
X

Pattern Guided Integrated Scheduling and Routing in
Multi-hop Control Networks

SUMANA GHOSH∗, SOUMYAJIT DEY, and PALLAB DASGUPTA, Indian Institute of Technology

Kharagpur, India

Executing a set of control loops over a shared multi-hop (wireless) control network (MCN) requires careful

co-scheduling of the control tasks as well as the routing of sensory/actuation messages over the MCN. In

this work, we establish pattern guided aperiodic execution of control loops as a resource-aware alternative

to traditional fully periodic executions of a set of embedded control loops sharing a computation as well as

the communication infrastructure. We provide a satisfiability modulo theories based co-design framework

that synthesizes loop execution patterns having optimized control cost as the underlying scheduling scheme

together with the associated routing solution over the MCN. The routing solution implements the timed

movement of the sensory/actuation messages of the control loops, generated according to those loop execution

patterns. From the given settling time requirement of the control loops, we compute a control theoretically

sound model using matrix inequalities, that gives an upper bound to the number of loop drops within the

finite length loop execution pattern. Next, we show how the proposed framework can be useful for evaluating

the fault tolerance of a resource-constrained shared MCN subject to communication link failure.

CCS Concepts: • Computer systems organization→ Embedded and cyber-physical systems; Embed-
ded software; • Networks→ Cyber-physical networks; • Hardware → Functional verification.

Additional KeyWords and Phrases: Multi-hop Control Networks, Schedulability, Routing, Control Performance

ACM Reference Format:
Sumana Ghosh, Soumyajit Dey, and Pallab Dasgupta . 2019. Pattern Guided Integrated Scheduling and Routing

in Multi-hop Control Networks. ACM Trans. Embedd. Comput. Syst. V, N, Article A (January 2019), 26 pages.

https://doi.org/0000001.0000001

1 INTRODUCTION
Multi-hop (wireless) control networks (MCN) have emerged as a promising technology in the

rapidly expanding family of wireless-based cyber-physical systems, due to their increased flex-

ibility, lower maintenance and installation cost, compositionality, and adaptability [2, 3]. As

shown in Figure 1, such systems consist of a centralized control node C, responsible for con-

trolling a set of plants {P1, . . . , Pn}, a set of sensor nodes VS, a set of actuator nodes VA, and
several intermediate wireless nodes given by the set VI. Each control loop must execute peri-

odically, and for each execution of a control loop, the wireless network must carry the sensory

message from sensor nodes to the control node, and actuation messages from the control node

to actuator nodes inside a time budget bounded by the sampling period of the control loop.

∗
This is the corresponding author

A preliminary version of this work has appeared in IEEE ESL 2018 [17].

Authors’ address: Sumana Ghosh, sumanaghosh@cse.iitkgp.ernet.in; Soumyajit Dey; Pallab Dasgupta, Computer Science

and Engineering, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 201X Copyright held by the owner/author(s).

1539-9087/2019/1-ARTA

https://doi.org/0000001.0000001

ACM Trans. Embedd. Comput. Syst., Vol. V, No. N, Article A. Publication date: January 2019.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

A:2 S. Ghosh et al.

P1

Plant-1

Wireless Network

P3

I1

〈P1,1〉

I2

〈⊥,−〉

I4

〈P2,1〉

I3

〈⊥,−〉

I9

〈⊥,−〉

I10

〈⊥,−〉

S1

〈⊥,−〉

S2

〈⊥,−〉

S3

〈⊥,−〉〈⊥,−〉

A2

〈⊥,−〉

A3

〈⊥,−〉

A1

I5

〈⊥,−〉

I6

〈⊥,−〉

I8

〈⊥,−〉

I12

〈⊥,−〉

I11

〈⊥,−〉

I7

〈⊥,−〉

Plant-3

P2

Plant-2

ECU

Controller-1

Controller-2

Controller-3

(K1)

(K2)

(K3)

C
〈⊥,−〉

VI = {I1, I2, . . . , I12}

VS = {S1, S2, S3}
VA = {A1, A2, A3}

Fig. 1. A Typical Multi-hop Control Network

Because of the limited bandwidth of the wireless

networks, the execution of control loops has to be

appropriately married with the scheduling of the

sensory/actuation messages through the network.

It is possible that the sampling rates of the control

loops chosen by a designer based on control theo-

retic considerations generate infeasible traffic on the

network, that means, all sensory/actuationmessages

cannot be delivered on time by the network. This

essentially mandates a proper balancing between

the sampling rates of the control loops and real-time

communication constraints to achieve the desired performance of the overall system.

In general, control designers assume fully periodic execution and the standard practice for

handling network bandwidth constraints is twofold. One possibility is to perform suitable network

engineering and increase the network bandwidth
1
. The other possibility is choosing lower sampling

rates and trading off control performance, and thereby generate control schedule and routing

solution which works inside the available bandwidth. In this work, one of our key contributions

is to propose a novel alternative to this common practice. Instead of using the inferior controller

having a lower sampling rate, we propose to use the desirable sampling rates with some intentional

drops of control loop executions in the form of well-defined pattern of loop executions. This helps

in co-scheduling the control loops over the limited network bandwidth, which is often not possible

otherwise (using standard periodic loop execution). We also provide a sound control theoretic

model for giving the upper bound to the number of drops in control loop executions, accounting

for the given performance guarantees such as settling time. Though the concept of using pattern-

based aperiodic scheduling to handle the load of a shared computation/communication platform

is already well-studied [16, 18, 28, 35, 44], exploring the same in the context of shared MCNs

thereby considering network induced constraints is still unexplored. We employ a novel SMT-based

methodology to co-synthesize the patterns of loop execution together with the routing solution

for the traffic generated by such patterns to be carried in real time by the wireless network. A

technique similar to Bounded Model Checking is used as the underlying symbolic algorithm.

In the next part of this work, we present a prognostic approach that monitors the schedulability

of the current MCN configuration considering faults (before they actually occur) and pre-computes

schedulable solutions intelligently leveraging the SMT-based co-synthesis framework developed in

the first part. Based on this, in an actual link failure scenario, the MCN can be reconfigured with

alternate scheduling and routing. Also, given the pre-computed schedulable solutions, the MCN

user can be alerted at runtime about the vulnerability of the current MCN configuration based

on availability of the schedulable solutions and current number of failed links so that necessary

preventive measures can be taken. This helps in scheduling predictive maintenance for such

systems. A preliminary conceptual outline of this work appears in [17]. We summarize the novel

contributions of this work as compared to the work presented in [17], as follows.

(1) We consider the problem of scheduling a set of independent control loops over a multi-hop

network. We present a control theoretic model based on matrix inequalities for calculating the

lower bound on the number of loop executions over a finite length execution pattern which

guarantees a specification of control performance requirement in terms of settling time. In

1
This may be a difficult option due to the fact that the networking infrastructure already exists as a pre-installed physical

asset.

ACM Trans. Embedd. Comput. Syst., Vol. V, No. N, Article A. Publication date: January 2019.

Pattern Guided Integrated Scheduling and Routing in Multi-hop Control Networks A:3

contrast, the model used in [17] calculates the bound based on stability metric only without

considering any control performance requirement. Using such derived stability constraints

for SMT-based MCN scheduling with provable performance is a salient feature of this work.

(2) We include a quadratic cost metric within our SMT formulation exploiting the relationship of

quadratic cost with drops in loop executions. This significantly reduces the effort of finding

the optimal solution as compared to the existing approach (given in [17]) of computing

all possible solutions and evaluating their quadratic performance costs independently. In

the present approach, we use an SMT-optimizer to choose the loop execution pattern that

optimizes the overall control cost.

(3) At the heart of our co-synthesis methodology, we propose new algorithms which improve the

existing co-synthesis mechanism [17] by judiciously allowing drops in the loop executions of

the controllers until the sensory and actuation messages are schedulable over the network.

(4) Additionally in this paper, we show that our approach can also be used for evaluating the

fault tolerance of the networked control system under simultaneous link failures. We propose

a heuristic approach that works with our SMT-based framework and an incremental SMT

evaluation procedure for evaluating fault tolerance in a look-ahead fashion.

We believe this framework is the first attempt towards wireless control and scheduling co-design

where complex interactions between control performance and real-time communication are formally

modeled using suitable SMT clauses, and the optimal solution is obtained using SMT-optimizer.

The paper is organized as follows. Section 2 discusses relevant related work in this direction

while Section 3 presents the system definitions formally. The detailed derivation of the performance

metrics that we consider in this work is given in Section 4. Section 5 develops the SMT-based

formalism to the co-synthesis problem in a given MCN, whereas the algorithmic framework for

evaluating fault tolerance under communication link failure is described in Section 6. Section 7

presents the illustration of the key concepts with suitable case studies, followed by the experimental

evidence to show superior quality of control that is achieved using the proposed approach, as

compared to the traditional design techniques. Finally Section 8 presents concluding remarks.

2 RELATEDWORK
The problems of channel scheduling [15, 46], routing [29] and end-to-end delay analysis [19, 36, 39]

for multi-hop control networks are well studied. However, the work in [15, 36, 39, 46] do not

consider the co-design problem of scheduling and routing, as we do in this work. The problem of

selecting optimal sampling rates for multiple feedback control loops, sharing a wireless network

has been addressed in [4, 5, 20, 37, 40]. Among them the work in [37] is more close to our work. The

problem of [5, 37] is that they assume pre-defined routing paths and fully periodic sampling rates for

all the control loops, which therefore suffers from the sub-optimality problem that we address in this

work. The limitation of [4, 20, 40] is that their analysis is not applicable for any multi-hop wireless

network. A nice survey covering this line of research targeting wireless industrial cyber-physical

systems can be found in [1, 21].

Another line of work proposed in [26, 30] treats the wireless network itself as a controller which

is completely different from our assumption of MCN. These works present an extension of their

earlier work reported in [31]. In [26, 30], the authors show that instead of assigning the task of

control law computation to a particular node in the network, the entire network can be used as the

controller. In their setup of MCN, which they referred to asWireless Control Network, each node

executes a procedure that updates its state as the linear combination of the states of its neighbors

and thus stabilize the closed loop. Research developed in [2, 3, 42] provides a compositional method

that derives a global switched system for an MCN and checks its stability under the assumption of

ACM Trans. Embedd. Comput. Syst., Vol. V, No. N, Article A. Publication date: January 2019.

A:4 S. Ghosh et al.

a given routing path for each control loop. Based on this MCN model, the authors in [9] synthesize

the suitable routing paths for the control loops. However, as admitted by the authors in [15],

the construction of an automaton in [2, 3] for capturing the admissible patterns suffers from

scalability issues. In contrast, inside our framework, we use the theory presented in Section 4 that

provides a computable lower bound on loop execution count while guaranteeing the required

performance. This enables us to choose the execution patterns without constructing any automaton.

Table 1. Comparative Study of Related Work

Method Scheduling

Aspect?

Control

Aspect?

Wireless

Network?

Multi-hop

Network?

Aperiodic

Sampling

Synthesize

Routing?

[8, 15, 33, 36, 38, 39, 45, 46] Yes No Yes Yes No No

[19, 29] Yes No Yes Yes No Yes

[5, 24, 25, 37, 42, 48] Yes Yes Yes Yes No No

[4, 20, 40] Yes Yes Yes No No No

[26, 30] No Yes Yes Yes No No

[2, 3] Yes Yes Yes Yes Yes No

[28, 35] Yes Yes No No Yes No

[23, 32, 34] No Yes Yes No No No

Proposed Yes Yes Yes Yes Yes Yes

An SMT-based schedule

synthesis methodology for

multi-hop networks has

been developed in [8, 25,

33, 45]. All the formal mod-

eling and analysis of [8,

45] are mainly for multi-

hop time-triggered Ether-

net networks, whereas [33]

present the formal speci-

fication of the scheduling constraints for time-triggered wireless sensor networks with re-

transmissions. However, all of these works focus on the real-time scheduling aspect only, ignoring

the effect of scheduling on control metrics like stability and performance. On the other hand,

[25] addresses joint routing and scheduling problem for periodic control loops communicating

over time-triggered Ethernet networks, guaranteeing worst-case stability of the systems under

the effect of delay and jitter. In contrast, our method synthesizes non-uniform patterns of loop

execution guaranteeing not only the stability but also a given control performance. The constraints

for Ethernet networks are different from our constraints of MCN for WirelessHART standard.

In [25], appropriate route is chosen by the SMT-solver from a set of predefined routes for each

loop, whereas our SMT-solver synthesizes the route for each control loop according to the chosen

execution pattern for that loop.

The works in [28] and [35] respectively find the optimal packet delivery sequence and dynamic

scheduling for achieving optimal disturbance rejection, in the presence of network packet drops.

