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ABSTRACT
Typing based communication applications on smartphones,
like WhatsApp, can induce emotional exchanges. The effects
of an emotion in one session of communication can persist
across sessions. In this work, we attempt automatic emotion
detection by jointly modeling the typing characteristics, and
the persistence of emotion. Typing characteristics, like speed,
number of mistakes, special characters used, are inferred from
typing sessions. Self reports recording emotion states after typ-
ing sessions capture persistence of emotion. We use this data
to train a personalized machine learning model for multi-state
emotion classification. We implemented an Android based
smartphone application, called TapSense, that records typing
related metadata, and uses a carefully designed Experience
Sampling Method (ESM) to collect emotion self reports. We
are able to classify four emotion states - happy, sad, stressed,
and relaxed, with an average accuracy (AUCROC) of 84% for
a group of 22 participants who installed and used TapSense
for 3 weeks.
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INTRODUCTION
Keystroke dynamics has been shown to be an effective modal-
ity for automatic detection of person’s affective states [14].
Works using keystroke dynamics collect data related to user’s
typing pattern on a computer keyboard to infer different emo-
tion states [8]. Nowadays we use several applications on
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smartphones that are typing based. Moreover, these typing
based applications are often conversational in nature, espe-
cially communication applications, like WhatsApp. Thus
keystroke dynamics on smartphones during these typing ses-
sions can elicit clues about user’s emotion. Using smartphone
typing patterns also has the added advantage of conducting
in-situ experiments.

Effects of different emotions can linger for different durations.
As pointed out by Verduyn et al. various emotion states, like
sad or happy, can persist differently for different individuals
[29]. Considering typing sessions as the stimulus for the emo-
tions, it is natural to assume that emotions from one session
can persist into another session. If a user is asked to report the
emotion state after typing sessions, the effect of emotion per-
sistence can affect the self report. Therefore, it is important to
incorporate the effect of emotion persistence while predicting
emotion states.

Figure 1: Circumplex emotion model

[23]

In this work, we present a personalized multi-state emotion
prediction model that uses both typing patterns and the transi-
tions between emotion states as recorded by users through self
reports. Typing patterns are captured by the speed of typing,
duration of typing, use of special characters, mistakes while
typing denoted by the use of delete key. The persistence of
emotion states is modeled assuming that a future emotion state
is affected by the previous emotion states, and the emotion
state transitions exhibited by the user in the past. We model
the emotion transition as a Markov chain where the impor-
tance of an emotion state transition is based on the recency of
recorded transition to the current self report. We implement
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an Android based application, called TapSense, that collects
emotion self-reports and typing details to drive the model. Self
report collection is driven by a refined Experience Sampling
Method (ESM), which decides to issue the probes timely and
yet keeps the probing rate low. Typing events are captured by
instrumenting the smartphone keyboard. However, we collect
only meta information to avoid privacy concerns. The machine
learning model constructed based on the data collected can
predict up to four emotion states - happy, sad, stressed, and
relaxed - chosen from different quadrants of the Circumplex
Emotion Model (Figure 1).

We conducted a field study in-the-wild by installing TapSense
in smartphones of 22 volunteers. TapSense transparently
recorded the typing metadata as the users went about using
various typing applications on their phone. The ESM gen-
erated pop-ups to record emotion states at moments that are
close to the typing events, while ensuring that the number of
such self report requests are limited to minimize survey fatigue
among the respondents. We collected data for 3 weeks. As
reported in other similar experiments [19], Relaxed states were
recorded more often than the other three states leading to a data
imbalance. We used the Synthetic Minority Over-sampling
Technique (SMOTE) to overcome the data imbalance [6]. We
trained a Random Forest based machine learning model to
classify the four emotion states. We obtained an average ac-
curacy (AUCROC) of 84% in classification. Precision and
recall for Relaxed state reached close to 80%, while for the
remaining three states it reached above 60%.

The main contributions of this paper are:

• A personalized machine learning model that uses both typ-
ing characteristics on a smartphone, as well as, the emotion
persistence effect in self reports to infer multiple emotion
states.
• A low overhead, non-invasive smartphone application,

called TapSense, suitable for long running in-situ exper-
iments for automatic emotion detection.

RELATED WORK
We present relevant works that use smartphone as a device for
collecting data for emotion detection. Among these, studies
where smartphone touch patterns are explored for emotion
recognition are the closest to our approach. Our contributions
lie in defining a new predictive model combining typing pat-
terns and emotion persistence, supported by an effective ESM
strategy.

Smartphone-based Emotion Recognition Techniques
Smartphone-based emotion recognition techniques can
broadly be divided into following two categories.

Multi-state Emotion Prediction: A number of works exploit
the smartphone usage details and build a multi-state emotion
prediction model. MoodScope proposed to infer mood exploit-
ing multiple information channels, such as SMS, email, phone
call patterns, application usage, web browsing, and location
[19]. In EmotionSense, Rachuri et al. used multiple features
from the Emotional Prosody Speech and Transcripts library to
train the emotion classifier [22].

Single-state Emotion Prediction: We also find that there are
multiple works, which use different information sources to
infer presence of a particular emotion state. For example,
Pielot et al. tried to infer boredom from smartphone usage
patterns like call details, sensor details, etc. [21]. In their
work on detecting stress, Lu et al. built a stress classification
model using a number of acoustic features [20]. Similarly,
Bogomolov et al. showed that daily happiness [3] and daily
stress [2] can be inferred from mobile phone usage, personality
traits, and weather data.

