
Unsupervised Annotated City Traffic Map Generation

Rohit Verma, Surjya Ghosh, Aviral Shrivastava, Niloy Ganguly,
Bivas Mitra, Sandip Chakraborty

Department of Computer Science and Engineering
Indian Institute of Technology, Kharagpur, INDIA 721302

{rohit.verma,surjya.ghosh}@iitkgp.ac.in, aviralshrivastava93@gmail.com,
{niloy,bivas,sandipc}@cse.iitkgp.ernet.in

ABSTRACT
Public bus services in many cities in countries like India are
controlled by private owners, hence, building up a database
for all the bus routes is non-trivial. In this paper, we leverage
smart-phone based sensing to crowdsource and populate the
information repository for bus routes in a city. We have de-
veloped an intelligent data logging module for smart-phones
and a server side processing mechanism to extract roads and
bus routes information. From a 3 month long study involv-
ing more than 30 volunteers in 3 different cities in India, we
found that the developed system, CrowdMap, can annotate
bus routes with a mean error of 10m, while consuming 80%
less energy compared to a continuous GPS based system.

CCS Concepts
•Human-centered computing→ Ubiquitous and mo-
bile computing systems and tools;

Keywords
Crowdsourcing; Map generation; City transports

1. INTRODUCTION
According to IBM’s Commuter Pain Survey [1] conducted

in 2011 over 8, 042 commuters in 20 cities on six continents,
41% of the respondents believed that improved public trans-
port information would help in better planning, and 25%
would highly appreciate efficient information of road con-
ditions. Essentially, real time commute information may
facilitate the commuter in route selection, on the fly, based
on the comfort level and travel time. Notably, the immedi-
ate best solution of Google Transit are mostly unavailable
in cities of developing countries.

Constructing any commute facilitator-cum-recommender
system relies on building a proper information repository. In
developing countries, populating this information repository
is a major challenge. Albeit there may be several possibili-
ties such as manually annotating the Google map or relying

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGSPATIAL’16, October 31-November 03, 2016, Burlingame, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4589-7/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2996913.2996942

on the city transport authorities. However, almost all com-
muters travel with smart-phones which can seamlessly sense
the road and traffic condition, and such sensing is also free
from direct engagement of the owner. In this paper, we
leverage on such user-engagement free technology to crowd-
source and populate the information repository.

Nevertheless, multiple challenges need to be tackled to ef-
fectively implement such mobile sensing approach. First, to
ensure least user participation and energy usage, the sys-
tem should intelligently decide when to start and stop data
logging. Second, automatically identifying and tagging land-
mark locations in an energy efficient way. Third, generate
the travel trajectory of the user in presence of minimal GPS
information.

Studies like [4] have explored the capabilities of various on-
board inertial sensors, like accelerometer, gyroscope, com-
pass, to monitor unique road signatures or landmarks. There
are also researches on inertial navigation that uses sensors
to estimate and track the position of moving devices [3].
Further, some studies like [2] have proposed techniques for
producing route maps from smart-phone data or opportunis-
tically collected GPS traces. They primarily rely on war-
driving data, with significantly less possibility of noise and
are also limited to particular scenarios of smoothed data
(like taxi movement in a city of a developed country).

In this paper, we propose a crowdsource based solution,
CrowdMap, which seamlessly collects travel data and gen-
erates the trajectory followed by the user. The system has
two modules – data collection that runs at smart-phones, and
trajectory generation that processes the data at CrowdMap
server to generate the travel trajectory with bus routes re-
lated information. We have conducted a 3 month long study
involving more than 30 volunteers in 11 different routes of
3 different cities in India (§3). We observe that CrowdMap
can detect the landmarks with an average accuracy of 95%
and annotate the route on real map with an error of 5 meters
at worst case.

2. THE CROWDMAP SYSTEM
Broadly, CrowdMap has two major modules, as shown in

Figure 1; (a) the data collection module that runs on smart-
phones, (b) the data processing module that runs on the
CrowdMap server.