However, [28, 35] do not consider wireless networks and the constraints that such networks

induce. Control-scheduling co-design problems for low-power multi-hop wireless networks have

been addressed in [24, 48]. The co-design problems addressing the joint optimization of control

performance and energy consumption of the wireless network are reported in [23, 32, 34]. However,

none of the works reported in [23, 32] consider hard real-time requirements of control applications,

while [34] does not consider the challenges of multi-hop network. Authors in [10, 11] provide a

fault tolerant stabilization methodology where necessary and sufficient conditions are proposed

on the plant dynamics and the communication protocol subject to permanent link failures and

malicious intrusions. The worst-case end-to-end delay analysis for periodic loops accounting for

transmission failures is presented in [38]. In contrast, our work focuses on the offline synthesis of

feasible scheduling and/or routing solutions under different link failure configurations to make the

system robust from the early design phase. In Table 1, we have presented a comparative study of

the existing methods in this context.

3 MODEL DEFINITION
A multi-hop control network is a tuple N = ⟨P,K,G⟩ consisting of a set P = {P1, · · · , Pn} of n
plants, a set K = {K1, · · · ,Kn} of n controllers, and a network model G. The plant controller pairs

are defined in standard terms using dynamic matrices and together constitute the control design of

ACM Trans. Embedd. Comput. Syst., Vol. V, No. N, Article A. Publication date: January 2019.

Pattern Guided Integrated Scheduling and Routing in Multi-hop Control Networks A:5

the MCN. The following subsections formalize the plant-control model, aperiodic patterns of loop

executions, and the network model.

3.1 Plant-Controller Model
We use the vector x = [xTp , x

T
c]

T
to represent the state vector of the closed loop control system,

where the vector xp represents the state of the plant variables and the vector xc represents the
state of the control variables. The dynamics of the physical plant, when sampled with some fixed

interval h can be expressed as a discrete-time linear time-invariant (LTI) system with equations:

xp [k + 1] = Apxp [k] + Bpu[k], y[k] = Cpxp [k]

where the vectors xp [k], y[k], and u[k] define the plant state, the output, and the control input

respectively at time t = kh, for some k ∈ N (that means, t is the real time at k-th sample). The

matrices Ap,Bp , and Cp describe the transition matrix, the input map, and the output map for the

plant model respectively. The feedback control software senses the plant output y and decides

the control action by adjusting the control variables in u. The feedback control law is usually

represented as an LTI system given as:

xc [k + 1] = Acxc [k] + Bcy[k], u[k] = Ccxc [k]

where xc [k] represents the state of the controller at the time t = kh, and Ac , Bc , and Cc are the

state transition matrix, the input map, and the output map for the controller respectively. Thus

for an LTI plant P = (Ap,Bp,Cp) and its stabilizing controller K = (Ac ,Bc ,Cc), the dynamics of the

resulting closed loop, Σ = ⟨P,K⟩, is given as:

x[k + 1] =

[
Ap BpCc
BcCp Ac

]
x[k] = A1 x[k] (1)

The notion of loop drop is formally incorporated as follows. If the controller does not execute in a

sampling interval [k,k + 1), then xc [k + 1] = xc [k]. In this interval, the closed loop dynamics is

therefore: x[k + 1] = A0 x[k], where A0 is same as A1 except that Ac is replaced by the identity

matrix, Ic , and Bc is replaced by the null matrix, O , i.e., A0 =

[
Ap BpCc
O Ic

]
.

For a given control loop Σ = ⟨P,K⟩ together with its dynamic matrices {A0,A1}, a loop execution
pattern is defined as an infinite sequence, sω , which is an infinitely repeating finite length string

s ∈ {A0,A1}
∗
. Therefore, ∀k ∈ N, the dynamics of the closed loop system, ⟨P,K⟩, is defined as:

x[k + 1] = s[k%l]x[k], where l is the length of s . Starting from an initial state x[0], according to

s = s[0]s[1] · · · s[l − 2]s[l − 1], the system evolves as, x[l] = s[l − 1]s[l − 2] · · · s[1]s[0]x[0], where
x[l] is the state valuation after l-th iteration. For example, according to the loop execution pattern

s = A1A1A1A0A1A0, we have the system evolving as: x[6] = A0x[5] = . . . = A0A1A0A1A1A1x[0].
Note that in the sampling intervals corresponding to positions where we have A0, the network

does not have to carry the sensory and actuation messages for that control loop. For the sake

of simplicity, a loop execution pattern may be expressed as a binary string. As an example, for

A1A1A1A0A1A0A1 we denote this loop execution pattern by s = 1110101.

3.2 Network Model
The network model G consists of a directed connectivity graph G = (V, E) and the number of

channels (frequency bands)M .V represents the set of vertices defined asV = VS ∪VA ∪VI ∪ C,
where VS denotes the set of sensor nodes, VA the set of actuator nodes, VI the set of intermediate

nodes that follow store and forward policy to route messages over the network, and C the control

node which is responsible for executing control laws for all the plants. The set of edges E ⊆ V ×V

ACM Trans. Embedd. Comput. Syst., Vol. V, No. N, Article A. Publication date: January 2019.

A:6 S. Ghosh et al.

models the radio connectivity. An edge (vi ,vj) ∈ E, from node vi to node vj exists if the network
allows message transmission from vi to vj and it is allowed if vj lies within the transmission range

of vi . The sensor nodes can only transmit and actuator nodes can only receive. Our modeling

of MCN is well equipped for capturing standard industrial wireless control protocols such as

WirelessHART [43].

Each channel is divided into time slots of length δ (in WirelessHART δ = 10 ms). Each time slot

on each channel allows exactly one transmission and its acknowledgment between a pair of nodes.

The sensory and actuation messages generated following the loop execution patterns have to be

routed across the network by using these time slots. A routing solution defines the use of time slots

on each channel by pairs of communicating nodes. In our case, the routing solution is recurrent

because the loop execution patterns generate recurrent traffic on the network. Thus, a routing

solution can be visualized as a collection of recurrent transmission schedules, one for each plant.

Figure 2 shows a part of the routing solution of two plants corresponding to the MCN given in

Figure 1. Conservatively assuming interference between any two transmissions using the same

frequency, two channels (ch1 and ch2) are used for simultaneous communications between pairs

of nodes. The recurrent transmission schedules, ρ1 and ρ2 (for plant-1 and plant-2 respectively),

are shown in Figure 2. Note that in Figure 2, channel 1 is used by S1 in time slot 1 to transmit to

node I2 (denoted by ⟨(S1, I2), ch1⟩ in slot 1 of ρ1) while channel 2 is used by S2 to transmit to node

I4 (denoted by ⟨(S2, I4), ch2⟩ in slot 1 of ρ2). Empty time slots are shown as ⊥, e.g., the sensory

message from S2 waits at I8 as the node C is busy in communicating with I6 in slot 3. Note that

ρ1 captures one complete end-to-end communication, i.e., transmission of the sensory message

from plant-1 to controller and respective actuation message back from the controller to plant-1

within 6 time slots. Similarly, ρ2 represents end-to-end communication of the sensory and actuation

messages for plant 2 within 8 time slots. Since ρ1 and ρ2 have lengths 6 and 8 respectively, the

global state of the network will recur after lcm(6, 8) = 24 slots.

1st cycle of ρ1

1st cycle of ρ2

1 2slots: 3 4 5 6 7 8 9

2nd cycle of ρ1

2nd cycle of ρ2
Ω(5) = {〈(I6, I2), ch1〉, 〈(I8, C), ch2〉}

〈(S1, I2), ch1〉 〈(I2, I6), ch1〉 〈(I6, C), ch1〉〈(C, I6), ch1〉 〈(I6, I2), ch1〉 〈(I2, A1), ch1〉 〈(S1, I2), ch1〉 〈(I2, I6), ch1〉 〈(I6, C), ch1〉

〈(S2, I4), ch2〉〈(I4, I8), ch2〉 ⊥ ⊥ 〈(I8, C), ch2〉 〈(C, I7), ch1〉 〈(I7, I3), ch2〉 〈(I3, A2), ch2〉 〈(S2, I4), ch2〉

Fig. 2. Portion of a Routing Solution

Formally, we define the terms, recurrent transmission schedules and routing solution, as follows.

Definition 1 (Recurrent Transmission Schedule). Given an MCN N = ⟨P,K,G⟩, where
the plant Pi ∈ P = {P1, · · · , Pn} has the sampling period hi , and for G = (V, E) with the set of M
available channels, CH = {ch1, . . . , chM}, each channel has time slot of length δ . In case of plant Pi ,
the recurrent transmission schedule, ρi , of length πi , is a function defined as, ρi : [1, 2, · · · , πi] →
(E ∪ {⊥}) ×CH , where πi × δ ≤ hi . □

The condition, πi ×δ ≤ hi , in Definition 1 ensures that end-to-end communication (sense-actuation

cycle) must be within the sampling period hi of that plant Pi , enabling its stability guarantee.

ACM Trans. Embedd. Comput. Syst., Vol. V, No. N, Article A. Publication date: January 2019.

Pattern Guided Integrated Scheduling and Routing in Multi-hop Control Networks A:7

Definition 2 (Routing Solution). Given n recurrent transmission schedules, ρ1, . . . , ρn , of
lengths π1, . . . , πn , for n plants of an MCN N = ⟨P,K,G⟩, where G = (V, E) with CH as the
set of M channels, we define the routing solution as a synchronous parallel composition of those
recurrent transmission schedules, denoted as Ω = ρ1 | | . . . | |ρn having period Π = lcm(π1, . . . , πn),
where Ω : [1, · · · ,Π] → 2

(E∪{⊥})×CH with Ω(i) defined as Ω(i) = {ρ1(i), · · · , ρn(i)}. □

For example, according to Figure 2, we get ρ1 = {⟨(S1, I2), ch1⟩, ⟨(I2, I6), ch1⟩, ⟨(I6, C), ch1⟩, ⟨(C, I6),
ch1⟩, ⟨(I6, I2), ch1⟩, ⟨(I2, A1), ch1⟩} and ρ2 = {⟨(S2, I4), ch2⟩, ⟨(I4, I8), ch2⟩, ⟨⊥, ch2⟩, ⟨⊥, ch2⟩, ⟨(I8, C),
ch2⟩, ⟨(C, I7), ch2⟩, ⟨(I7, I3), ch2⟩, ⟨(I3, A2), ch2⟩}, thereby, Ω(1) = {⟨(S1, I2), ch1⟩, ⟨(S2, I4), ch2⟩},
Ω(3) = {⟨(I6, C), ch1⟩}, Ω(5) = {⟨(I6, I2), ch1⟩, ⟨(I8, C), ch2⟩} (highlighted in Figure 2), Ω(7) =
{⟨(S1, I2), ch1⟩, ⟨(I7, I3), ch2⟩}, and so on.

Routing Following a Loop Execution Pattern: As we have mentioned in Section 3.1, the network

does not carry the sensory and actuation messages in a sampling interval of a control loop, if

there is a loop drop at that interval. We now illustrate this fact in terms of recurrent transmission

schedule of that loop in a continuation with the previous example. Let, the loop execution pattern

is s = 101, and the entire routing for that loop is done using one channel. Then the corresponding

recurrent transmission schedule, ρ, is shown in Figure 3 (for the sake of clarity of the figure and

the assumption of using only one channel, channel-id is removed from all tuples).

ρ :

slots:

s :

1 2

(S1, I2) (I2, I6) (I6, C) (C, I6) (I6, I2) (I2, A1)

3 4 5 6

1

13 14

(S1, I2) (I2, I6) (I6, C) (C, I6) (I6, I2) (I2, A1)

15 16 17 18

1

7 8 9 10 11 12

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

0

Fig. 3. Routing following a Loop Execution Pattern

Therefore, for a set of loop execution patterns, {s1, · · · , sn}, for n control loops, we find the

period (Π) of the routing solution, Ω, satisfying the condition: Πδ ≤ lcm(|s1 | ×h1, · · · , |sn | ×hn). It
may be observed that within the bound, lcm(|s1 | ×h1, · · · , |sn | ×hn), all the loop execution patterns

repeat an integer number of times.

4 DERIVING MINIMUM LOOP EXECUTIONS FROM PERFORMANCE METRIC
Consider that starting from k-th sample, the loop is dropped in next consecutive β1 sampling

intervals, then in consecutive α1 sampling intervals it is executed, and so on, for j = 1, 2, . . . ,a. In
this way, we have the system evolution over the sampling window, [k,k + l) as,

x[k + l] = Aαa
1
A
βa
0
. . .Aα2

1
A
β2
0
Aα1

1
A
β1
0
x[k] (2)

where

∑a
j=1 α j = κ,

∑a
j=1 βj = θ , and l = κ + θ . Note that for any l-length sampling window

[k,k + l), k ≥ 0, the corresponding loop execution pattern, 1
α1
0
β1
1
α2
0
β2 . . . 1αa 0βa , in Eqn. 2 varies

with the variation of α j , βj , for j = 1, 2, . . . ,a and for any a ∈ N. However, for any such loop

execution pattern, the closed loop stability of this system may not be guaranteed. Following [44],

we introduce the control theoretic analysis of stability and performance for the system in Eqn. 2

exploiting the following theorem of matrix inequalities.