ESM for smartphone-based Emotion Detection: Experience
Sampling Method (ESM) [12] is used for collecting self-
reports and Time-based, Event-based ESM scheduling policies
are most commonly adopted by these techniques [7]. For ex-
ample, in MoodScope [19], Boredom detector [21] authors
used Time-based ESM. On the contrary, studies like Emo-
tionSense [22] used Event-based ESM driven by contextual
information.

Touch-based Emotion Recognition Techniques
Widespread availability of touch-based devices and steady
increase [17] in the usage of instant messaging apps open a
new possibility of inferring emotion from touch interactions.
For example, Lee et al. designed a Twitter client app and
collected data from various on-board sensors including typing
to predict emotion [16]. The work targeted typing behavior
on only one application, and was validated on a single user.
On the contrary, our exploration goes significantly further in
its methodologies, realization, and evaluation. Similarly, Gao
et al. used multiple finger-stroke related features to identify
different emotional states during a touch based game play [10].
Ciman et al. detected stress conditions by analyzing multi-
ple features of swipe, scroll and text input interactions in a
smartphone [30]. In [13], Kim et al. proposed an emotion
recognition framework analyzing touch behavior during touch
interaction using 12 attributes from 3 on-board sensors. Al-
though focused on narrow application scenarios, all of these
works point to the value of touch patterns in emotion detection.

In this work, we make use of typing characteristics in smart-
phone to enable emotion detection across all typing based
applications. We propose a model to combine different typ-
ing features and persistence of affective states for automatic
emotion prediction. We (a) do not use any privacy sensitive
information like call details, SMS details or browsing history,
(b) limit the apparatus to only a smartphone to make the us-
age non-invasive, and (c) avoid resource-intensive information
sources and processing on the user device.

METHODOLOGY
We designed and implemented an Android based application,
called TapSense, for data collection. The application was
installed on smartphones of volunteers who used it without
any intervention. The raw data from all the users is uploaded
periodically to a server for data analysis, and constructing the
personalized emotion prediction model. In this section, we
present the details of the application, data processing steps,
and the feature selection for model construction.



Figure 2: TapSense architecture

Experiment Apparatus
TapSense is designed as a client server application. The client
component is an Android application focused on collecting
(i) data related to typing characteristics, and (ii) emotion self-
reports. The server component acts as a storage for the data
uploaded from each user device. We perform all the data pro-
cessing and model generation tasks on the server. Figure 2
shows the architecture of our experiment apparatus. TapLog-
ger collects data when a user is typing, while ESMLogger
is designed to trigger a popup questionnaire to collect user
response about her current emotion state. Next, we present the
details of the data collection components.

Figure 3: TapSense Keyboard
Figure 4: Self-reporting UI for emotion
collection

Typing Data Collection
In order to collect typing related information, the TapLogger
module is implemented as part of an instrumented keyboard.
We take advantage of the Input Method Editor (IME) [1] fa-
cility in Android to implement the keyboard. When TapSense
is installed by a volunteer, she is prompted that the default
keyboard is being replaced with the instrumented keyboard.
TapSense keyboard has the same functionalities as any QW-
ERTY keyboard, as shown in Figure 3), thereby not affecting
the user’s natural usage. The information that is logged are
timestamp of each tap event when a character is entered, the
type of key input, such as alphanumeric keys, or delete keys.
We also record the application used by the user during the
typing activity. Actual text is never recorded to protect the
privacy of the user. The data is uploaded to the server when
the user is in a WiFi hotspot.

Self Report Collection
Self reports are used to collect data from the user about her
emotion state soon after she has performed some typing activ-
ity. This allows us to correlate the emotion label recorded by
user to the typing characteristics. There are two challenges in
designing a reliable self report collection mechanism. First,
the request for self reporting must be generated in a timely

Figure 5: ESM for collecting self-reports

manner such that it is close to a typing event, but at the same
time it should not disturb the user. Also, if the phone is locked
immediately after a typing session, then triggering a self report
request will go unnoticed for a long time. Second, the user
may be busy and may decide not to respond to a probe. We
must not allow default label to be captured, and give explicit
option to the user to skip the question.

We design our self report collection based on Experience Sam-
pling Methods (ESM). However, we tune the ESM to reduce
survey fatigue by limiting the number of probes, while trying
to make it more timely for high fidelity input from the user.
The ESMLogger implements a quasi-regular scheduling policy
where self report collection is triggered only (a) if the user
has performed sufficient amount of typing (L) before chang-
ing the current application and (b) a minimum time interval
(W ) has elapsed since the last ESM probe. In order to collect
self-reports close to the typing completion, we set a polling pa-
rameter, which checks at every time interval T and accordingly
issues the probe if the previous two conditions are satisfied.
The ESM is illustrated in Figure 5.

The self report collection user interface is a pop-up window as
shown in Figure 4. The UI design is based on the following
arguments.

• We select one dominant emotion state from each of the four
different quadrants of the circumplex model (Figure 1).
• If the user is busy, and wants to skip a survey, there is a No

Response option. This ensures that a user does not pick a
label randomly.
• By default, whenever the UI is shown, No Response option

is selected. In order to provide emotion label, user needs to
select correct emotion label and record.