2.1 Data Collection on Smart-Phones
The crowdsourcing based data collection module is de-

signed to ensure intelligent logging of data only when the
user is in a bus with minimum user engagement and detect

Figure 1: CrowdMap: System architecture

location of specific route signatures, called landmarks (like
speed breakers, turns) using smart-phone sensors, with min-
imum strain on the smart-phone battery. Finally, the data
logger transfers the accelerometer and the compass readings
for the duration of bus commute, and the sequence of GPS
annotated landmarks encountered on the route to the server.

2.1.1 Smart Data Logging
In CrowdMap, we log the smart-phone sensor data only

when the commuter travels on a bus. This smart data log-
ging activity gets accomplished by first recognizing that the
commuter is traveling in a motorized vehicle from the initial
accelerometer trace; accordingly this module initiates the
smart-phone sensor sampling process. In the next step, the
second level the module leverages on the sound sensor data
for the first few minutes to classify whether the motorized
vehicle is a bus. Once the module detects that the user is
traveling by a bus, it continues collecting the inertial sensor
data. The detail methodology follows.
Detection of Motorized Vehicles: The key idea is, the
average acceleration in y-axis (in the direction of movement)
for a motorized vehicle (like cars, bus etc) is distinctly higher
than the other modes such as stationary, walking, bicycle,
etc. Figure 2(a) exhibits a striking difference between the
motorized vehicles and non-motorized modes. It is clearly
evident that acceleration in Y-axis is significantly higher for
both the motorized vehicles (bus and car) when compared
to, say bicycle. Notably, Figure 2(a) shows that even in case
of congestion, this smoothened feature can discriminate the
motorized vehicles (“bus congested” in the plot). We also
see that it is not possible to classify the different motorized
vehicles this way.

Next issue is to compute the latency in classifying the
motorized commuters. We compute the average acceleration
over the first k minutes on the smoothened data to filter out
non-motorized commuters. Figure 2(b) confirms the fact
that considering k = 2, we obtain a decent contrast between
motorized and non-motorized commuters.
Extracting Bus Commuters: In the next step, we per-
form further stratification to filter the commuters traveling
on bus, the duration only for which we collect data. In order
to identify buses, we leverage on the smart-phone audio sen-
sor and extract features to distinguish bus commuters from
other motorized vehicles.

As a proof of concept, we collect sound sensor data for

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100 120

A
c

c
e
le

ra
ti

o
n

 (
m

/s
2
)

Time (seconds)

(a) Linear Acceleration Variation

Bus
Bus Congested

Car
Cycling 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

Bus Bus Congested Car Cycle

A
c

c
e
le

ra
ti

o
n

 (
m

/s
2
)

Mode of Transport

(b) Average Linear Acceleration

Figure 2: Acceleration variation for motorized vehicles versus cy-
cling; (a) signature of the acceleration along y-axis for different
modes (b) Average value of the acceleration along y-axis calcu-
lated over the first 2 minutes

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500 600 700 800

D
e

c
ib

e
l

V
a

lu
e

Time (seconds)

(a) Variation in Decibel Values

Auto
Motor Bike

Car
AC Bus

Non-AC Bus

 40

 60

 80

 100

 120

 140

Auto Motor Bike Car AC Non-AC

D
e

c
ib

e
l

V
a

lu
e

Mode of Transport

(b) Average Decibel Value

Figure 3: Variation in sound data for different motorized vehicles;
(a) Signature of the sound data for different modes (b) Average
value of the sound data calculated over the first 4 minutes

different motorized (around 60) vehicles. Clear discrimina-
tion in decibel scale between bus and other vehicles can be
observed in Figure 3(a). Moreover, Figure 3(b) exhibits the
fact that in (k = 4) minutes, we can filter the bus commuters
from the crowd.