Theorem 1. [13] Given a matrix A ∈ Cn×n with spectral radius R(A) = sup{|λ | : λ ∈ Λ(A)},
where Λ(A) is the set of eigenvalues of A, for any γ ≥ R(A), there exists a c ≥ 1 such that for each
non-negative integer j, | |Aj | | ≤ cγ j . □

Note that since A0 is a block upper triangular matrix (see Section 3.1), |A0 | = |Ic |.|Ap | (using Schur
complement of matrix [41]), that means, eigenvalues of A0 are the combined eigenvalues of Ap and

Ic . Therefore, A0 always has eigenvalue 1 with some multiplicitym since all the eigenvalues of Ic

ACM Trans. Embedd. Comput. Syst., Vol. V, No. N, Article A. Publication date: January 2019.

A:8 S. Ghosh et al.

are equal to 1. Other eigenvalues of A0 are the eigenvalues of Ap . If the eigenvalues of Ap are less

or equal to 1, then R(A0) = 1, else R(A0) > 1. Hence, R(A0) ≥ 1.

Therefore in our setting, for the stable closed loop dynamic matrix A1, we can write,

| |Aj
1
| | ≤ c1γ

j
1
, c1 ≥ 1, 0 ≤ γ1 < 1 (3)

Similarly, for the open loop dynamic matrix A0, since R(A0) ≥ 1 we have,

| |Aj
0
| | ≤ c0γ

j
0
, c0 ≥ 1, γ0 ≥ 1 (4)

In this work, the control performance requirement is captured in terms of (l, ϵ)-exponential stability
criterion [47] of the system which is defined as follows.

Definition 3 ((l, ϵ)-Exponential Stability). Given the dynamical system of Eq. 1, this criterion
requires the system to reduce the error by at least a factor of ϵ in every l-length sampling window, i.e.,
to meet | |x [k+l] | |

| |x [k] | | ≤ ϵ for every k ∈ N and x[k] ∈ Rn , with l ∈ N and ϵ ∈ [0, 1). □

This (l, ϵ)-exponential stability criterion can be easily gleaned from the standard performance

index, settling time, and the desired system norm [16]. The settling time, τs , requires the controller
to move the system back to its reference value of χ from the perturbed value of χ + σ within τs .
To meet the settling time criterion the number of sampling intervals needed, is L = ⌈ τsh ⌉, where

h is the sampling period. The respective damping factor becomes ξ =
χ

χ+σ . We can always use a

stricter criterion (Lq , ξ
1

q), for some q > 1, with a lower number of sampling intervals, such that

satisfaction of (Lq , ξ
1

q) always implies satisfaction of (L, ξ). We put l = L
q and ϵ = ξ

1

q
, and consider

this stricter (l, ϵ)-exponential stability criterion as the performance requirement.

Accordingly, the stability of the system in Eqn. 2 can be addressed by the following theorem.

Theorem 2. Given the system in Eqn. 2 with the associated closed loop matrixA1 being Schur stable
and θ ≤ θmax being the number of loop drops over any sampling window of length l , the system remains
(l, ϵ)-exponentially stable if there are κ ≥ κmin successful executions of the loop over that l-length
sampling window with κmin = ⌈

(θmax+1)loдe (c0c1)+θmax loдe (γ0)+ |loдe (ϵ) |
|loдe (γ1) |

⌉, where c0 ≥ 1, c1 ≥ 1,γ0 > 1,
and 0 ≤ γ1 < 1. □

Proof: Using the sub-multiplicative property of the matrix norm, i.e., | |AB | | ≤ | |A| |.| |B | |, from
Eqn. 2 we get the following,

| |x[k + l]| | ≤ | |Aαa
1
| |.| |A

βa
0
| | . . . | |Aα2

1
| |.| |A

β2
0
| |.| |Aα1

1
| |.| |A

β1
0
| |.| |x[k]| |

For being (l, ϵ)-exponential stable, | |x [k+l] | |
| |x [k] | | < ϵ should hold. This condition can be guaranteed if

| |Aαa
1
| |.| |A

βa
0
| | . . . | |Aα2

1
| |.| |A

β2
0
| |.| |Aα1

1
| |.| |A

β1
0
| | < ϵ becomes true. Now,

| |Aαa
1
| |.| |A

βa
0
| |..| |Aα2

1
| |.| |A

β2
0
| |.| |Aα1

1
| |.| |A

β1
0
| | < ϵ ⇒

a∑
j=1

loдe (| |A
α j
1
| |)+

a∑
j=1

loдe (| |A
βj
0
| | < loдe (ϵ) (5)

From the inequalities given in (3) and (4), we get respectively,

∑a
j=1 loдe (| |A

α j
1
| |) ≤

∑a
j=1 loдe (c1γ

α j
1
)

and

∑a
j=1 loдe (| |A

βj
0
| |) ≤

∑a
j=1 loдe (c0γ

βj
0
). Since

∑a
j=1 α j = κ and

∑a
j=1 βj = θ , the inequality in (5)

is satisfied if the following holds.

aloдe (c1) + κloдe (γ1) + aloдe (c0) + θloдe (γ0) < loдe (ϵ) < 0 [∵ ϵ < 1] (6)

ACM Trans. Embedd. Comput. Syst., Vol. V, No. N, Article A. Publication date: January 2019.

Pattern Guided Integrated Scheduling and Routing in Multi-hop Control Networks A:9

With a ≥ 1 and loдe (c1), loдe (c0) ≥ 0 as c1, c0 ≥ 1, the above inequality can be written as,

aloдe (c1c0) + κloдe (γ1) + θloдe (γ0) < loдe (ϵ) ⇐ aloдe (c0c1) + θloдe (γ0) < loдe (ϵ) − κloдe (γ1)

⇐ κ |loдe (γ1)| − |loдe (ϵ)| > loдe (c0c1) + θloдe (γ0) [∵ loдe (ϵ) < 0, loдe (γ1) < 0 as (γ1 < 1)]

⇐ κ >
aloдe (c0c1) + θloдe (γ0) + |loдe (ϵ)|

|loдe (γ1)|
⇐ κ >

(θ + 1)loдe (c0c1) + θloдe (γ0) + |loдe (ϵ)|

|loдe (γ1)|

since the number of switching a ≤ θ + 1. Thus, for an l-length sampling window (or l-length
loop execution pattern) without compromising the given settling time requirement, if we allow

up to θmax number of loop drops, then the minimum number of loop executions κmin within that

l-length window can be lower bounded as, □

κmin = ⌈
(θmax + 1)loдe (c0c1) + θmax loдe (γ0) + |loдe (ϵ)|

|loдe (γ1)|
⌉ (7)

4.1 Cost Functions for Loop Execution Patterns
In general, the Quality of Control (QoC) obtained following the loop execution patterns vary with

the pattern definition due to the presence of loop drops. Therefore, in case of two loop execution

patterns having the same number of loop drops, though both of them satisfy the performance

requirement due to the drop bound provided by Theorem 2, but their QoC may vary with their

distribution of drops. We use following linear quadratic cost function as the measure of QoC.

J =

∫ ∞

0

(
xT [t]Qx[t] + uT [t]Ru[t]

)
dt (8)

The quadratic weight matrices Q and R in J represent the relative importance of the deviation

of state valuation x[t] and control effort u[t] respectively. Standard Linear Quadratic Regulator

(LQR) based control design minimizes J over infinite horizon and provides a least cost optimal

controller subject to perfectly periodic execution. Since in case of loop execution patterns, we

consider recurrent control execution with drops instead of perfectly periodic execution, the QoC

becomes dependent on the relative positions of loop drops [28]. Among such patterns having the

same loop drops, it can be shown following [28] that the pattern with most uniform drop exhibits

the best QoC in terms of LQR cost. The definition of uniformity follows uniform distribution of 0s

in binary words known as upper mechanical word [7]. Formally, a binary word is upper mechanical

iff there exists 0 ≤ µ ≤ 1 such that the j-th letter of the word is given by, ⌈(j + 1).µ⌉ − ⌈j .µ⌉,∀j ≥ 0

where µ denotes the fraction of 1-s in the word. Hence, among l-length loop execution patterns

with number of loop executions as κ, the best choice of pattern w.r.t. LQR cost is given by,

⌈(j + 1).
κ

l
⌉ − ⌈j .

κ

l
⌉, 0 ≤ j ≤ l (9)

Note that the best choice of the pattern is only w.r.t. the given controller in use and the cost function.

5 PATTERN GUIDED SCHEDULING AND ROUTING IN MCN
This section describes the pattern guided co-synthesis problem of scheduling-routing for an MCN

and its SMT-based solution mechanism. Given the plant-controller models ⟨P,K⟩ with hi as the
sampling period of the plant Pi ∈ P, the network model, G, and the settling time requirement

(performance metric) of all the control loops as inputs to the co-synthesis problem, our goal is to

find the following:

(1) A recurrent loop execution pattern for each control loop, i.e., the set S = ⟨s1, · · · , sn⟩.

ACM Trans. Embedd. Comput. Syst., Vol. V, No. N, Article A. Publication date: January 2019.

A:10 S. Ghosh et al.

(2) A routing solution, Ω, that realizes the timedmovement of the sensory and actuationmessages

on the network as generated by the synthesized loop execution patterns, S = ⟨s1, · · · , sn⟩.
The existence of a routing solution ensures schedulability of control loops over the network.

The solution to this co-synthesis problem needs to guarantee that, all the control loops are stable

and meet the given settling time constraints on the MCN.

5.1 Formal Modeling of the Network
This section starts by presenting the formal modeling of the network which is essential for building

the SMT-based formalism. The state of a node vj in the network G = (V, E) is defined as follows.

Definition 4 (State of a Node). Given an MCN N = ⟨P,K,G⟩, where P = {P1, · · · , Pn},
K = {K1, · · · ,Kn}, and G = (V, E) , a node vj ∈ V is in state vj (T) at time T , with vj (T) = ⟨Pi , τ ⟩,
if it contains a sensory message generated by the plant Pi at some time τ ≤ T . Likewise, the state of vj
is defined as, vj (T) = ⟨Ki , τ ⟩, if it contains an actuation message of the controller Ki , computed using
the sensory message ⟨Pi , τ ⟩. The state of vj may also be defined as vj (T) = ⟨⊥,−⟩ if the node has no
messages at time T . □

Following Definition 4, for any intermediate node vj ∈ VI ⊂ V , vj (T) = ⟨Pi , τ ⟩/ ⟨Ki , τ ⟩/ ⟨⊥,−⟩.
Since sensor nodes can only transmit and actuator nodes can only receive, a sensor node vj ∈ VS ⊂
V can have state as vj (T) = ⟨Pi , τ ⟩ or vj (T) = ⟨⊥,−⟩. Similarly, for an actuator node vj ∈ VA ⊂ V ,

either vj (T) = ⟨Ki , τ ⟩ or vj (T) = ⟨⊥,−⟩. Next, we define the state of an MCN as follows.

Definition 5 (State of an MCN). The state of an MCN, N = ⟨P,K,G = (V, E)⟩, at any time
T , is collection of the states of all nodes and is defined as, z(T) = ⟨v1(T),v2(T), . . . ,v |V |(T)⟩. The
projection of the global state to some node vj ∈ V at time T , is defined as, z(T)[vj] = vj (T). □

Assuming the transmissions have not been started in the initial state z(0), the states of all nodes at
T = 0 are assigned by the value, ⟨⊥,−⟩, reflecting their emptiness. We define the following set of

state update rules (U1 to U3) for the MCN states, which describes the situations when different

nodes in the MCN change their states and thereby update the current state of the MCN. Let hi is
the sampling period of the i-th control loop, ⟨Pi ,Ki ⟩.

U1: Update due to sensory message generation:. Following this rule, state update of the MCN

mainly happens due to the state changes of the sensors nodes. According to the chosen li -length
pattern si , a sensor node vi ∈ VS of the i-th control loop, updates its state by containing the sensory

message, ⟨Pi , τ ⟩, at time τ = (qli +m)hi , ∀q = 0, 1, 2, .., ∀m ≤ li , whenever si [m] = 1. Formally,

∀i = 1, . . . ,n, i f si [m] = 1, then z((qli +m)hi)[vi] = ⟨Pi , (qli +m)hi ⟩,q ∈ {0, 1, 2, . . .}

U2: Update due to actuation message generation:. In this case, the control node, C, updates its

state. If C receives the sensory message, ⟨Pi , τ ⟩, at some real time T , such that tδ ≤ T < (t + 1)δ
(i.e., the t-th time slot), then it updates its state by generating the corresponding actuation message,

⟨Ki , τ ⟩, at next time slot, i.e., (t + 1)-th slot or at the real time (t + 1)δ . Formally,

i f z(T)[C] = ⟨Pi , τ ⟩, then z((t + 1)δ)[C] = ⟨Ki , τ ⟩, tδ ≤ T < (t + 1)δ

U3: Update due to message forwarding:. According to the routing solution Ω, a pair of nodes

change their states by transmitting data and thereby update the MCN state. For an edge (vj ,vp) ∈
Ω(t), where Ω(t) represents the set of transmissions that occurred at t-th time slot of Ω, we have,

z((t + 1)δ)[vj] = ⟨⊥, _⟩ and z((t + 1)δ)[vp] = z(tδ)[vj]

For anMCN, a potential routing solution Ω with period Π, specifies a sequence of state transitions
of the MCN such that there exists a state z(T) reachable from z(0) using the non-recurrent sequence

ACM Trans. Embedd. Comput. Syst., Vol. V, No. N, Article A. Publication date: January 2019.