Tagging Typing Session with Emotion Self Report
As a user performs typing activity, we extract her typing ses-
sion. We define typing session as the period user stays onto a
single application without changing the same.

Figure 6: Schematic showing the process of associating user provided emotion label
with typing session. For example, time interval between t1 and t2 is considered a
typing session, where each small bar within this session is a typing event. Emotion label
provided between t2 and t3 is associated with this typing session.



Figure 6 depicts how emotion labels are associated with a
typing session. For example, when a user uses WhatsApp un-
interrupted without switching to other application from t1 till
t2, then we define elapsed time between t1 and t2 as a typing
Session. Each small bar within this session is a typing event
and we calculate the elapsed time between two subsequent
typing event as the Inter-Tap Duration (ITD). ITD acts as a
measure of the typing speed. Once the user switches the appli-
cation, an ESM probe, based on the configuration parameters,
is triggered to record an emotion label. Upon selecting an
emotion label l, all preceding typing sessions are labeled with
l. We use typing session and session interchangeably.

Data Processing
After the raw data is collected on the server, following data
cleansing tasks are performed to filter out irrelevant informa-
tion before model generation.
(i) Removal of No Response Labels: The first step is to remove
all sessions labeled with No Response labels, which do not
indicate any emotion state.
(ii) Session Elimination: If time duration between the end of
a session and the collection of the subsequent label is high,
it may not reflect accurately the emotion experienced during
the session. Therefore, we filter out all sessions for which the
interval between typing and emotion label collection is more
than 3 hours.
(iii) Elimination of small sessions: In order to ensure that suffi-
cient number of typing events are performed in every session,
so that different typing cues can be extracted from the session
and linked with the emotion state, we decide to discard ses-
sions with less than 50 typing events.
(iv) Outlier ITD Elimination: We consider an ITD value that is
more than 3 times the standard deviation away from the mean
value as an outlier. We remove the outliers from each ses-
sion such that the mean session ITD value is not skewed. We
try with different threshold values and finally use the above-
mentioned values to ensure that we obtain sufficient amount
of typing sessions for every user and there is enough typing
details in every session.

Category Feature Name

Keystroke Features

Mean Session ITD (MSI)
Refined Mean Session ITD (RMSI)
Number of special characters
Number of backspaces (or delete)
Session duration

Auxiliary Features Persistent emotion (PRE)
Working Hour Indicator

Table 1: Feature table

Feature Selection
We identify several features, related to typing characteristics,
along with the self report patterns that can be used to train a
model for emotion prediction. The features, as listed in Table 1,
are explained further. Features extracted from typing activities
are named as keystroke features. We name the other two
features as auxiliary features as they do not require monitoring
of any additional activity or sensor data.

Keystroke Features
We use typing speed as a feature, but use two different repre-
sentations of it - Mean Session ITD (MSI) and Refined Mean

Session ITD (RMSI). In order to compute the MSI, we com-
pute the average of all Inter-Tap Durations (ITDs) present in a
session.

Figure 7: Schematic showing the intuition behind using RMSI as feature. Identification
of dominant set of ITDs in a session and giving it preference to while computing RMSI
provides it better distinguishing ability to identify two emotion states.

However, we find that it is possible to have overlapping ITD
values in two different typing sessions tagged with different
emotion states, if the emotion labels are captured within a
short time span. This may be due to the effect of last emo-
tion on the current one. Therefore mean session ITD (MSI)
computed using all ITD values for an emotion label may not
provide clear demarcation between the two emotion states
and there is a need for additional sophisticated mechanism
to trace typing speed. So, we introduce the feature Refined
Mean Session ITD (RMSI), which is calculated based on the
dominant set of ITDs present in a session. Figure 7 describes
the intuition behind selecting RMSI as the feature. We identify
the major cluster and compute mean giving it the preference
so that the difference in RMSI become more pronounced for
two different emotion states. We implement the following
clustering based approach to compute the value of RMSI as
outlined in Algorithm 1.

Algorithm 1: RMSI Calculation Method
Input: Session ITDs(S)
Output: RMSI

1 [Cma jor ,Cminor]← kmeans((S),2)
2 itdma jor ← mean(Cma jor)
3 itdminor ← mean(Cminor)
4 Ssorted ← sort(S) in ascending order
/* This step is to normalize ITD data usage */

5 if itdma jor < itdminor then
6 RMSI ← Compute mean using top 80% samples of Ssorted

7 else
8 RMSI ← Compute mean using bottom 80% samples of Ssorted

We also consider other keystroke features. We compute the
fraction of backspace and delete keys present in a session
and use it as a feature. We use this feature to get a general
idea about the number of mistakes being made. Similarly,
we use the fraction of special characters in a session and
session duration as features to get an idea about how these
characteristics vary with emotion states.

Persistent Emotion (PRE) based on Self Reports
Different emotion states persist for different durations, and
can affect how a user responds emotionally to a new emotion
stimulus [29]. This implies that when a user records her emo-
tion state, it can get influenced by earlier emotion states. As a
result, it is possible to estimate the next emotion state based



on the previous emotion states information. The notion of us-
ing previous emotion state details to estimate current emotion
represents persistent emotion (PRE) feature.