2.1.2 Detection of GPS Annotated Bus Stops and Land-
marks

In order to initiate the data logging activities, one needs
to identify the location of bus stops and commuter’s board-
ing & alighting on a bus. Additionally, detection of land-
marks, along with their GPS locations, is important since it
uniquely characterizes a bus route.
Boarding/Alighting and Bus Stop Identification: The
detection of boarding (and alighting) on the bus can be done
through observing the acceleration reading in z-axis (verti-
cal axis). The key idea is, the vertical acceleration inside a
bus, due to the jerking, is much higher than while walking
or standing, which commuter is supposed to do either before
or after the trip. Evidently, in Figure 4 we notice the dis-
crepancy in vertical acceleration for the three positions – (i)
when the user boards a bus, (ii) when she travels in the bus,
and (iii) when she gets down from the bus. In Figure 4(a),
the user boards the bus at 100 seconds after walking for
a while, hence, at that point, we observe a sudden kink.
When the user is inside the bus, the vertical acceleration
diminishes sometime in between, indicating that those are
the bus stops, as shown in Figure 4(b). Finally, as she gets
down from the bus at a stop at near 1280 sec, indicated in
Figure 4(c), the kink disappears.
Detection of Landmarks: We concentrate on the fol-
lowing five types of landmarks in a route (a) turns, (b)
speed breakers, (c) bus stops, (d) bad roads, and (e) conges-
tion zone. In CrowdMap, we primarily follow the proposed
methodology in [4] to detect the landmarks in a route. The
core concept is, we leverage on the smart-phone inertial sen-
sor readings to detect the landmarks. For instance, conges-
tion is characterized by the nature of halts; the sequence of
stops and moves within a short duration (say 1 minute) is
classified as a congested route segment.

-6

-4

-2

 0

 2

 4

 6

 8

 400 450 500 550 600 650 700

z
-a

x
is

 a
c

c
e

le
ra

ti
o

n
 (

m
/s

2
)

Time (seconds)

(b) While in a Bus

-6

-4

-2

 0

 2

 4

 6

 8

 1200 1250 1300 1350 1400 1450

z
-a

x
is

 a
c

c
e

le
ra

ti
o

n
 (

m
/s

2
)

Time (seconds)

(c) Getting down a Bus

-6

-4

-2

 0

 2

 4

 6

 8

 0 50 100 150 200

z
-a

x
is

 a
c

c
e

le
ra

ti
o

n
 (

m
/s

2
)

Time (seconds)

(a) Getting in a Bus

Figure 4: Vertical acceleration values to identify the events when
the user is traveling by a bus: (a) the user boards in at 100 secs,
(b) she is inside the bus when the bus takes a stop at 500 secs,
(c) she gets down from the bus at 1280 secs

Figure 5: Trajectory generation procedure

2.2 Data Processing Module
This server-side module of CrowdMap processes the land-

mark data to extract the bus route & traffic information
and generate path between two landmarks to generate the
complete travel trajectory of the user.

2.2.1 Generation of Travel Trajectories
CrowdMap generates the travel trajectories from the se-

quence of opportunistic GPS annotated landmarks. The al-
gorithm can be divided into two steps; the first is estimating
the approximate coordinates of intermediate points from the
location of landmarks, and the second is eliminating the es-
timation error.

Estimate location points: The objective is to estimate
the location of the intermediate points from the landmarks.
Let the sampling rate of the compass be SC . We compute
the location of every points corresponding to the sampling
points of the compass. The sequence of these points define
the travel trajectory.

We utilize the fact that the sample rate of compass, SC , is
very high, usually around 30-40 samples per second. There-
fore, the distance traveled in this period (1/SC sec) is very
small and we can use the average speed of the bus v, com-
puted from accelerometer readings by integrating over the
acceleration value, to calculate this as v× 1/SC without in-
corporating any visible error. We thus have the distance
traveled, angle of deviation (obtained from the list of sam-
pling points from compass data indicating the angle of devia-
tion at those points) and the previous location coordinates,
which can be used to calculate next location coordinates
with the help of Vincenty’s formula [5]. However, due to the
estimation methods for Vincenty’s formula[5], every point
may associate a small error which may further add up with
a considerable deviation from the actual travel trajectory.
In the next phase, we remove this estimation error.