Pattern Guided Integrated Scheduling and Routing in Multi-hop Control Networks A:11

of transmissions defined in Ω, and there exists a state z(T + Πδ) with z(T)
Ω
⇒ z(T + Πδ) so that in

the MCN states z(T) and z(T + Πδ), the sensory/actuation messages at node vj are the same for

any vj ∈ V , i.e., states of all nodes are the same in z(T) and z(T + Πδ) as depicted in Figure 4. A

z(1) z(T + Πδ)z(T + 2)z(T + 1)z(T)z(2)

v|V|(2)v1(2) v2(2)
v1(T + 2) v2(T + 2) v|V|(T + 2)

Ω(1) Ω(Π) Ω(Π)Ω(1)U1 U1

(node states are same)

(indicates MCN states are same)

U1 is the first
update rule

Fig. 4. Recurrent Nature of the States of MCN

routing solution is recurrent due to the recurrent traffic generated by corresponding loop execution

patterns. For the chosen set of patterns, ⟨s1, · · · , sn⟩, we define the recurring time bound, η, as:
η = lcm(|s1 | × h1, · · · , |sn | × hn). Note that inside a time interval [T ,T + η], the loop execution

patterns for all control loops repeat an integer number of times. A simple producer-consumer based
argument can be used to prove the bound: η ≤ Πδ < η +min{h1, · · · ,hn}, since inside this interval,
for each loop, all of its messages (both sensory and actuation) generated according to its respective

pattern, si , get consumed in their causal order of generation.

5.2 The SMT-based Solution Framework
An SMT-based Bounded Model Checking (BMC) framework along with the overall methodology of

the co-synthesis process is presented in this section. The BMC approach generates the clauses by

unwinding the states of MCN (at each time slot) and searches for a routing solution Ω along with

the respective loop execution patterns, S = ⟨s1, · · · , sn, ⟩ of n control loops.

Let, N (vj) is the set of neighbor nodes of a node vj ∈ V . Consider the following representations.

1: We define vtj ,i ,τ as the Boolean variable corresponding to vj ∈ V such that (vtj ,i ,τ = True)

when at t-th time slot, vj contains the message ⟨Pi , τ ⟩ or ⟨Ki , τ ⟩.
2: Any transmission (vj ,vp) ∈ Ω(t) (when vj transmits to vp at t-th slot) can be equivalently

represented by the constraint: (vtj ,i ,τ = True) ⇒ (v
t+1
j ,i ,τ = False) ∧ (vt+1p,i ,τ = True).

3: For i-th control loop, corresponding to the li -length loop execution pattern, si , we set the
Boolean variable, si ,m , as: (si ,m = True) if si [m] = 1, 0 ≤ m ≤ li − 1.

Constraints for Initial Condition:. Assuming that initially at first time slot (i.e., t = 1), all interme-

diate, control, and actuator nodes do not contain any valid message, we set False to all associated

Boolean variables of these nodes. Recalling that, η = lcm(|s1 | × h1, · · · , |sn | × hn), we formally get,

C1 : ∀vj ∈ VA ∪VI ∪ C, ∀i = 1, 2, . . . ,n, τ = qhi + 1,q = 0, 1, . . . , and τ ≤ η, (v1

j ,i ,τ = False)

In case of a sensor node Si ∈ VS of i-th control loop, we initialize it according to the pattern si . E.g.,
let hi = 2ms , si = 101 and messages are generated up to the bound η = 12ms . Within η, si repeats
twice and dispatches sensory messages at 1ms, 7ms (for si [0]) and 5ms, 11ms (for si [2]).

1 2 3 4 5

1 01si :

76

1 1

8 9 10 11 12

0

Therefore, we set the Boolean variable, Sti , corresponding to Si , as: (S
t
i = True) for the time slot t

such that tδ = 1ms, 5ms, 7ms, 11ms , and set False for all other time slots within the time of 12ms .
Generalizing this, if si [m] = 1, we set (Sti = True) for t = ⌊((qli +m)hi)/δ⌋, q = 0, 1, 2, ..., and

ACM Trans. Embedd. Comput. Syst., Vol. V, No. N, Article A. Publication date: January 2019.

A:12 S. Ghosh et al.

t ≤ ⌊η/δ⌋. Since we synthesize the loop execution patterns, the clause for initializing the sensor

node, Si , according to si ,∀i = 1, . . . ,n are of the form:

C2 :

n∧
i=1

li−1∧
m=0

[(
(si ,m = T rue) ⇒

∧
t=⌊((qli+m)hi)/δ ⌋,
t≤⌊η/δ ⌋, q=0,1, . . .,

(Sti = T rue)
)
∧

(
(si ,m = False) ⇒

∧
t=⌊((qli+m)hi)/δ ⌋,
t≤⌊η/δ ⌋, q=0,1, . . .

(Sti = False)
)]

For ensuring network schedulability of n loop execution patterns, S = ⟨s1, · · · , sn, ⟩, the follow-
ing six constraints as modeled in the form of suitable clauses, have to be satisfied.

(1) Existential Constraint: A message can exist only in one node at a particular time slot. If

z(T)[vj] = ⟨Pi , τ ⟩ or ⟨Ki , τ ⟩, then ∀T ,∀vp ∈ V,p , j, z(T)[vp] , ⟨Pi , τ ⟩ or ⟨Ki , τ ⟩. Since
messages for plant Pi are generated following the pattern, si , we have the clause,

C3 :
n∧
i=1

[(
(si ,m == True) ⇒

∧
τ=(qli+m)hi ,

τ ≤η, q=0,1,2, ...

⌊(τ+hi)/δ ⌋−1∧
t= ⌊τ /δ ⌋

((∑
vj ∈V

Int(vtj ,i ,τ)
)
== 1

))
2

∧ (
(si ,m = False) ⇒

∧
τ=(qli+m)hi ,

τ ≤η, q=0,1,2, ...

⌊(τ+hi)/δ ⌋−1∧
t= ⌊τ /δ ⌋

(∧
vj ∈V

¬vtj ,i ,τ

))]

(2) Validity Constraint: A message is valid in the network only for its sampling interval and any

node always contains such valid messages. Following Ω, if z(T)[vj] = ⟨Pi , τ ⟩ or ⟨Ki , τ ⟩, for
any vj ∈ V and any loop i , 1 ≤ i ≤ n, then T − τ ≤ hi . Formally,

C4 :
∧
vj ∈V

∧
t< ⌊τ /δ ⌋ ∨ t> ⌊(τ+hi)/δ ⌋

(vtj ,i ,τ = False)

(3) Transmission Constraint:A node can send only to its neighbor at any time slot t , i.e., (vj ,vp) ∈
Ω(t) ⇒ vp ∈ N (vj). Formally,

C5 :
∧

vj ∈V

n∧
i=1

∧
τ=(qli+m)hi ,

τ ≤η, q=0,1,2, ...

[
(vtj ,i ,τ = True) ⇒ (vt+1j ,i ,τ = True) ∨

∨
vp ∈N (vj)

(vt+1p,i ,τ = True)
]

Note that because of the existential constraint given in C3, for any node vo < N (vj), the
associated Boolean variables vt+1o,i ,τ will be set to False by the SMT-solver.

(4) Mutual Exclusion Constraint: A node can contain only one message at a time. If vj contains
⟨Pi , τ ⟩ or ⟨Ki , τ ⟩ at t-th slot, it cannot contain any other message at that slot. This is achieved

by falsifying all other Boolean variables associated with vj at the same time slot.

C6 :
∧
vj ∈V

n∧
i=1

∧
τ=(qli+m)hi ,

τ ≤η, q=0,1,2, ...

[
(vtj ,i ,τ = True) ⇒

n∧
d=1

∧
τ ′=(qld+m)hd , τ,τ ′
τ ′≤η, q=0,1,2, ...

(vtj ,d ,τ ′ = False)
]

(5) Conflict Constraint:A node cannot act as sender and receiver at the same time slot. If (vj ,vp) ∈

Ω(t) then for every vo , vj , (vo,vj) < Ω(t). Equivalently this can be ensured by falsifying all

Boolean variables associated with vj at (t + 1)-th slot, if vj sends at t-th slot. This is because,

if vj receives at t-th slot, then following C5 we get (vt+1j ,i ,τ = True) at (t + 1)-th slot, but as it

also sends at t-th slot, then following C5 and C3 we get (vt+1j ,i ,τ = False) (representing vj as

ACM Trans. Embedd. Comput. Syst., Vol. V, No. N, Article A. Publication date: January 2019.

Pattern Guided Integrated Scheduling and Routing in Multi-hop Control Networks A:13

empty). This becomes a contradiction, hence, it cannot receive any message at the same slot.

C7 :
∧
vj ∈V

n∧
i=1

∧
τ=(qli+m)hi ,

τ ≤η, q=0,1,2, ...

[
(vtj ,i ,τ = True) ⇒

n∧
d=1

∧
τ ′=(qld+m)hd , τ,τ ′
τ ′≤η, q=0,1,2, ...

(vt+1j ,d ,τ ′ = False)
]

Note that if at t-th slot vj retains the message, then at (t + 1)-th slot we find (vt+1j ,i ,τ = True).
In that case, all other associated variables of vj will be False due to the constraint in C6.

(6) Deadline Constraint: For each control loop, the end-to-end communication (sense-actuation

cycle) must be completed within its sampling period. Let Ati ,τ and C
t
i ,τ be the Boolean variables

corresponding to an actuator node Ai ∈ VA of i-th loop and the control node C respectively,

such that (Cti ,τ = True) and (Ati ,τ = True) if at t-th time slot, C and Ai contain ⟨Pi , τ ⟩ and
⟨Ki , τ ⟩ respectively. Therefore, deadline constraint can be ensured as follows. If a sensory

message for plant Pi , i ∈ {1, . . . ,n}, is generated at t-th slot, then before the time slot

(t + ⌊hi/δ⌋), the variables C
t
i ,τ and Ati ,τ must get a True value indicating their reception of

⟨Pi , τ ⟩ and ⟨Ki , τ ⟩.

C8 :
n∧
i=1

(
(Sti = True) ⇒

⌊hi /δ ⌋−1∨
d=1

(Ct+di ,τ = True) ∧

⌊hi /δ ⌋−1∨
d=1

(At+di ,τ = True)
)

Note that C8 is the property of plant-controller model and becomes the specification to be

verified by the model checker over the MCN state space. In contrast, C3 to C7 are properties

of the network model used to progressively generate the MCN state space over time.

Performance Constraint:. Together with these above mentioned six constraints, we add the fol-

lowing constraint for the desired performance requirement. For an li -length pattern, si , following
Theorem 2 (see Section 4), we find κmin,i as the minimum number of loop executions, i.e., the

number of 1’s in the pattern si is lower bounded by κmin,i . Since in our synthesis methodology

(presented in next section) we try to find the suitable choice of κi ≥ κmin,i as the number of loop

executions, therefore, to specify the number of 1’s in si ,∀i , we add the clause,

C9 :
n∧
i=1

((li−1∑
m=0

Int(si ,m)
)
== κi

)
2

Note that satisfaction of this clause yields a loop execution pattern si for i-th loop, ensuring the

given settling time requirement of that loop.

Constraint for Best Choice of Pattern:. As discussed in Section 4.1, the best choice of loop execu-

tion pattern (i.e., with high QoC) relies on the uniform distribution of loop drops over the pattern.

Let suni ,i is the li -length uniform pattern for i-th control loop computed following Eqn. 9. Due

to the schedulability constraints of all control loops over the network, it may not be possible to

synthesize the uniform patterns for all the loops. In that case, our target is to synthesize the pattern

si for i = 1, 2, . . . ,n, that matches the respective uniform pattern suni ,i maximally. For this reason,

we define the following penalty function which serves as the measure of equality of si w.r.t suni ,i .
To check the equality of si and suni ,i bit-by-bit, first we define the function,match(si , j), as follows,

match(si , j) =

{
0 i f si [j] = suni ,i [j]

− 1 i f si [j] , suni ,i [j]
(10)

2
For a Boolean variable b , Int() gives integer encoding of b as: Int(b) = 1, if b=True and Int(b) = 0, if b=False

ACM Trans. Embedd. Comput. Syst., Vol. V, No. N, Article A. Publication date: January 2019.

A:14 S. Ghosh et al.

Hence, we quantify the mismatch of si w.r.t suni ,i by the function,MATCH (si) =
∑li

j=1 match(si , j).
Our objective is to synthesize the loop execution patterns for the n loops, that match their respective

uniform patternsmaximally. Hence, we consider the objective function:Maximize
∑n

i=1MATCH (si),

subject to the consolidated constraints given byC1∧C2∧C3∧C4∧
∧ ⌊η/δ ⌋

t=1 (C5∧C6∧C7)∧C8∧C9. We

use an SMT-Optimizer in this work [6]. Among all the satisfying assignments, the SMT-Optimizer

returns the optimal assignment w.r.t the objective function. We add suitable clauses for modeling

this objective function by adding new Boolean variables for each bit of the uniform patterns of all

the control loops.