Figure 8: Schematic showing the process of computing PRE of nth session (en). We
multiply the self-report of (n−1)th session with transition matrix P, which is computed
by analyzing the transitions of previous (n−1) sessions. [ei]1×4 is a vector with denoted
position of different emotion states. For a given self-report, that position is set to 1, rest
are 0. [P]4×4 is the transition matrix; pxy indicates transition probability of moving from
state x to y. H,S,T,R denote happy, sad, stressed, relaxed states respectively.

We model the feature PRE using discrete-time Markov chain
[25]. Figure 8 depicts the modeling of PRE for nth session.
Mathematically, we express the same as follows,

en = en−1.P (1)

where P is the transition matrix containing the state transi-
tion probabilities and en denotes the PRE of nth session, en−1
denotes the self-report of (n− 1)th session. The state space
of ei contains the set of recorded emotion states {happy, sad,
stressed, relaxed}. In order to calculate the transition matrix
(P), state-wise transition probabilities are calculated. Ideally,
while calculating the transition probability (pxy) of making
a transition from state x to y, the total number of transitions
(nxy) made from x to y should be divided by the total number
of transitions (nx) possible from x, which can be expressed as,

pxy =
nxy

nx
(2)

where x,y ∈ {happy, sad, stressed, relaxed}.

However, this scheme does not consider the elapsed time
between two consecutive emotion self reports and assigns
equal importance to all transitions. We differ here because
if the elapsed time is low, then intuitively there will be high
influence of last emotion on current emotion and vice-versa.
In our approach, we consider the elapsed time between two
emotion self-reports and accordingly calculate the transition
probability. For every emotion state x, we define a matrix
(Tx), which contains all the state transitions from x and the
corresponding elapsed time between these two. As a result, if
there are k transitions from state x, then

Tx = [y elapsed timexy]k×2 (3)

where y ∈ {happy, sad, stressed, relaxed}. Then for x, the
value of the minimum elapsed time is found as,

τ
x
min = minimum(Tx(:,2)) (4)

The total number of transitions (nxy) from x to y is redefined
as

nxy = ∑
k
i=1

τx
min

Tx(Tx(i,1) = y,2)
(5)

and the total number of transitions (nx) from x is redefined as

nx = ∑
∀y∈{happy,sad,stressed,relaxed}

nxy (6)

Once we redefine nxy,nx the probability values (pxy) are com-
puted as per equation 2.

Lets consider the following example. If there is 1 transition
from relaxed (r) state to sad (s) state, with elapsed time of
60 minutes and 1 transitions from relaxed (r) state to happy
(h) state with elapsed time of 15 minutes; the un-weighted
scheme assigns the transition probability 0.5 to prh and prs.
But the proposed scheme would assign probability 0.8 and
0.2 respectively to prh and prs. In summary, since the re-
laxed to happy transition has lower elapsed time, it gets higher
transition probability.

Algorithm 2: PRE Calculation Method for nth session
Input: [ET ](n−1)×3; details of previous (n−1) sessions; ETi1 denotes the

emotion label associated with session (i−1), ETi2 denotes emotion label
associated with session i, ETi3 denotes the elapsed time between
recording emotion for session (i−1) and i.

Output: PRE for session n
1 E← [ happy, sad, stressed, relaxed ]
2 P← []
3 foreach e f rom ∈ E do

/* Extract transition details from each emotion */
4 Tf rom ← ET (ET (:,1) = e f rom, :)

/* Check if transition details are empty */
5 if (!isempty(Tf rom)) then

/* Find minimum elapsed time among all transitions */
6 τmin ← Find minimum (Tf rom(:,3))

/* Initialize all possible transitions from e f rom */
7 [nh,ns,nt ,nr ]← 0
8 for i← 1 to length(Tf rom(:,2)) do

/* Weigh each transition factoring in minimum
elapsed time */

9 if Tf rom(i,2) = happy then
10 nh = nh +

τmin
Tf rom(i,3)

11 else if Tf rom(i,2) = sad then
12 ns = ns +

τmin
Tf rom(i,3)

13 else if Tf rom(i,2) = stressed then
14 nt = nt +

τmin
Tf rom(i,3)

15 else if Tf rom(i,2) = relaxed then
16 nr = nr +

τmin
Tf rom(i,3)

/* Find total number of weighted transitions */
17 sum = nh +ns +nt +nr

/* Compute the transition probability and attach to
the matrix */

18 P = [P; nh
sum

ns
sum

nt
sum

nt
sum ]

/* No transition from a given emotion state */
19 else
20 P = [P;0 0 0 0]

21 prevemo← ET (end,2)
22 PRE = prevemo.P

We describe the process of computing the PRE of nth session
in Algorithm 2. During training phase, when self-reports are
collected, for every session, the proposed algorithm first com-
putes P and then multiplies it with the self-report of previous
session to find PRE for current session. In order to find tran-
sition probability from every emotion state (line number 3),
it first extracts the number of transitions made from that par-
ticular state (line number 4). Then, it finds the transition with



minimum elapsed time (line number 6) and accordingly for
every transitions made from current emotion state, weigh the
number of transitions (line number 9 to 16). Then it computes
the probability by normalizing these number of transitions
with total transitions and creates the transition matrix P (line
number 17 to 18). Once P is computed, it multiplies previous
self-report with P and returns the PRE (line number 22).