Removing Estimation Error: Because of the cumula-
tive error, it is possible that the estimated point goes out
of the roads given in the actual map interface, like Google

map interface. We can use Google’s Snap-to-Road API to
drag the point on the road. However, as the API projects
a point over the nearest road segment, there is a possibility
that the point is more closer to a different road where it
is dragged into. Therefore, we use a coordinate geometric
approach to drag the point at correct direction, as shown in
the highlighted area of Figure 5. Let P [i−1] be the previous
estimated point on the route, P ′ be the current estimated
point and L[j] be the next landmark in L succeeding point
P [i − 1]. Now, the new point should lie between P [i − 1]
and L[j] on the route. Hence, we project P ′ on the line join-
ing P [i− 1] and L[j] to get P ′′. We then apply the Google
Snap-to-Road API on P ′′ to project the point on the correct
road. The projected point P [i] becomes part of the travel
trajectory.

3. EVALUATION
We conducted experiments for a period of three months

in the cities of Kolkata (KOL), Bhubaneswar (BBS) and
Durgapur (DGP), three cities in the eastern part of India.
While KOL and BBS are two state capitals with areas 1887
sqkm and 422 sqkm respectively, DGP is a suburban city
with area 154 sqkm.

3.1 Experimental Setup
The application was distributed amongst 30 users. The

first month of the experiments involved logging the complete
GPS information of these users, so that we can later use this
information as ground truth. Also, users were asked to tag
the mode of transport they were using and the landmarks
encountered. We conducted the experiments in 11 different
routes of the above-mentioned cities and collected more than
200 trails.

3.2 Evaluation: Intelligent Logging
From the experimental traces, we check whether unneces-

sary data were collected when the mobile phones were sta-
tionary,

We checked all the data collected from the users using con-
tinuous GPS polling to observe the times when the GPS co-
ordinates were within a 2 m radius for more than 5 minutes
(indicating that the user is stationary), but still data were
being collected. We observed that for only 0.08% of the
readings, the system logged data even when the user was
not in motion.

3.3 Evaluation of Detection of Road Features
We show two results here. First we give the error in

the coverage of bad road patches followed by the results on
congestion identification. The results related to detection
of speed breakers, turns and bus stops is available in our
work [4].
Ground Truth Generation: The ground truth data
for detection bad road patches were collected from the data
that the users had tagged during the first month of trail col-
lection. The users were given a separate application where
they tagged the coordinates of a bad road patch, whenever
encountered. We employed a different strategy for collect-
ing ground truth data for congestion. We took the help of
Google map to see which parts of the routes were moder-
ately or highly congested during the time of data collection,
if the data were collected either in the morning or in the
evening.

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

BBS KOL1 KOL2 KOL3 KOL4 DGP

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

J
)

Route

(b) Comparison of Energy Consumption

GPS
CrowdMap

 0

 5

 10

 15

 20

 25

 30

BBS KOL1 KOL2 KOL3 KOL4 DGP

C
o

v
e
ra

g
e
 E

rr
o

r
(%

)

Route

(a) Error in annotating bad road

Error after first Month
Overall Error

Figure 6: Bad road patch detection accuracy and Energy con-
sumption analysis

 0

 10

 20

 30

 40

 50

BBS KOL1 KOL2 KOL3 KOL4 DGP

A
v
g

.
E

rr
o

r
(m

)

Route

(b) Map Generation Error on Different Routes

Vincenty
Coordinate Geometry Approach

Snap To Road

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

BBS KOL DGP

R
a
ti

o

City

(a) Ratio of Detection of Congested Patches

α
β
χ

Figure 7: Evaluation of Congestion and Map generation module
(a)Detection of detection of congested patches, (b) Travel trajec-
tory estimation accuracy

Detection of Bad Road Patches: Figure 6(a) shows the
average fraction of error in annotating the bad road patches.
We compare it for two datasets - (1) data for the first month
in which the tagging of bad road patches was done, and
(2) on the entire dataset collected for three months. The
intuition is that for the following months, the number of bad
road patches may change. We observe that for some routes,
the number of bad road patches do change, and hence the
change in error rate. Considering accuracy, we see that the
error in some cases is as high as 0.14. On investigating, we
find that bad road patches in those cases correspond to one
single lane of a road, and bus drivers bypass them whenever
possible.
Detection of Congestion Affected Areas: We give
three metrics to evaluate the accuracy of detecting conges-
tion affected areas.

