Evaluating Effectiveness of Smartphone Typing as an Indicator of User Emotion

Surjya Ghosh[#], Niloy Ganguly[#], Bivas Mitra[#] Indian Institute of Technology, Kharagpur

> Pradipta De* Georgia Southern University

Complex Networks Research Group: http://www.cnergres.iitkgp.ac.in/ *contact: pde@georgiasouthern.edu

Smartphone-based Emotion Detection

- Smartphones
 - Integral part of our daily life
 - Easy to track activities, location details, call history etc.
 - Opportunity to determine emotion states
 - Moodscope [Mobisys 13], Boredom detection [UbiComp 15]

Objective

- Design light-weight, non-intrusive emotion detection application using smartphone
- *Typing activity* in smartphone
 - Non-intrusive
 - Low resource consumption
 - Prevents monitoring overhead of multiple sensors
 - Privacy preserving (if content not looked at)
- Inspired by emotion detection using keyboard dynamics
 Epp et al. ^[SigChi 11]

Outline

- Qualitative Study
 - Smartphone, Typing and Emotion correlation
- TapSense Architecture
 - Challenges
 - Design Principles
- User Study
- Evaluation
 - Feature Selection and Impact
 - Classification Accuracy
- Take-home Points

User Survey

- Goal: Qualitative insight
 - on use of typing based applications on smartphones
 - Correlation between typing and emotion

- 56% users spent more than 30 mins daily
- Most used typing based apps are messaging apps

User Survey: Typing Cues for Emotion

TapSense Architecture

- TapLogger
 - Traces typing activity
- ESMLogger
 - Collects emotion self-reports Personalized, RF based
- Feature Extraction – Identify features
- Model Construction

TapSense: Design Challenges

- How to collect Typing data ?
 - Granularity of typing data collection
- Collect Self-reports from users
 - Apply Experience Sampling Method (ESM)
 - Must maintain a balance between "how many probes" and "timeliness" of the probe
 - How accurate are the self-reports ?

Typing Session Identification

- Typing details are extracted session-wise
- Typing session
 - Tap events within an app without app switch

Emotion Self-report Collection

Emotion circumplex model

	••• 🛈 🔟 🗎 19::			19:2
←	Select yo	ur Emotic	on	:
Howa	are you fe	eling no	w?	
🔿 Sad	/ Depressed			
🔿 Нар	py / Excited			
◯ Stre	essed			
Relation	axed			
O No	Response			
RECOR	D EMOTION			

Emotion collection UI

- Self-report collection
 - Report among 4 emotion state
 - Relaxed, Happy, Stressed, Sad
 - Dominant emotion from each quadrant
 - Emotion recording can be skipped by selecting *No Response*

Emotion Self-report Collection

- Self-report collection
 - Survey fatigue to be kept low

Attach Self-reports to Typing Session

Collected self-report is tagged to the previous typing session

Feature Identification: Typing Speed

• Inter-Tap Distance (ITD)

- Elapsed time between entering two character is *ITD*

• Mean Session ITD

- Compute mean of all *ITD*s in a session, which is known as *Mean Session ITD*
- Representation of typing speed

- Mean Session ITD (MSI)
 - Overlapping ITDs, not distinguishable enough
- Refined Mean Session ITD (RMSI)
 - Identify major cluster using K-means
 - Compute mean of ITDs present in that cluster

Keystroke Features

- Session Length
- Session Duration
- Percentage of Backspaces in a Session
 Typing mistakes while in a given emotion
- Percentage of Special Characters in a Session
 - To trace usage of special chars in an emotion state

User Study

- Study duration 3 Weeks (in-the-wild)
- Total number of participants 30
 - University students
 - -24 males, 6 females, aged between (24 33) years
- Installed *TapSense* in participant mobile phones
- Final participants 22 (20 male, 2 female)
 - Had to exclude 8 participants
 - 3 participants left in between
 - 5 participants recorded less than 40 labels

User Study: Emotion Distribution

- Relaxed is the most dominant state reported
- Used SMOTE to overcome sample imbalance
 - If an emotion label is absent, then do nothing
 - If an emotion label is low, then raise it to match the next higher sample count

Evaluation

- Personalized model for individual emotion prediction
 - Logistic Regression, SVM, Random Forests
- Used 10 fold cross-validation
- Classification accuracy measured using
 - AUCROC
 - Weighted average of AUCROC in predicting each emotion category, where weight is the proportion of the samples
 - F-score
- Importance of each feature
 - Information gain per feature

Classification Accuracy

- Average AUCROC of 73% (std: 9%)
- Prediction accuracy for all states > 60%

Feature Analysis

Feature	Rank	Avg. IG
RMSI	1	0.461
MSI	2	0.422
Number of backspace	3	0.368
Number of special character	4	0.202
Session text length	5	0.199
Session duration	6	0.197

- RMSI and MSI are the most important features
 - Typing rhythm or speed
- Use of backspace → more deletions related to emotion state
- Special characters or emoticons indicate certain states

Limitations

- Importance of short typing sessions
 - Typing sessions were on average 8 mins
 - − Longer typing sessions → there can be multiple emotion switches → how to capture without probing more frequently ?
- Alternative ESM design
 - More balanced data collection → reduce sampling for cases where multiple labels collected already
 - Predict expected label and decide to drop/collect
- Gender Bias in user study group
- Adding features, like swype, auto-completion

Take-home Points

- Light-weight, non-intrusive emotion detection system using only typing features is feasible
- Average accuracy (AUCROC) of 73% in a 3week study involving 22 participants

Project Site: http://cse.iitkgp.ac.in/~surjya.ghosh/projects.html

BACKUP

Typing based Emotion Detection Application

- Challenges
 - Extract Typing session
 - Collect Self-reports
 - Manual \rightarrow survey fatigue
 - Psycho-physical sensor based \rightarrow *intrusive setup*