Working Hour Indicator
Similarly, we feel that emotion states may vary between work-
ing hour and non-working hour. We select working hour
indicator also as feature since a significant amount of time is
spent at work and such a setup can be stressful at times. We
have set this indicator if the emotion recorded is within 10
AM to 5 PM on a week day (Monday to Friday).

Field Study
Survey Focus Group: We recruited 30 graduate students (25
male, 5 female, aged between 24−33 years) to use TapSense.
We installed the application on their smartphones and in-
structed them to use it for 3 weeks to record their emotion
states. 3 participants left the study in between and 5 partici-
pants entered less than 50 labels during entire period. Finally,
we collected data from the remaining 22 users (20 male, 2
female).
Instructions to the Focus Group: We instructed participants
to select the TapSense Keyboard as the default keyboard. We
informed the group members that when they switch from an
application which involved typing, they may receive a survey
questionnaire as a pop-up, where they can record their emo-
tion state. We also advised participants to record No Response
label if they are busy and do not want to record emotion state.

DATA ANALYSIS
We collected a total of 605362 typing events spanning across
3976 typing sessions. This adds up to 154 hours of typing.
However, after the data cleansing operation, number of typing
sessions reduced to 2705. In Table 2, we record the sessions
removed at each of the data cleansing steps.

Data cleansing step Eliminated sessions (%)
No Response Removal 2.5
Outlier session elimination 7.4
Small session elimination 22.0

Table 2: Amount of eliminated sessions

Final Dataset
Our final dataset comprises of 529698 typing events, which
constitute close to 135 hours of typing. There are 2705 ses-
sions with an average of 123 sessions per user. The median
session length and median session duration are found to be
114 and 98 seconds respectively. Table 3 summarizes the final
dataset.

Total typing events 529698
Total typing sessions 2705
Total typing duration (in Hr.) 135
Mean typing sessions (per user) 123
Minimum number of typing sessions for a user 40
Maximum number of typing sessions for a user 485

Table 3: Final dataset details

Figure 9: Emotion distribution of every user. All but 6 users have recorded all 4 emotion
states. For every user, there are two bars, where the first bar indicates the distribution
of emotion samples in original data as recorded by the participants. The corresponding
second bar indicates the distribution of emotion samples after applying SMOTE.

Emotion Distribution
In Figure 9 we analyze the distribution of the four
emotion states recorded by the users. Except 6 users
(11,12,15,17,18,22), all the users recorded four emotion
states. For most of the users relaxed is the dominant emo-
tion state. We also observe that all the emotion states are
not uniformly distributed creating data imbalance among
the four emotion categories. Overall we have recorded
19%,9%,23%,49% sessions tagged with happy, sad, stressed
and relaxed emotion respectively from the participant provided
self-reports.

User Added
Sample (%) User Added

Sample (%) User Added
Sample (%)

U1 19.71 U9 19.61 U17 5.56
U2 7.55 U10 7.27 U18 0.00
U3 4.17 U11 0.00 U19 6.25
U4 4.27 U12 8.04 U20 10.44
U5 5.06 U13 4.41 U21 12.17
U6 4.08 U14 11.54 U22 12.35
U7 7.38 U15 8.02 - NA
U8 0.00 U16 0.00 - NA

Table 4: User-wise percentage of newly added samples using SMOTE

Countering Data Imbalance using SMOTE
In order to overcome the problem of data imbalance in emotion
samples, we use Synthetic Minority Over-sampling Technique
(SMOTE) [6]. SMOTE is designed to re-sample the class with
the least number of instances so that almost all classes are
balanced. While using SMOTE we ensured that - (a) we do
not include any new state i.e. if the user has not originally
provided any emotion state, the same is not added after sam-
pling and (b) we try to add as few records as possible, so that
the emotion state with least number of samples is boosted
to have approximately as many samples as the category with
the next higher count. By applying SMOTE we add 8% new
records. Additional data introduced per user is shown in Table
4. We also show the user-wise comparison of emotion sample
distribution before and after applying SMOTE in Figure 9. All
results reported later on are based on this data generated after
applying SMOTE unless otherwise stated.

EVALUATION: EMOTION CLASSIFICATION
We tested three different models - L2-regularized Logistic
Regression (LR) [9], Support Vector Machines with Radial
Basis Functions kernel (SVM) [28], and Random Forests (RF)
[4] using 10-fold cross validation. We report the results of
Random Forests (RF) since it generates the best classification
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Figure 10: Performance evaluation of classification model using 10-fold cross validation

performance. AUCROC, area under the ROC (Receiver Oper-
ating Characteristic) curve, is used to report the classification
accuracy as it is the ideal metric when the dataset has imbal-
ance. We report the weighted average of AUCROC from four
different emotion states.

Figure 10a shows the overall classification accuracy. We ob-
tain an average accuracy (AUCROC) of 84% (standard devia-
tion 6%) while the maximum AUCROC is 94%. The quality
of prediction for each emotion category is presented in Figure
10b. The emotion states are identified with precision between
67% and 75%, and recall rate between 57% and 80%). We
observe that relaxed state is identified with highest precision,
followed by stressed, happy and sad states respectively. Simi-
larly, we observe highest recall for relaxed, followed by happy,
sad and stressed states. The recall rate for stressed state is
low since for some users the model performed poorly due to
scarcity of data. As data volume increases, as in the case of
relaxed state, the performance metrics improve.