Our model checking procedure SolveSMTOPT() takes as arguments the MCNN = ⟨P,K,G⟩, the
pattern lengths {l1, · · · , ln}, execution counts within the pattern lengths, i.e., {κ1, . . . ,κn}, and the

recurring time bound η (see Section 5.1). The procedure automatically generates clausesC1, · · · ,C9

starting from the initial condition and by unrolling the MCN states up to η. Next, it checks for
the satisfiability of the consolidated formula. If a satisfiable solution is found, it returns True and
the solution ⟨S ,Ω⟩ with S = ⟨s1, · · · , sn⟩ as the schedulable combination of best choice of loop

execution patterns for n loops and Ω as the associated routing solution of S . This solution is

extracted from the satisfiable assignment of the Boolean variables. Otherwise, it returns False . Next
section describes the co-synthesis methodology where this procedure is employed.

5.3 The Overall Co-Synthesis Methodology
Algorithm 1 outlines the proposed scheduling-routing co-synthesis approach. It takes the MCN

specification together with the sampling periods, pattern lengths, and maximum drop bounds

(see Section 4) of n loops as inputs and returns the solution ⟨S ,Ω⟩ as output. It first computes

ALGORITHM 1: Gen_Pattern_Guided_Scheduling_Routing
Input: MCN: N = ⟨P, K, G⟩, Periods: {h1, · · · , hn }, Lengths: {l1, · · · , ln }, Max. Drops: {θmax ,1, · · · , θmax ,n }

Output: ⟨S , Ω⟩, where S = ⟨s1, · · · , sn ⟩
1 Compute η = lcm(l1 × h1, · · · , ln × hn) ; // Computing the recurring time bound

2 l = [l1, · · · , ln]; θmax = [θmax ,1, · · · , θmax ,1] ; // Initial Valuation

3 θ = 0 ; // Start with no drop situation for all the loops

4 if SolveSMTOPT(N, l − θ , l , η) == True then
5 return NULL ; // Periodic solution exists; no need of pattern-based scheduling

6 [θc , ⟨S , Ω⟩] = Find_Corner_Point (N, θ , l , η) ; // Find the corner point - one schedulable option

7 return ⟨S , Ω⟩;

the recurring time bound η (line 1) which is required for unrolling the MCN state. The vectors l
and θmax contain the pattern lengths and the maximum drop count within those pattern lengths

(obtained from Theorem 2) respectively for n loops (line 2). The vector θ represents the current

drop count for n loops initialized by the value 0 in line 3. This essentially means initially no drop is

induced for all the loops. We refer to θ as drop sequence thereafter. In line 4, the algorithm checks

the existence of any schedulable solution against the periodic execution of all the loops (since θ =

0) by invoking SolveSMTOPT(N , l − θ , l , η). If a solution is found, the algorithm terminates there.

This is because for being schedulable, there is no need to induce drops through pattern guided

approach as schedulable solution exists for periodic execution of the loops. Otherwise, in line 6, it

invokes another procedure, Find_Corner_Point(), for obtaining a pattern guided solution.

Details about Find_Corner_Point(): This procedure provides a search mechanism that judi-

ciously selects a drop sequence, θc , such that for n control loops, the n loop execution patterns

synthesized with the drop count as selected in θc provide a schedulable solution over the network

without violating the desired performance requirement. We refer to θc as the corner point relying

ACM Trans. Embedd. Comput. Syst., Vol. V, No. N, Article A. Publication date: January 2019.

Pattern Guided Integrated Scheduling and Routing in Multi-hop Control Networks A:15

on the fact that, it contains a minimal choice of drop count of all the loops for which schedulable

solution exists. Let us elucidate this using an example.

Consider an MCN with two control loops where we are given with l = [10, 7] and θmax = [3,

2]. In Figure 5a, the blocked shaded region which we refer to as permissible drop space depicts all
possible valuation of the drop sequence, θ , such that θ [i] ≤ θmax [i] for i = 1, 2. Within this region,

the set of drop sequences for which a schedulable solution exists, forms a schedulable region, SR, as
marked by the striped shaded region in Figure 5a. It may be noted that in region SR, schedulability

1 2 3

1

2

(0,0)

(3,2)

θ[1]

θ[2] θmax[2]θmax[1]

(1,1) (2,1)

Permissible Drop Space

Schedulable Region

(corner point)

(a)

1 2 3

1

2

(0,0)

(3,2)

θ[1]

θ[2]

first schedulable
drop sequence

(1,1)

(1,0)

(0,1)

(b)
Fig. 5. Illustration of Find_Corner_Point()

answer for some choices of drop sequences can be deduced from the schedulability answer of some

other drop sequences. We formalize this aspect using the dominance relation as defined next.

Definition 6 (Dominance Relation). For an MCN with n control loops, a drop sequence, θ ′ ∈ SR
is dominated by another drop sequence, θ ∈ SR iff θ ′[i] ≥ θ [i], for i = 1, 2, . . . ,n and θ ′ , θ . □

This essentially signifies that, if forθ a schedulable solution exists, then for the sameMCN configuration
a schedulable solution also exists for θ ′

since θ ′
allows more drops than θ . In Figure 5a, (1, 1)

dominates (2, 1) as marked by an arrow from (2, 1) to (1, 1). Based on this we define the notion of

corner point as follows.

Definition 7 (Corner Point). A drop sequence, θc ∈ SR, is said to be a corner point iff no other
drop sequence in SR dominates it. Therefore, each corner point contains a minimal choice of drop count
for all the loops such that further reduction in the drop count of any loop leads to unschedulability. □

For the above example, (0, 2), (1, 1), and (2, 0) are the corner points as marked by boxes in Figure 5a.

The procedure Find_Corner_Point() as outlined in Algorithm 2 searches for such a corner point.

At the starting of Algorithm 2, the input drop sequence θ has the value 0 as updated in its caller

procedure, Algorithm 1. Starting with this value θ , Algorithm 2 updates θ by allowing one drop for

each loop (lines 2-5) while ensuring that the drop count never violates its upper bound as given in

θmax , and then it invokes SolveSMTOPT(N , l − θ , l , η) for checking the schedulability with this

current value of θ . Note that in SolveSMTOPT(), the drop count for the loops in θ are used for the

formation of performance constraints as discussed in Section 5.2. This process continues until

it gets a value of θ for which a schedulable solution is found. This value of θ resembles a drop

sequence in the schedulable region SR. In the above example, as shown in Figure 5b, following

this process we reach at (1, 1) starting from (0, 0). Next, it checks whether this θ is a corner point

(lines 7-18). If θ is indeed a corner point, the procedure returns. If not then it finds the corner point

nearby θ . This search process is discussed next.

Corner Point Search: Let θ is the current start point of this search mechanism. In the for loop
in line 8, it iteratively selects a loop id i and reduces its drops count θ [i] by one if the drop count

does not reach its minimum bound 0 (lines 9-10). In this way, it picks up each drop sequence in the

neighborhood of θ that dominates the current θ and checks schedulability for it in line 11. If no

ACM Trans. Embedd. Comput. Syst., Vol. V, No. N, Article A. Publication date: January 2019.

A:16 S. Ghosh et al.

ALGORITHM 2: Find_Corner_Point
Input: MCN: N = ⟨P, K, G⟩, A drop sequence: θ , Maximum drop bound: θmax , Lengths: l , Recurring bound: η
Output: Another drop sequence, the corner point: θc , The solution pair for this corner point: ⟨S , Ω⟩

1 N = {1, 2, . . . , n } ; // It contains set of loop ids

2 repeat
// Allow one drop for each loop without violating maximum drop bound

3 for each i ∈ N do
4 if θ [i] , θmax [i] then
5 θ [i]=θ [i]+1;

6 until SolveSMTOPT(N, l − θ , l , η)== True;
// At this point θ is a drop sequence in schedulable region. Now, check if it is a corner point

using dominance relation

7 while True do
8 for each i ∈ N do
9 if θ [i] , 0 then
10 θ [i]=θ [i]-1 ; // Reduce one drop for i-th loop and thus get a new drop sequence

// Check schdulability for the current value of θ

11 if SolveSMTOPT(N, l − θ , l , η)== True then
12 i=0 ; // θ is schedulable. Hence, reorient search and check if it is corner point

13 break;

14 else θ [i]=θ [i]+1 ; // Reverse back to the last schedulable valuation of θ

15 if i==n then
16 θc = θ ; // This θ becomes the corner point, hence store it in θc

// Extract loop execution patterns and associated routing solution from the satisfiable assignments

17 ⟨S , Ω⟩ ← Report_Solution(); return (θc , ⟨S , Ω⟩);

schedulable solution is found for any value of i , it declares this start point θ as the corner point

(lines 15-16) and the witness for satisfiability yields the solution pair ⟨S ,Ω⟩ (line 17). Finally, it
terminates in line 18. On the other hand, if schedulability holds for a value of i in line 11, then this

current value of θ (picked up from the neighborhood of start point) becomes the new start point
and the search process for the corner point gets reoriented based on it, reiterating the above steps.

Algorithm 2 is developed following the corner point generation approach presented in [12].

In the above example, to check if θ = (1, 1) is a corner point or not, the nearby dominating drop

sequences, (0, 1) and (1, 0) are picked up as indicated by the dashed arrows from (1, 1) to (0, 1) and
(1, 0) in Figure 5b. For both of them the schedulability check fails. Hence, (1, 1) is a corner point
and accordingly the best choice of loop execution patterns with a single drop in both of them are

returned in S = ⟨s1, s2⟩ together with its associated routing solution in Ω.

6 EVALUATING FAULT TOLERANCE UNDER PATTERN GUIDED CO-SYNTHESIS
FRAMEWORK

In this work, we propose an offline event-driven approach for monitoring MCN configurations and

evaluating its fault tolerance capability under potential future link failure situations by leveraging

the proposed SMT-based co-synthesis framework as an oracle. The proposed approach checks the

schedulability of the MCN anticipating various link failure situations. If a schedulable solution

exists for an anticipated failure, it stores that solution in a look-up table. When the failure situation

actually arises in real time, the contingency schedulable solution is already available for that failure

situation, and then the next run of the approach starts over this current faulty MCN configuration.

ACM Trans. Embedd. Comput. Syst., Vol. V, No. N, Article A. Publication date: January 2019.

Pattern Guided Integrated Scheduling and Routing in Multi-hop Control Networks A:17

If no schedulable solution exists for an anticipated failure without violating the desired system

performance, then this fact is reported to the system designer a priori so that necessary preventive

measures can be taken to avoid this failure situation in real time.

6.1 Finding Schedulable Solution against Simultaneous Link Failures
This section presents a methodology using the proposed SMT-based framework as an oracle to

find a schedulable solution ⟨Sd ,Ωd ⟩ if a set of an arbitrary d number of links fail simultaneously

in a given MCN. Let ⟨SI ,ΩI ⟩ is the initial solution when there is no faulty link in the MCN and

Ed ⊆ E is the set of d anticipated faulty links. We define RIi as the routing path of the i-th control

loop, Σi , where ∀ t = 1, 2, . . . , ⌊η/δ⌋, RIi (t) = (vj ,vp) ⊂ ΩI (t) such that (vj ,vp) transmits ⟨Pi , τ ⟩ or

⟨Ki , τ ⟩ at t-th slot or RIi (t) = ⊥. For each such faulty link, (vj ,vp), we add clauses to falsify all the

transmissions following that link at any time slot t . Thus, the solver avoids those links for finding
new routing solution. This is achieved by falsifying all Boolean variables associated with the node

vp if the node vj currently contains any message. Formally,

n∧
i=1

∧
τ=(qli+m)hi ,
q=0,1,2, ...

li∧
m=1

⌊η/δ ⌋−1∧
t=1

(
(vtj ,i ,τ == True) ⇒ (v

t+1
p,i ,τ == False)

)
The complexity of the synthesis process can be reduced by refraining the SMT-solver from exploring

the entire search space as it is highly likely that a solution may be found just by changing the routing

paths of the loops while keeping the patterns same. If a routing solution Ωd is found, then we are

done. Otherwise, new patterns are explored along with routing solutions. Algorithm 3 outlines this

approach using the idea of incremental SMT solving. Let, Θ is the set of clauses defined in the SMT

formalism of SolveSMTOPT() (see Section 5.2), which is one input to Algorithm 3, together with

the initial set of n patterns SI , n routing paths, {RIi }
n
i=1, and set of faulty links, Ed . The procedure

starts by adding clauses to the original formula Θ augmenting suitable conditions for demarcating

the set of faulty links (lines 1-3). Next, suitable clauses are added to Θ for considering as constant

the available set of schedulable loop execution patterns (lines 4-5). If a routing solution, Ωd , is

found (lines 6-8) then this new solution is reported, otherwise, in line 10, we slacken the constraints

in Θ by removing the previously added clauses for the original set of patterns and go for fresh

co-synthesis by invoking Algorithm 1 in lines 11-12. A satisfying assignment corresponding to

both Sd (patterns) and Ωd (routing paths) returned by Algorithm 1 yields the final solution at line

12. Otherwise, Algorithm 3 terminates by returning NULL in line 13.

6.2 Monitoring Schedulability for K -look-ahead to Link Failures
A brute-force technique to leverage the proposed SMT-based framework and develop an offline

monitoring algorithm that periodically monitors the schedulability of the MCN configuration

anticipating a finite number of link failure situations would be as follows. For resolving K -look-
ahead to link failures for a small constant K , we can simply pre-compute all the schedulable

solutions anticipating various link failure scenarios (i.e., 1,2,3,.. up to K simultaneous failures in

all possible subsets). However, this strategy is inefficient. The computation can be done efficiently

by leveraging memoization of sub-problems. In this case, a sub-problem instance means, to find a

schedulable solution for some d links failures. When a sub-problem instance is first encountered

during the execution of the proposed algorithm, its solution is computed and stored in the table. In

future, when the sub-problem is encountered, the solution stored in the table is simply looked up

and returned thus avoiding an SMT call. In summary, we exploit the following properties of our

co-synthesis.