α =
λdet
R + λdet

Y

λ
, β =

λdet
R

λact
R

, χ =
λdet
Y

λact
Y

where, λdet
R/Y is the length of a route tagged highly/medium

congested by our system, λact
R/Y) is the length of route found

highly/medium congested from Google map, and λ is the
total length of the congested route. Figure 7(a) gives the
values for α, β and χ. A value greater than 1 implies that
an extra stretch of the route was marked as congested. In
case of DGP, there was only medium level congestion ob-
served. However, we see that the error never shoots beyond
10% compared to what Google captures with an elaborate
technology.

3.4 Evaluation: Travel Trajectory Estimation
We next evaluate how accurately are the estimated travel

trajectories. We find out the localization error for the es-
timated GPS coordinates by comparing with ground truth
GPS data. As mentioned, we already have the set of ac-
tual GPS coordinates for a route from the first month data.
We compare the estimated GPS coordinates with the origi-
nal GPS coordinates to find out the localization error. For

this, we compute the average deviation between the esti-
mated GPS coordinates and their closest GPS coordinates
on the actual route as obtained from the ground truth data.
In Section 2.2.1, we mentioned three stages in the estima-
tion of a coordinate – first, by applying Vincenty’s formula,
followed by a coordinate geometry approach, and finally us-
ing Google Snap-to-Road API to reduce the estimation er-
ror. Figure 7(b) shows the localization error for these three
stages on different routes. It can be easily observed that
at each level, the error is considerably decreased, especially
applying the coordinate geometry approach after Vincenty’s
estimation. Moreover, the maximum localization error never
goes beyond 6m.

3.5 Evaluation: GPS Usage
As expected, our approach consumes much less energy. As

shown in Figure 6(b), the energy consumption without con-
tinuous polling of GPS is reduced down by 80% in majority
of the cases.

4. CONCLUSION
One of the major motivations of this study is to design a

low-cost solution that can gather useful information regard-
ing road and route condition from users commuting in pub-
lic transport. We design and implement an Android based
crowdsourcing application named CrowdMap, which auto-
matically identifies unique road signatures (like potholes,
bad road patches) at zero user intervention. With a 3-month
study, we observe that CrowdMap can detect these land-
marks with an average accuracy of 95% and embeds the
route segments on real map with an error of 6 meters at
worst case. This study is a first step towards developing a
public transport recommender system based on users pref-
erence.

Acknowledgement
The authors would like to thank Information Technology
Research Academy (ITRA), Government of India, for sup-
porting this work under the “DISARM” research project,
sanction letter number and date ITRA/15(58)/MOBILE/
DISRAM/01, Dt. 19-09-2013.

References
[1] IBM Global Commuter Pain Survey (available online,

last accessed: June, 2016), 2011. http://www-03.ibm.
com/press/us/en/pressrelease/35359.wss.

[2] J. Biagioni, T. Gerlich, T. Merrifield, and J. Eriksson.
Easytracker: Automatic transit tracking, mapping, and
arrival time prediction using smartphones. In 9th ACM
Sensys, pages 68–81, 2011.

[3] S. Nawaz and C. Mascolo. Mining users’ significant driv-
ing routes with low-power sensors. In 12th ACM SenSys,
pages 236–250, 2014.

[4] R. Verma, A. Shrivastava, B. Mitra, S. Saha, N. Ganguly,
S. Nandi, and S. Chakraborty. UrbanEye: An outdoor
localization system for public transport. In 35th IEEE
INFOCOM, 2016.

[5] T. Vincenty. Transformation of co-ordinates between
geodetic systems. Survey Review, 18(137):128–133, 1965.