Dataset Happy Sad Stressed Relaxed
Original Data 0.519 0.557 0.359 0.776
Over-sampled Data 0.666 0.674 0.646 0.792

Table 5: Comparing average F-Score for different emotion states on original data and
over-sampled data

Effect of SMOTE on Classification Performance
We compare the difference in classification performance for
the two cases - data with imbalance, and data processed using
SMOTE. The average accuracy (AUCROC) is 80% for the
original dataset, while it is 84% after applying SMOTE. We
also report the F-score for each emotion category for both
datasets in Table 5. We find that state-wise performance is
poor in case of original data, however it improves fairly when
we perform over-sampling using only 8% data. This shows
that the proposed model is robust and with adequate data it
can attain high classification performance. Improvement in
the SMOTE dataset can be attributed to adding more samples
in underrepresented categories.

Comparison of Alternate Models
We explore the possibility of using only PRE or Keystroke as
the feature to train a model, against use of the combined fea-
tures. This brings out the efficacy of the proposed model. We
also compare the proposed model with an aggregate model to
check if the overhead of personalized training can be reduced.

• Model A - Persistent Emotion (PRE) Model: We construct a
personalized model using persistent emotion (PRE) as the

only feature. We compare the proposed model with this
model to find, if PRE alone is sufficient to provide high
emotion classification performance.
• Model B - Keystroke only Model: In this case, we construct a

personalized model using only keystroke features. We select
this model to understand the role of only keystroke features
for emotion classification and if the auxiliary features used
really help in boosting the classifier performance.
• Model C - Aggregate Model: While personalized models

generally report high accuracy, they require individual train-
ing. We attempt to reduce the amount of training required
by forming an aggregate model. If it is found to be working,
this model can be used as an initial model for a new user,
reducing the overhead of personalized training. The ratio-
nale behind aggregate model is that there exists similarity in
typing pattern across users. The aggregate model is tested
using leave-one-participant-out cross validation. For every
user, we construct the model using remaining users’ data
and then test the model using this user’s data and compute
emotion classification accuracy.
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Figure 11: Mean AUCROC comparison with different models. Error bar indicates std.
deviation. PRE based model (A) performs worst, Keystroke based model (B) performs
moderately, but the combined proposed model (D) outperforms all other models.

In Figure 11, we compare the performance of the proposed
personalized model (model D) with all the above-mentioned
models. We observe that the proposed personalized model out-
performs each of the other models in terms of average accuracy
(AUCROC) as well as variations in AUCROC across partic-
ipants (minimum standard deviation). It attains an average
AUCROC of close to 84% (standard deviation 6%).

The personalized models based on persistent emotion (PRE)
only (model A) and keystroke features only (model B) attain
average AUCROC value of 66% (standard deviation 14%)
and 71% (standard deviation 11%) respectively, which are
far below than the accuracy of proposed model. We observe
that in case of the aggregate model (model C), we attain an
average AUCROC of 71% (standard deviation 19%). In case
of aggregate model, we observe comparatively high AUCROC



value for few participants, however for most of the participants
it performs poorly, resulting in such high standard deviation.

Feature Analysis
In order to investigate the role played by different features, we
rank each feature based on the information gain (IG) achieved
by adding it for predicting different emotions. We use the
InfoGainAttributeEval method from WEKA [11] to obtain
the information gain each feature brings to the overall clas-
sification model. Table 6 shows the average ranking of the
features. The feature evaluation used 10-fold cross validation.
Our results show PRE and RMSI top the list, indicating that
these two are having strong influence on predicted emotion.

Feature Name Rank Average IG
PRE 1 0.4226
RMSI 2 0.2324
Working hour indicator 3 0.1368
MSI 4 0.1257
Backspace percentage 5 0.0529
Session duration 6 0.0270
Special char percentage 7 0.0226

Table 6: Ranking features based on Information Gain

We also inspect the role of these features on emotion classifica-
tion for each user separately. For every user, we compute the
relative information gain (RIG) of each feature. Let F denotes
the feature set, which comprises of 7 features as mentioned in
Table 1. fi denotes a feature belonging to F , IG( fi) denotes
the information gain brought by fi in overall classification.
Then for a user, relative information gain of a feature ( fi) is
denoted by RIG( fi) and defined as,

RIG( fi) =
IG( fi)

∑
7
j=1 IG( f j)

(7)

For every user and every feature, we compute this and plot
the result in Figure 12. We observe that for every user, there
is a contribution from PRE. It is also noted that for users like
(10,11,15,16) who do not seem to have an effect on typing
as per experienced emotion PRE becomes useful in emotion
classification. Among different keystroke features RMSI is
found to have a strong effect on the user population. We
discuss in detail the role of these two features next.
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Figure 12: Feature importance based on Relative Information Gain (RIG). PRE is
found to have an effect on all users, while RMSI is found to be the most influential
among all keystroke features.

Role of PRE on Emotion Prediction
In this section, we investigate the role of PRE in determining
different emotion states. We observe from Figure 13, that
approximately 60% of users (13 out of 22) are having RIG of

PRE more than 40% and close to 72% of users (16 out of 22)
having the same more than 30%.
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Figure 13: CDF of RIG(PRE). Approximately 72% of the users have an RIG(PRE)
greater than 30%.