ACM Trans. Embedd. Comput. Syst., Vol. V, No. N, Article A. Publication date: January 2019.

A:18 S. Ghosh et al.

(1) Co-synthesis problem for the set of d faulty links, Ed , becomes a sub-problem of all co-

synthesis problems having d ′ > d faulty links with Ed as its subset.

(2) The existence of a schedulable solution for the set of d faulty links, Ed , guarantees existence
of a schedulable solution of the sub-problem with any E ⊆ Ed .

Let us consider the co-synthesis problem for monitoring K -look-ahead to link failures in an MCN

with topology given by G = (V, E) for a given K . We enumerate all the non-empty subsets of E

having maximum K elements as, E1, E2, . . . , EN , while the empty subset is represented by E0. Let
⟨SEf ,ΩEf ⟩ is the solution returned by Algorithm 3 on simultaneous failure of the links given by

the set Ef ⊂ E, with |Ef | ≤ K , and R
Ef
i is the routing path for i-th control loop obtained from ΩEf

(see Section 6.1). To store the solution of N different faulty configurations, we use a list, sol[0..N],
where sol[f] stores solution of the co-synthesis problems with Ef as the set of faulty links. We

recursively store solutions to sol[0..N] following the method outlined in Algorithm 4.

ALGORITHM 3: Solve_d_Link_Failure
Input: Initial Sch.: SI = ⟨s1, · · · , sn ⟩, Initial

Routing: {R Ii }
n
i=1, SMT-Clauses: Θ, Faulty

Links: Ed
Output: ⟨Sd , Ωd ⟩
// Add following new clauses to SMT-Clause Set

Θ

// For each faulty link falsify its

transmissions

1 for each (vj , vp) ∈ Ed do
2 Θ =

Θ ∧
∧n
i=1

∧
τ=(qli+m)hi ,
q=0,1,2, . . .

∧li
m=1

∧⌊η/δ ⌋−1
t=1

3

(
(v tj ,i ,τ == T rue) ⇒ (v

t+1
p ,i ,τ == False)

)
// For each loop add constraints for fixing

pattern

4 for each i , where i = 1, 2, . . . , n do
5 Θ = Θ ∧

∧li
m=1(si ,m == val), such that

val = T rue/False if si [m] = 1/0;

// Search for routing solution, Ωd

6 if SolveSMTOPT() finds Ωd then
7 Sd = SI ;

8 return ⟨Sd , Ωd ⟩

// Call Algorithm 1 for re-synthesis

9 else
10 Remove clauses from Θ that are added in line

4;

11 if
Gen_Pattern_Guided_Scheduling_Routing()
, NU LL then

12 return ⟨Sd , Ωd ⟩;

13 else return NULL;

ALGORITHM4: CoSynthesis_for_Link_Failure
Input: Initial Sch.: ⟨SI , ΩI ⟩, Initial Routing : {R Ii }

n
i=1,

SMT-Clauses: Θ, Network Topology:

G = (V, E)

Output: sol [0, .., N] storing solution for N
non-empty subsets of E having maximum K
elements

1 sol [0] = ⟨SI , ΩI ⟩;

2 for each Ef ⊂ E such that |Ef | = 1 do
3 if Ef < R Ii , ∀i = 1, ..., n then
4 sol [f] = ⟨SI , ΩI ⟩;

5 else sol [f] =
Solve_d_Link_Failures(SI , {R Ii }

n
i=1, Θ, Ef);

6 for each Ef ⊂ E such that 1 < |Ef | ≤ K do
7 f laд = 0;

8 for eachm such that 1 ≤ m ≤ |Ef | do
9 Ef1 = Ef [1, ..,m];

Ef2 = Ef [m + 1, .., |Ef |];
10 if sol [f1] == NU LL or sol [f2] == NU LL

then
11 sol [f] = NU LL; f laд = 1; break;

12 if Ef2 < R
Ef

1

i , ∀i = 1, ..., n then
13 sol [f] = sol [f1]; f laд = 1; break;

14 if Ef1 < R
Ef

2

i , ∀i = 1, ..., n then
15 sol [f] = sol [f2]); f laд = 1; break;

16 if f laд == 0 then
17 sol [f] =

Solve_d_Link_Failure(SI , {R Ii }
n
i=1, Θ, Ef);

18 else break;

If f = 0, no link has failed, sol[0] is updated with the initial solution ⟨SI ,ΩI ⟩ in line 1. For each

single link failure, if the faulty link does not belong to the initial routing paths, RIi ∀i = 1, . . . ,n,
it updates sol[f] by ⟨SI ,ΩI ⟩ in lines 2-4. Otherwise, in line 5, it invokes Algorithm 3 for the

solution. It computes sol[f] for 1 < f ≤ N in lines 6-18 by taking advantage of the substructure

ACM Trans. Embedd. Comput. Syst., Vol. V, No. N, Article A. Publication date: January 2019.

Pattern Guided Integrated Scheduling and Routing in Multi-hop Control Networks A:19

of a schedulable solution. While computing Ef , we assume that solutions for all sets E ⊂ Ef
are available. It splits Ef into two disjoint subsets Ef1, Ef2 ⊂ E such that Ef1 = Ef [1, ..,m] and
Ef2 = Ef [m + 1, .., |Ef |] takingm-th element as the pivot, for somem ∈ {1, 2, . . . , |Ef |} (lines 8-9).
Now, sol[f] can be obtained from the solution of the sub-problems for Ef1 and Ef2 as follows. If
any one of these sub-problems has NULL solution, then it updates sol[f] by NULL (lines 10-11). It

sets sol[f] = sol[f1], if none of the routing paths, R
Ef

1

1
,R

Ef
1

2
, . . . ,R

Ef
1

n , overlap with Ef2 (lines 12-13).

Otherwise, it sets sol[f] = sol[f2] when none of the routing paths, R
Ef

2

1
,R

Ef
2

2
, . . . ,R

Ef
2

n overlap with

Ef1 (lines 14-15). It incrementsm till |Ef | to check if any of the above cases occurs. In that case, sol[f]
becomes updated accordingly either by sol[f1] or by sol[f2]. This is because, once we get sol[f] for
some choice ofm, there is no need to explore all other combination of sub-problems further, for

other choices ofm. If the above procedure is unable to find a solution using the solutions of the sub-

problems, then it invokes Algorithm 3, i.e., sol[f] = Solve_d_Link_Failures(SI , {R
I
i }

n
i=1,Θ, Ef)

in lines 16-18.

6.3 Handling Link Failures
There exist several techniques for identifying faulty links in networks (see [22] and the references

therein). It is better to use a hardware-based simple deterministic feedback since the short period

based control often required in real-time wireless CPS. We consider Algorithm 4 to be an event-

driven offline approach. Initially Algorithm 4 is used to pre-compute contingency solutions for all

possible combinations of up to K link failures. When a link failure occurs, the corresponding pre-

computed solution is used to re-configure the communication schedule. By virtue of maintaining

the contingency provision, the system is prepared to re-configure itself readily up to the first K
failures. In order to avoid a downtime (i.e., reaching a state where no contingency schedule is

available on time) in the network, Algorithm 4 must be run again so as to complete before the first

K failures occur. When Algorithm 4 is run on a network which already has q faults, where q ≤ K ,

it aims to create contingency schedules for at most K new failures on the existing state of the

network. It is to be noted that by virtue of its first iteration it already has contingency schedules

for up to K failures. If the second iteration is invoked after q faults have occurred, then it must

determine schedules for between K +1 to K + q faults.

It is important to guarantee stability when a controller switches between two loop execution

patterns (and associated scheduling solutions) based on a link failure scenario. For this purpose, we

can use the notion of a bridge between two loop execution patterns following the theory presented

in [16]. A bridge from one pattern s1 to another pattern s2 is a stable transition if such a switching

satisfies the minimum required execution count κ (obtained from our stability analysis) for all

possible transitions starting from any potential position in s1 and landing up in s2. Note that such a

notion of bridge always maintains the desired exponential stability guarantee.

7 EXPERIMENTAL EVALUATION
In order to demonstrate our method, we consider MCN examples constituting multiple control

loops with the plants being different cart inverted pendulums sharing a multi-hop network.

7.1 Experimental Setup
In our experiments, the pendulums differ by their parameters such as mass, length, etc. We use

LQR-based optimal control technique for designing controllers. For generating different network

topologies we follow the Erdős-Rényi random graph model [14], where we vary the number of

loops, edges, nodes, and the total number of messages transmitted over the network. We have used

Z3Opt [6], an SMT-Optimizer, as the underlying SMT-solver and Z3py, a Z3 API in Python for

ACM Trans. Embedd. Comput. Syst., Vol. V, No. N, Article A. Publication date: January 2019.

A:20 S. Ghosh et al.

front-end modeling of the co-synthesis framework. All experiments have been performed on a 2.40

GHz Intel Xeon E5620 processor with 16 cores and 50 GB memory, running 64-bit Ubuntu 16.04.

Plant Specification: The linearized continuous time state space model of the cart inverted

pendulum is adapted from [27]. The state variables are x = [xT
1
, xT

2
, xT

3
, xT

4
]T with x1 being the

horizontal displacement of the cart, x2 the linear velocity of the cart, x3 the angular displace-

ment of the pendulum and x4 the angular velocity of the pendulum. The control input u is the

force that moves the cart horizontally and the outputs are the horizontal displacement of the

cart (x1), and angular displacement of the pendulum (x3). For our first experiment where we

demonstrate the efficiency of our co-synthesis framework (Algorithm 1) in terms of control perfor-

mance and control cost, we consider three pendulums sharing the multi-hop network of Figure 1.

Table 2. Inverted Pendulum Parameters

ID M (kд) m(kд) L(m) b(N /m/sec) I (kд .m2)

Pendulum-1 0.5 0.2 0.3 0.1 0.06

Pendulum-2 0.6 0.2 0.3 0.3 0.06

Pendulum-3 0.4 0.1 0.26 0.25 0.03

The loops differ from each other by their parame-

ter values as provided in Table 2, where M andm
denote the cart and pendulum mass respectively, L
the pendulum length, д = 9.8m/s2 the gravitational
constant, b the friction coefficient for the link where

the pendulum is attached to the cart, and I the mass

moment of inertia of the pendulum. As the performance requirement, settling time and the desired

system norm of all pendulums are taken as τs = 5 sec and χ = 0.005 rad respectively.

Design of Controllers: Given the above-mentioned performance criteria and in the absence

of any limitation on the network bandwidth, possible assignments of sampling periods for which

suitable discrete controller design can ensure satisfactory closed loop response are 90ms, 80ms, and

100 ms for the pendulums respectively. We design LQR controllers for the pendulums discretized

with the above-mentioned sampling periods.

7.2 Experimental Results
We now provide the description of the performed experiments and the obtained results.

FindingMinimum Loop Execution Counts: Given the maximum perturbed value of 0.35 rad,
we compute the pattern lengths for these three pendulums as l1 = 10, l2 = 5, and l3 = 9 respectively

using the settling time, τs , and desired system norm, χ , as discussed in Section 4. Next, we use

Theorem 2 to calculate minimum loop execution count κmin,i for i = 1, 2, 3 as 7, 4, and 6 respectively.
Consequently, we get the maximum loop drops as θmax ,1 = 3, θmax ,2 = 1, and θmax ,3 = 3.

Exploring Options for Network Schedulability: The suitable choice of sampling periods of

90 ms, 80 ms, and 100 ms cannot be implemented on our MCN since this choice of sampling rates

generates message traffic in a pattern for which no communication schedule exists (as determined

in line 4 of Algorithm 1). Following the traditional periodic approach [37], one option in such

situations would be to reduce the periodic sampling rates. For this, we implement two existing

methods of optimal rate selection through greedy heuristic and convex optimization as given in [37]

by calculating the end-to-end network delay [36] under a certain choice of routing path for the

loops. Both these methods report the schedulable optimal choice of sampling periods for the loops

as 90 ms, 100 ms, and 110 ms respectively for which we compute the optimal periodic controllers.

Another option is our pattern guided co-synthesis framework. With the original choices of

sampling periods of 90 ms, 80 ms, and 100 ms, Algorithm 1 synthesizes a schedulable combination

of best choice of loop execution patterns for these three loops by selecting a drop sequence (1, 0, 1).
This essentially means the best choice of loop execution patterns of loop 1 and loop 3 have one drop,

while loop 2 avails fully periodic execution without any loop drop. The optimizer (see Section 5.2

for best choice of patterns) in the co-synthesis framework selects s1 = 0111111111, s2 = 11111, and

s3 = 111111110 as the resulting best choice of patterns for these three loops.

