App Usage Machine

Text msgs  Browsing ‘ Learning Emotion
History based /Mood

Classifier

Emails
Phone calls Location

* MoodScope: detects multiple mood states

 Leeetal. (CCNC 2012): Uses different sensors to collect context,
and a modified Twitter app to gather touch behavior

* MouStress: detects stress behavior from mouse usage patterns

Assumption: It is possible to collect the ground truth (or emotion labels) reliably



Collecting Emotion Labels

* Experience Sampling Methods

— [Time-based] Periodically ask the user to record the
emotion

— [Event-based] Detect a context (or event) to trigger a
questionnaire to record emotion

* What 1if the requests are too frequent or misses
important events

— User may respond falsely
— User may not respond at all
— Quality of classification may drop

Can we design an intelligent ESM, which reduces survey
fatigue and collects emotion labels timely ?



Outline

 LIHF ESM
* Case Study : TapSense

— Scenario

— Architecture
e DataSet

— User segregation
— ESM Trace Generation

e Evaluation

e Conclusion and Future Work



[Limitations of Conventional ESM

Time-based -High elapsed time between label
collection and occurrence of event

-Possibility of missing out important
event if the sampling interval 1s high

Event-based - May issue too many probes 1f the app
change occurs too frequently



LIHF Experience Sampling Method

Probe 1 Probe 2 Probe 3 Probe 4 Probe 5
El/ E2 E3 E4 ES/ E6/

t t+.5 t+1 t+1.5 t+2 t+2.5 t+3 t+3.5

* Low Interference High Fidelity (LIHF) ESM

* Probe will be 1ssued only 1f
— An event has occurred and

— A minimum time (say 30 mins) has elapsed since last
probe



Case Study: TapSense App

* An app that tracks the typing pattern of a user
— Typing based Emotion detection system

* Design an ESM, which

— reduces user engagement
— collects emotion labels timely
— yet produces reasonable emotion classification



Example Scenario

Typing Session
* Inter-Tap Distance (ITD)

— Elapsed time between entering two character 1s ITD

e Mean Session [TD

— Compute mean of all /TDs 1n a session, which 1s
known as Mean Session ITD

— Representation of typing speed



System Architecture

TapLogger

ESM Logger
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* Taplogger

TapSense System Architecture

— Tap Data collection

* ESMLogger

— Implements LIHF ESM

 Model Construction
— Personalized, decision-tree based



Survey Collection Interface

O © 4 = 19:29

< Select your Emotion

How are you feeling now?
O Sad / Depressed

O Happy / Excited

O No Response

RECORD EMOTION

Higher “No Response” may indicate that the user is not engaging = the user was
probed at an inopportune time.



DataSet

* Study duration — 2 Weeks

* Number of users — 15
— University students
— 12 males, 3 females, aged between (24 — 33) years

e Data collected

— 1291 survey requests corresponding to 2156 typing
sess10ns

— Only one user marked 2% of labels as “No
Response™

* Sharp contrast to Event-based Sampling where large
number of users marked “No Response”



User Identification

* Computed mean session I'TD from every
typing session

* Performed ANOVA test

* For 9 users, the test reveals p < .05
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Fig. 4: Distribution of ITD for different users.Emotion states and
Mean session ITDs in seconds are plotted along X and Y-axis
respectively.
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Evaluation

 Evaluation Metrics

— User Engagement
* Compares intrusiveness in terms of number of probes 1ssued
— Timeliness of Labels

* Measures how close to the event, the probes is issued
* Elapsed time between typing and label collection

— Classification Accuracy
* Measures performance of emotion classification

TP +TN
TP+TN +FP+FN

Accuracy =



ESM Type # of Avg. elapsed RoLL
probes time

Event-based d, d, /max(d, d,dp)
Time-based d, d, / max(d, d,,dy)
LIHF d, d, /max(d, d,d,)




How intrusive is the LIHF ESM approach?
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Fig. 8: Intrusiveness comparison across ESM strategies

In case of LIHF ESM, there 1s an average improvement of 26% in UEI
with respect to Event-based ESM




Are labels collected close to an event?
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Fig. 9: Comparing Recency of Label (RoL) Collection across ESM
Strategies

In case of LIHF ESM, average elapsed time is reduced by 50% with
respect to Time-based ESM




Does ESM schedule influence emotion classification?
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Fig. 10: Comparing accuracy for different ESM approaches

LIHF ESM performs best in recognizing the emotion states




Trade off between study duration and emotion classification
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Fig. 11: Accuracy comparison with number of
probes

LIHF ESM outperforms others once sufficient labels are collected




Conclusion

* Proposed a new ESM techniques which trades of
between Time-based and Event-based ESM

* Validated the ESM using a Typing-based emotion
detection system, which indicates using proposed
ESM there 1s

— 26 % reduction 1n survey fatigue
— 50% improvement in timely label collection
— 8% 1mprovement in emotion classification accuracy