We investigate the possible reason for having high RIG for
PRE. A high RIG for PRE indicates that there is one-to-one
correspondence between persistent emotion (PRE) and actual
emotion i.e. PRE matches with the actual emotion for large
number of sessions. We validate the same by computing frac-
tion of sessions, where PRE matches with actual emotion.
We plot the same in Figure 14, which depicts this matching
fraction for every user. We observe that users having high
(>= 30%) RIG for PRE are also having high matching frac-
tion and vice-versa. In summary, we find that PRE matches
with actual emotion for large number of session; thus making
it a strong discriminator for emotion prediction.
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Figure 14: PRE-emotion matching fraction for different users. Users having high (>=
30%) RIG(PRE) are also having high matching fraction, indicating for large number of
sessions, PRE matches with actual emotion.

Role of RMSI on Emotion Prediction
We investigate the role of RMSI using statistical tests i.e. how
good it is in discriminating different emotion states. We group
the sessions with same emotion label and extract RMSI from
every session. Next, we conduct a one-way ANOVA [24] test
for each user to inspect whether at least one emotion state has
significantly (p < 0.05) different RMSI than the other three.
We identify 11 (50% of the total population) users for whom
RMSI of one emotion state is significantly different than that
of other emotion states. The same also can be observed in
Figure 12 by RIG for RMSI.

R - H S - H T - H S - R T - R S - T
36% 78% 45% 78% 36% 56%

Table 7: Tukey HSD test overview to identify the percentage (%) of users having sig-
nificantly (p < 0.05) different RMSI for a given emotion pair. A user can have multiple
distinguishable emotion pairs. R, H, S, T denote emotion states relaxed, happy, sad,
stressed respectively.

Once we identify these users, we investigate further to identify
the difference in RMSI across every emotion pairs for these
users. We perform post hoc comparisons using the Tukey HSD
[15] to identify which pair of emotion states have significantly
(p < 0.05) different RMSI for these users. Table 7 summarizes



the Tukey HSD test result. We observe that for 78% of the
users, emotion pairs {sad and relaxed}, {sad and happy} are
distinguishable, for 56% of users sad and stressed states are
distinguishable and so on. In summary, we observe using
RMSI, we not only identify 50% users, but also distinguish
one emotion from other for these set of users.

EVALUATION: APPLICATION PERFORMANCE
We evaluate TapSense with respect to (a) device power con-
sumption, (b) required training period, and (c) ESM effec-
tiveness. We also report the findings from post experiment
participant survey.

Energy Overhead
We also monitor the energy consumed by TapSense and report
the result in Figure 15. TapSense monitors typing on smart-
phone and collects emotion self-reports from the user. Later
based on availability of WiFi connection, these details are sent
to the server for feature extraction and model building.
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Figure 15: Comparison of battery depletion (keeping TapSense on and off) reveals that
in both cases, not only the depletion time, but also the depletion rate is similar.

We run the application on a Moto G2 (Android version 6.0)
once it is fully charged and monitor how quickly the battery
is completely drained. During this period, the user uses an
always-on WiFi connection and records 12 emotion labels
using TapSense user interface along with her normal daily
activities. We note that it takes approximately 29 hours to
completely deplete the battery. We repeat the same experiment
on the same device again once it is fully charged and measure
the power consumption turning off TapSense. It is noted that
complete depletion takes 29.5 hours and the hourly depletion
rate is also similar, when TapSense is on. This ensures that
TapSense does not consume noticeable amount of extra energy.

Training Duration
In order to deploy an usable system, it is required that the
system attains a reasonable classification performance within
a short time span. We verify how the classification accuracy
(AUCROC) changes with training period in Figure 16. We
accumulate the data at an interval of every 3 days and measure
the AUCROC of the proposed personalized model for every
user. As expected, the mean AUCROC increases with longer
training period and the variation in AUCROC across partic-
ipants also reduces. Within a period of 12 days, an average
AUCROC of 71% is obtained, which touches 77% at the end
of 18 days. We also plot the AUCROC for two representative
users (user 7, user 22) with varying training period. We ob-
serve that for user 7, the accuracy does not change much with
time and it remains more or less stable, whereas for user 22

the accuracy improves with more training data. These results
indicate that the system performs better with more training
data and attains high accuracy. However, it may be possible
that the performance improves even further with additional
training data.
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Figure 16: Classification accuracy (AUCROC) with varying training period. Mean
AUCROC improves with time and the std dev reduces indicating less variability in AU-
CROC values across different users. For user like user7, AUCROC does not vary much
with time, however for most of the users like user 22 AUCROC improves with time.

ESM Effectiveness
TapSense runs on smartphone as an Android application to
monitor typing and collect emotion self-reports. The ESM
scheduling policy shown in Figure 5 trades off between timely
label collection and survey fatigue. In this section, we validate
the ESM in terms of (i) Average number of ESM probes issued
daily, (ii) Elapsed time in collecting labels after typing, and
(iii) Amount of No Response labels.

Number of ESM probes: During this 3-weeks study, we have
issued on average 4.6 (standard deviation 2.6, median 3.9)
probes per day for every user.

Elapsed time between typing and emotion recording: We also
verify the elapsed time between typing completion and label
collection. It is expected that if the emotion labels are collected
close to the corresponding typing sessions, the chance of user
forgetting the actual emotion state would be low. We plot the
distribution of the elapsed time between typing completion
and emotion labeling in Figure 17. We note a median elapsed
time value is less than 5 minutes. Similarly 75th and 90th

percentile value observed for elapsed time in our set is less
than 30 minutes and 1 hour respectively.