ACM Trans. Embedd. Comput. Syst., Vol. V, No. N, Article A. Publication date: January 2019.

Pattern Guided Integrated Scheduling and Routing in Multi-hop Control Networks A:21

Improvement in Output Response: The advantage of our pattern guided approach over the

traditional periodic approach in terms of plant’s response is given in Figure 6-8. Figure 6 compares

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 2 4 6 8 10 12 14 16 18 20

A
n
g
le

 (
ra

d
)

Time (sec)

h=100 ms, (1111111111)ω

h=100 ms, (111111110)ω

h=110 ms, (1111111111)ω

Fig. 6. Responses of Pendulum-3: Proposed vs [37]

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

0 2 4 6 8 10 12 14 16 18 20

A
n
g

le
 (

ra
d
)

Time (sec)

h=100 ms, (11111)ω
h=80 ms,(11111)ω

Fig. 7. Responses of Pendulum-2: Proposed vs [37]

the output response of Pendulum-3 for (i) the superior but infeasible periodic controller with period

100 ms (in blue), (ii) the inferior but schedulable periodic controller with period 110 ms obtained

following [37] (in red), (iii) controller having period 100 ms but scheduled following the pattern

s3 = 111111110 as generated by Algorithm 1 (in black). Note that in Figure 6, the inferior but

schedulable solution of 110 ms (option-ii) is significantly worse than the superior but infeasible

periodic solution of 100 ms (option-i) in terms of settling time and peak overshoot. The comparison

of the response of Pendulum-3 following option-iii, with the response for the infeasible superior

controller of option-i in Figure 6, establishes that the schedule generated by Algorithm 1 with

instrumented loop drops performs just as well as the superior controller which was unschedulable.

Similarly, for Pendulum-2, Figure 7 compares the responses obtained following the inferior

periodic execution of 100ms (in red) with the pattern guided execution of 80ms (in black). Here,

our SMT-based analysis does not put any loop drop for this loop and thus Algorithm 1 produces

s2 = 11111. The degradation in peak overshoot and settling time for the inferior but feasible periodic

solution of 100ms is clearly evident when compared with the pattern guided solution of 80ms .

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

0 2 4 6 8 10 12 14 16 18 20

A
n
g
le

 (
ra

d
)

Time (sec)

h=90 ms, (0111111111)ω

h=90 ms,(111111111)ω

Fig. 8. Responses of Pendulum-1: Proposed vs [37]

Observe that in this case, the pattern guided

approach is able to preserve fully periodic ex-

ecution with the period of 80ms only because

of the bandwidth relinquished by the patterns

of other loops. For Pendulum-1, Figure 8 com-

pares the responses of pattern guided solution

of 90 ms having the pattern s1 = 0111111111

(in black) with the superior but infeasible peri-

odic solution of 90ms (in red). It is clear from

the figure that there is not much difference in

responses due to the occasional loop drops as

instrumented by the SMT-solver to fit in the net-

work bandwidth. In Figure 6-8, all responses are taken by running a simulation of 20 sec and tested

under a disturbance scenario comprising a Gaussian state noise with covariance R = 0.4 × BpB
T
p

overlapping with a periodic spike of 0.3 rad with a period of 10 sec. Simulations are carried out

using MATLAB version R2017b.

Improvement in Control Cost: To prove the superiority of our approach further, we compare

the actual quadratic LQR cost (see Eqn. 8) of both the design options. A high value of J indicates
either a high deviation of the desired state or a high control effort needed to bring the state to

its reference value. For the traditional periodic schedulable solution (i.e., 90 ms, 100 ms, and 110

ACM Trans. Embedd. Comput. Syst., Vol. V, No. N, Article A. Publication date: January 2019.

A:22 S. Ghosh et al.

ms), loop-1 and loop-2 exhibit LQR cost of 3970.2 and 6443.1 respectively, whereas, for loop-3 it is
6745.5, manifesting a cumulative LQR cost of 3970.2 + 6443.1 + 6745.5 = 17158.8. In contrast, our

approach exhibits a reduced cumulative LQR cost of 5344.6 + 3371.5 + 4702.3 = 13418.4, where
5344.6 for loop-1, 3371.5 for loop-2, and 4702.3 for loop-3 corresponding to the above-mentioned

choice of patterns. Thus the solution generated using Algorithm 1 shows nearly 21.7% improvement

in LQR cost when compared with the LQR cost of 17158.8 for the traditional approach.
WorkingDetails of Algorithm1: To generate the solution, Algorithm 1works as follows. Upon

detecting unschedulability of the periodic execution of three pendulums in line 4 of Algorithm 1, it

invokes Algorithm 2 in line 6. The step-wise execution flow of Algorithm 2 is shown in Figure 9. In

(1,0,0)

(1,1,1)

(0,1,1) (0,0,1)

(0,0,0)
(1,0,1)

1

3
5

4
2

(unsat) (sat)

(unsat)

(sat)

(unsat)

(unsat)

(1,0,1) is the Corner Point

First time search for
corner point starts from here

Next time search for
corner point starts from here

includes lines 2-6

includes lines 8-11, 14

includes lines 8-13

includes lines 8-11, 14

2

1

3

4

includes lines 8-11, 145

Fig. 9. Execution Flow of Algorithm 2
this example, the underlying network of Figure 1 has 19 nodes and 54 edges. Within the recurring

time bound of η=3.6 sec, 124 messages are transmitted over the network due to the execution of

three pendulums for their choice of sampling periods as 90 ms, 80 ms, and 100 ms respectively.

The time taken by SolveSMTOPT() to check the satisfiability for each of these six different drop

sequences as shown in Figure 9, is on average 49 sec. Note that the total time of 49 sec includes

SMT-model generation time (tmod_дen) of 45.5 sec on average and model checking time (tmod_chk)

of 3.5 sec on average. Hence, the total time (on average) taken by Algorithm 1 to generate the

solution for this case, is 6 × (45.5 + 3.5) = 294 sec. We run this experiment for multiple MCN

specifications as given in Table 3. As mentioned earlier, the specifications are obtained by varying

the number of loops, edges, nodes, and messages transmitted within the respective recurring time.

In Table 3, Column 5 reports the total number of drop sequences (#DrpSeq) explored to reach the

Table 3. Synthesis Time for different MCN Specifications

ID #Loops #(Nodes, Edges) #Msgs #DrpSeq tmod_gen (s) tmod_chk (s) Time (s)

MCN-1 2 (13, 30) 17 4 1.55 0.15 6.8

MCN-2 2 (13, 46) 17 4 1.75 0.15 7.6

MCN-3 3 (19, 54) 124 6 45.5 3.5 294

MCN-4 3 (19, 80) 124 6 52 4.5 339

MCN-5 5 (31, 95) 109 11 66.5 6 797.5

MCN-6 5 (31, 128) 109 11 83.5 7.5 1001

 0

 500

 1000

 1500

 2000

 2500

 50 100 150 200 250 300

Ti
me

 (
se

c)

Number of Messages

MCN-1
MCN-2
MCN-3
MCN-4
MCN-5
MCN-6

Fig. 10. Syn. Time vs #Messages

corner point, whereas Column 6 and Column 7 report the average time taken by SolveSMTOPT()
for generating (tmod_дen) and checking (tmod_chk) the SMT-model respectively for each of these

drop sequences. Finally Column 8 shows the total synthesis time of Algorithm 1, which is obtained

using the formula: #DrpSeq×(tmod_дen + tmod_chk).

Scalability of Algorithm 1: To show the scalability of the proposed approach, we perform a

series of experiments by increasing the number of messages, nodes, and edges for each of these

above-mentioned six MCN configurations, {MCN-1, MCN-2,. . . , MCN-6}. We vary one parameter

(e.g., (nodes, edges)) at a time while keeping fixed other parameters (e.g., number of loops and

messages). For all these cases, we report the average synthesis time of Algorithm 1 in Figure 10

and Table 4. Moreover, for further scalability test, we perform experiments by varying the number

of control loops on an MCN configuration having 50 nodes and 310 edges. We vary the number

of loops choosing sampling periods from the range, [60ms, 240ms]. Note that with the changes in

ACM Trans. Embedd. Comput. Syst., Vol. V, No. N, Article A. Publication date: January 2019.

Pattern Guided Integrated Scheduling and Routing in Multi-hop Control Networks A:23

Table 4. Syn. Time (in sec) vs #Nodes-Edges

(N,E) MCN1 MCN2 (N,E) MCN3 MCN4 (N,E) MCN5 MCN6

(13,30) 6.8 7.6 (19,54) 294 312 (31,95) 797 810

(20,80) 4.67 4.46 (22,80) 399 339 (31,128) 805 1001

(35,150) 8.81 8.57 (37,150) 675 792 (41,170) 812 1089

(45,200) 8.94 8.91 (47,200) 810 816 (51,230) 890 1120

(50,250) 9.27 9.23 (52,250) 798 870 (56,270) 1080 1225

(70,250) 9.8 10 (75,250) 810 890 (80,270) 1102 1240

Here, (N,E) denotes number of nodes (N) and edges (E). Col. 2 and 3 report

synthesis time for MCN-1 and MCN-2 respectively w.r.t the varying node-

edges pair as given in Col. 1. Similarly, we report time for MCN-3 (Col. 5)

andMCN-4 (Col. 6) w.r.t the varying node-edges pair in Col. 4, and forMCN-

5 (Col. 8) and MCN-6 (Col. 9) w.r.t the varying node-edges pair in Col. 7.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

2 3 5 7 10 12 15 20

T
i
m
e

(
s
e
c
)

Number of Loops

Avg. Model Generation Time (tmod_gen)

6 122 101 205 345 440 572 720

Avg. Model Checking Time (tmod_chk)

0.3 10 7 15 35 43 50 62

Total Synthesis Time

10

820
1085

2420

4560

5796

6842

8602

Fig. 11. Syn. Time vs #Loops

loop count and the sampling period, the total number of messages in the network get changed (e.g.,

lower sampling period and a higher number of loops increase total messages). Figure 11 reports the

time tmod_дen , tmod_chk , and total synthesis time taken by Algorithm 1 for this case. Clearly, our

approach scales for each case of increasing the number of edges, nodes, messages, and loops with

the synthesis time remaining reasonable. Given that the synthesis of schedules is an offline step

before system deployment, the synthesis time seem acceptable. In retrospect, if we consider example

domains like the multi-building wireless sensor network testbed of [37], and [33], Ethernet-based

control example of [25], and wireless CPS testbed of [24], our experiments have derived synthesis

results with CPS networks having comparable if not higher scalability parameters.

Performance under Link Failure: The advantage of our approach over the traditional periodic
approach is also evident under link failure situations. We choose three single link failure scenarios

and discuss the results as follows. The solution, S = ⟨0111111111, 11111, 111111110⟩, together
with its associated routing scheme,Ω, is the initial solution, ⟨SI ,ΩI ⟩, when no link failure is

considered. Scenario-1: When the link (S2, I4) fails, Algorithm 3 returns a new combination of

patterns, Sd = ⟨0111111111, 10111, 111111110⟩, incorporating a loop drop in the pattern s2, while
the patterns s1 and s3 are the same as inSI for the original choice of sampling periods of 90ms, 80ms ,
and 110ms respectively. The cumulative LQR cost thus obtained is 5344.6+4215.9+4702.3 = 14262.8.
In this faulty scenario, the traditional periodic approach generates feasible solution for the choice

of sampling periods as 90ms , 110ms , and 110ms respectively. In that case, we would have the

cumulative control cost as 3970.2 + 7364.7 + 6745.5 = 18080.4, which is much larger than 14262.8.
Figure 12 compares the output response of loop-2 on simulating our pattern-based solution of 10111

(in black) for the sampling period of 80ms with the periodic execution for the period of 110ms
(in red). The benefit of our pattern-based scheduling is clearly manifested in the output responses.

Note that for s2 during the switching from 11111 to 10111 the stability remains guaranteed since

every intermediate pattern obtained by taking the transition from any position of 11111 to starting

position of 10111 (i.e., the initial 1), maintains the minimum execution count of κmin,2 = 1.

Scenario-2: Suppose the link (S2, I2) has failed. Algorithm 3 finds the solution just by changing

the routing paths of all the loops, while keeping the patterns as the same as SI . Scenario-3:When

the link (I6, I2) fails, no pattern guided solution is found by Algorithm 3 for the choice of periods

of 90ms , 80ms , and 110ms respectively, without violating the minimum required execution counts.

We next present the experimental results for evaluating fault tolerance of the MCN specifications

given in Table 3, up to 2-lookahead to link failures. Note that for each link failure scenario of an

MCN specification, we solve an instance of the co-synthesis problem. But following Algorithm 4 we

can get the solution of an instance of the co-synthesis problem from the solutions of its subproblems

without invoking the underlying SMT-solver of Algorithm 3, and thus reducing the total synthesis

time. In contrast, the brute force method uses the SMT-solver of Algorithm 3 for the solution of

ACM Trans. Embedd. Comput. Syst., Vol. V, No. N, Article A. Publication date: January 2019.