Number of No Response sessions: We have instructed the par-
ticipants during survey to select No Response while recording
emotion if popup appears at an inopportune time and they
do not wish to provide any label at that time. In Figure 18,
we note the percentage of No Response sessions as recorded
by the participants. We observe that 9 participants have not
recorded any No Response sessions, while 18 participants have
recorded less than 5% No Response sessions. Overall, we have
tagged only 2.5% sessions as No Response.

All these aspects emphasize that the self-reports are collected
close to the typing sessions and the application does not cause
major interruption in user activities.

Post-study Participant Feedback
We conducted a post study survey following the Post-Study
System Usability Questionnaire (PSSUQ) [18] to gauge the
system effectiveness from usability perspective. One of the
first concerns is whether our system is intrusive due to the
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Figure 17: Distribution of elapsed time between typing
and emotion recording for all sessions across all users.
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Figure 18: Amount of No Response sessions as recorded
by different users.
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Figure 19: User preferences in TapSense usability survey

ESM probes. On rating intrusiveness, 20% of the participants
gave a score of 2 and 75% gave a score 3 on a scale of 1−3,
where 1 indicates intrusive and 3 not intrusive. Second, source
of disruption was the instrumented keyboard used in TapSense.
Since we focused on typing, we had disabled swype feature.
61% of the participants reported lack of swype facility as an
inconvenience (Figure 19). Finally, we were concerned how
the users will perceive privacy issues with this application.
Since we had explained that only typing metadata is stored,
it assured users of privacy. Only 24% of the participants
expressed discomfort with the level of privacy (Figure 19).

DISCUSSION
Our results show that typing features combined with emotion
persistence can help in multi-state emotion prediction. In
this section, we discuss the implications of our findings and
challenges in designing and deploying TapSense.

Insights
An important question that this work addresses is how strongly
is smartphone typing correlated to our perceived emotion. We
notice that typing characteristics can vary across individuals
significantly. The performance of an aggregate model based
on keystroke features was poorer compared to personalized
models. We also find that among different keystroke features,
typing speed is a strong indicator of emotion states. It alone
can predict emotions for about half of our experiment popula-
tion, especially when it comes to detecting multiple emotion
states. We find that even for 2-state classification just by using
typing speed it is easier to classify emotions across the valence
dimension, i.e. correctly identifying between pairs like {happy,
sad}, {relaxed, stressed}, compared to detecting in the arousal
dimension, i.e. distinguishing {stressed, sad}.

The next insight is that effects of an emotion state continue to
persist over a period of time. If typing captures our emotion,
then the effect of the past emotions should also influence
typing. Thus, jointly modeling the typing characteristics and
emotion persistence is found to be more accurate. In our
dataset, we observe that when two consecutive emotion states
are recorded by a user within 5 hours then they are same for
60% of the cases. We observed this effect among 18 out of
the 22 of participants. However, finding the exact duration
of persistence and its intensity for each emotion type and for
different individuals will require further investigation.

Deployment Recommendations
While designing TapSense we paid close attention to minimize
resource usage, and limit intrusiveness. Experiment results
and user feedback both confirm that users used it without dis-
ruptions in their normal usage pattern. Therefore, we could

have prolonged our data collection to collect more samples.
But more samples would not help in overcoming the data im-
balance problem since users tend to report relaxed state more
often than the other states. Hence, we believe that alterna-
tive techniques to counter data imbalance is essential. We
adopt the approach of over-sampling the minority category
using SMOTE. Alternatively, one can explore more recent
advances in machine learning techniques that can correctly
handle unbalanced datasets [5],[27].

Second, in this work, we assume that during the entire typing
session the emotion state of a user does not change for sim-
plicity of design. However, this may not hold true always and
more intelligent self-report collection procedure may be de-
ployed to capture these within-session emotion variations. But
fine grained self-report collection has the risk of user fatigue
in the ESM design.

Finally, using supervised learning in modeling personality
traits involves labeled data collection from the user. Emotion
labels, especially when asked to report only a single emotion
state, are tricky to capture with high fidelity [31]. One solution
is to deploy automated emotion labeling technique, as reported
in [26].

CONCLUSION
Keystroke dynamics on desktop computers is a known modal-
ity for automatic emotion detection. With numerous typing
based communication applications on smartphone, typing char-
acteristics provide a rich source to model user emotion. Past
emotion states are also good indicators of how a person feels
now since different emotions have different persistence in-
fluence on people. In this work, we jointly use the typing
features, and persistence of self reported emotion states, to
train a personalized Random Forest based model for automatic
classification of multiple emotion states. The collection of self
report is driven by an Experience Sampling Method (ESM),
which focuses on collecting user responses close to the typing
sessions. We designed an Android based application, called
TapSense, which was installed on smartphones of 22 volun-
teers, and collected typing metadata and self reports for 3
weeks. The model trained using this data for each user could
classify 4 emotion states, happy, sad, stressed, relaxed, with
an average accuracy (AUCROC) of 84%. Experimental re-
sults indicate that typing speed alone can distinguish multiple
emotion states for 50% of the population, while the effect of
emotion persistence is observed across all participants. The
evaluation also finds the application has low overhead, which
paves the way for building light-weight, non-invasive emotion
detection systems.
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