A:24 S. Ghosh et al.

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

0 2 4 6 8 10 12 14 16 18 20

A
n
g

le
 (

ra
d
)

Time (sec)

h=110 ms, (11111)ω
h=80 ms,(10111)ω

Fig. 12. Periodic vs Pattern when the link (S2, I4) fails

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

MCN-1 MCN-2 MCN-3 MCN-4 MCN-5 MCN-6
 0

 10

 20

 30

 40

 50

 60

 70

 80

S
y
n
t
h
e
s
i
s

T
i
m
e

(
h
r
)

f
o
r

1
-
l
o
o
k
a
h
e
a
d

S
y
n
t
h
e
s
i
s

T
i
m
e

(
h
r
)

f
o
r

2
-
l
o
o
k
a
h
e
a
d

MCN Specifications

1-lookahead: Algorithm 4
1-lookahead: Brute Force
2-lookahead: Algorithm 4
2-lookahead: Brute Force

Fig. 13. Synthesis Time: Algorithm 4 vs Brute Force

each such instance of the co-synthesis problem. Figure 14 compares the number of instances of the

co-synthesis problem for which the SMT-solver is called for the solution by Algorithm 4, and the

brute force method for all possible single (1-lookahead) and double links (2-lookahead) failures

of each MCN specification. In case of Algorithm 4, for rest of the co-synthesis problem instances,

 20

 40

 60

 80

 100

 120

MCN-1 MCN-2 MCN-3 MCN-4 MCN-5 MCN-6

No
.
of
 S

MT
-S
ol
ve
r

Ca
ll
s

MCN Specifications

Algorithm-4

19

36

52

36

94

58

Brute Force

30

46

54

80

95

128

(a) For 1-lookahead to Link Failures

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

MCN-1 MCN-2 MCN-3 MCN-4 MCN-5 MCN-6

No
.
of
 S

MT
-S
ol
ve
r

Ca
ll
s

MCN Specifications

Algorithm-4

57
370

806
1111

4108
3881

Brute Force

435

1035
1431

3160

4465

8128

(b) For 2-lookahead to Link Failures

Fig. 14. Total number of times SMT-solver is called : Algorithm 4 vs Brute Force

solution of the subproblems are used. For example, as shown in Figure 14a, for MCN-4, SMT-solver

is called 36 times and the solutions of the subproblems are used for the rest (80-36)= 44 cases.

For the comparative analysis, the total synthesis time needed by Algorithm 4 and the brute force

method are reported in Figure 13.

8 CONCLUSION AND FUTUREWORK
In this work, we present an SMT-based framework for fine-grained scheduling using loop execution

patterns for MCNs. The use of such patterns instead of fully periodic control widens the search

space for schedulable solutions without compromising the stability and QoC. We devise heuristics

working on the top of our SMT formulation and synthesize fault-tolerant, performance, and

resource-aware MCN schedules. Our future research directions are as follows. We aim to develop

an analytical framework for trading off control performance with respect to multi hop wireless

network power consumption. In this regard, we plan to extend the current framework with support

for dynamic features such as runtime change in topology, adaptive transmission power control,

etc. Moreover, in the context of link failure analysis, we have established the usefulness of our

monitoring approach from a synthesis perspective. In future, we plan to extend this with a network

simulation framework like OMNeT++ from a deployment perspective. Such network simulators

may be used to generate packet drop and attempted re-transmission traces, which can be used

to create temporal traces of injured MCN. Using the monitoring framework periodically in that

context will provide a network-aware CPS simulation framework for fault tolerant MCN design.

ACM Trans. Embedd. Comput. Syst., Vol. V, No. N, Article A. Publication date: January 2019.

Pattern Guided Integrated Scheduling and Routing in Multi-hop Control Networks A:25

REFERENCES
[1] J. Åkerberg, M. Gidlund, and M. Björkman. 2011. Future research challenges in wireless sensor and actuator networks

targeting industrial automation. In Proc. INDIN. 410–415.
[2] Rajeev Alur et al. 2009. Modeling and analysis of multi-hop control networks. In Proc. RTAS. 223–232.
[3] R. Alur et al. 2011. Compositional Modeling and Analysis of Multi-Hop Control Networks. IEEE TAC 56, 10 (Oct 2011),

2345–2357.

[4] Jia Bai et al. 2011. Distributed sampling rate adaptation for networked control systems. In Proc. Computer Comm.
Workshops. 768–773.

[5] J. Bai, E. P. Eyisi, F. Qiu, Y. Xue, and X. D. Koutsoukos. 2012. Optimal Cross-Layer Design of Sampling Rate Adaptation

and Network Scheduling for Wireless Networked Control Systems. In Proc. ICCPS. 107–116.
[6] Nikolaj Bjørner et al. 2015. νZ - An Optimizing SMT Solver. In Proc. TACAS. 194–199.
[7] Christian Choffrut and Juhani Karhumäki. 1997. Combinatorics of words, Handbook of formal languages.

[8] Craciunas et al. 2016. Combined task- and network-level scheduling for distributed time-triggered systems. Real-Time
Systems 52, 2 (Mar 2016), 161–200.

[9] A. D’Innocenzo et al. 2009. Scalable scheduling algorithms for wireless networked control systems. In Proc. CASE.
409–414.

[10] A. D’Innocenzo et al. 2013. Fault tolerant control of multi-hop control networks. IEEE TAC 58, 6 (2013), 1377–1389.

[11] A. D’Innocenzo, M. D. Di Benedetto, and E. Serra. 2011. Link failure detection in Multi-Hop Control Networks. In Proc.
CDC-ECC. 5248–5253.

[12] Manoj G. Dixit, S. Ramesh, and Pallab Dasgupta. 2014. Time-budgeting: a component based development methodology

for real-time embedded systems. Formal Aspects of Computing 26, 3 (May 2014), 591–621.

[13] D. A. Dowler. 2013. Bounding the norm of matrix powers. Master’s Thesis (2013).
[14] P. Erdös and A. Rényi. 1959. On random graphs, I. Publicationes Mathematicae (Debrecen) 6 (1959), 290–297.
[15] G. Fiore et al. 2009. Multihop multi-channel scheduling for wireless control in WirelessHART networks. In Proc. ETFA.

1–8.

[16] S. Ghosh et al. 2017. A Structured Methodology for Pattern Based Adaptive Scheduling in Embedded Control. ACM
TECS 16, 5s (Sept. 2017), 189:1–189:22.

[17] S. Ghosh, S. Dey, and P. Dasgupta. 2018. Co-Synthesis of Loop Execution Patterns for Multihop Control Networks.

IEEE ESL 10, 4 (Dec 2018), 111–114.

[18] S. Ghosh, S. Dey, and P. Dasgupta. 2019. Performance and energy aware robust specification of control execution

patterns under dropped samples. IET Computers Digital Techniques 13 (November 2019), 493–504(11). Issue 6.

[19] R. Jacob, M. Zimmerling, P. Huang, J. Beutel, and L. Thiele. 2016. End-to-End Real-Time Guarantees in Wireless

Cyber-Physical Systems. In Proc. RTSS. 167–178.
[20] B. Li, Y. Ma, T. Westenbroek, C. Wu, H. Gonzalez, and C. Lu. 2016. Wireless Routing and Control: A Cyber-Physical

Case Study. In Proc. ICCPS. 1–10.
[21] C. Lu, A. Saifullah, B. Li, M. Sha, H. Gonzalez, D. Gunatilaka, C. Wu, L. Nie, and Y. Chen. 2016. Real-Time Wireless

Sensor-Actuator Networks for Industrial Cyber-Physical Systems. Proc. IEEE 104, 5 (May 2016), 1013–1024.

[22] Q. Ma, K. Liu, Z. Cao, T. Zhu, and Y. Liu. 2015. Link Scanner: Faulty Link Detection for Wireless Sensor Networks. T
WIREL COMMUN 14, 8 (Aug 2015), 4428–4438.

[23] Yehan Ma, Dolvara Gunatilaka, Bo Li, Humberto Gonzalez, and Chenyang Lu. 2018. Holistic Cyber-Physical Manage-

ment for Dependable Wireless Control Systems. ACM TCPS 3, 1 (Sept. 2018), 3:1–3:25.
[24] Fabian Mager, Dominik Baumann, Romain Jacob, Lothar Thiele, Sebastian Trimpe, and Marco Zimmerling. 2019.

Feedback Control Goes Wireless: Guaranteed Stability over Low-power Multi-hop Networks. (2019), 97–108.

[25] R. Mahfouzi, A. Aminifar, S. Samii, A. Rezine, P. Eles, and Z. Peng. 2018. Stability-aware integrated routing and

scheduling for control applications in Ethernet networks. In Proc. DATE. 682–687.
[26] Rahul Mangharam and Miroslav Pajic. 2013. Distributed Control for Cyber-Physical Systems. Journal of the Indian

Institute of Science 93, 3 (2013), 353–387.
[27] W. C. Messner and D. M. Tilbury. [n. d.]. Control tutorials for MATLAB and Simulink: a web-based approach.

http://ctms.engin.umich.edu/CTMS.

[28] Jia Ning et al. 2007. Graceful degradation of the quality of control through data drop policy. In Proc. ECC. 4324–4331.
[29] Marcelo Nobre et al. 2015. Routing and Scheduling Algorithms for WirelessHARTNetworks: A Survey. Sensors 15, 5

(2015), 9703–9740.

[30] M. Pajic et al. 2011. The Wireless Control Network: A New Approach for Control Over Networks. IEEE TAC 56, 10

(Oct 2011), 2305–2318.

[31] M. Pajic, S. Sundaram, J. Le Ny, G. J. Pappas, and R. Mangharam. 2010. The Wireless Control Network: Synthesis and

robustness. In Proc. CDC. 7576–7581.

ACM Trans. Embedd. Comput. Syst., Vol. V, No. N, Article A. Publication date: January 2019.

A:26 S. Ghosh et al.

[32] P. Park, J. Araújo, and K. H. Johansson. 2011. Wireless networked control system co-design. In Proc. Networking,
Sensing and Control. 486–491.

[33] J. W. Ro, P. Roop, and A. Malik. 2015. Schedule Synthesis for Time-Triggered Multi-hop Wireless Networks with

Retransmissions. In Proc. ISORC. 94–101.
[34] Y. Sadi and S. Coleri Ergen. 2015. Joint optimization of communication and controller components of wireless networked

control systems. In Peoc. ICC. 6487–6493.
[35] Indranil Saha et al. 2015. Dynamic Scheduling for Networked Control Systems. In Proc. HSCC. ACM, 98–107.

[36] Abusayeed Saifullah et al. 2011. End-to-end communication delay analysis in wirelesshart networks. In Proc. RTAS.
[37] Abusayeed Saifullah et al. 2014. Near Optimal Rate Selection for Wireless Control Systems. ACM TECS 13, 4s (2014),

128:1–128:25.

[38] Abusayeed Saifullah, Paras Babu Tiwari, Bo; Li, and Chenyang Lu. 2012. Accounting for Failures in Delay Analysis for

WirelessHART Networks. Report No.: WUCSE-2012-16.All Computer Science and Engineering Research (2012).

[39] Abusayeed Saifullah, You Xu, Chenyang Lu, and Yixin Chen. 2010. Real-time scheduling for WirelessHART networks.

In Proc. RTSS. 150–159.
[40] Weihuan Shu et al. 2008. Optimal sampling rate assignment with dynamic route selection for real-time wireless sensor

networks. In Proc. RTSS. 431–441.
[41] John R Silvester. 2000. Determinants of block matrices. The Mathematical Gazette (2000), 460–467.
[42] F. Smarra, A. D’Innocenzo, and M. D. Di Benedetto. 2012. Optimal co-design of control, scheduling and routing in

multi-hop control networks. In Proc. CDC. 1960–1965.
[43] Jianping Song et al. 2008. WirelessHART: Applying wireless technology in real-time industrial process control. In Proc.

RTAS. 377–386.
[44] Damoon Soudbakhsh, Linh TX Phan, et al. 2013. Co-design of control and platform with dropped signals. In Proc.

ICCPS. 129–140.
[45] W. Steiner. 2010. An Evaluation of SMT-Based Schedule Synthesis for Time-Triggered Multi-hop Networks. In Proc.

RTSS. 375–384.
[46] E. Toscano and L. L. Bello. 2012. Multichannel Superframe Scheduling for IEEE 802.15.4 Industrial Wireless Sensor

Networks. IEEE Trans. on Industrial Informatics 8, 2 (May 2012), 337–350.

[47] Gera Weiss and Rajeev Alur. 2007. Automata based interfaces for control and scheduling. In Proc. HSCC. 601–613.
[48] Marco Zimmerling, Luca Mottola, et al. 2017. Adaptive Real-Time Communication forWireless Cyber-Physical Systems.

ACM TCPS 1, 2 (Feb. 2017), 8:1–8:29.

Received MM 201X; revised X 201X; accepted X 201X

ACM Trans. Embedd. Comput. Syst., Vol. V, No. N, Article A. Publication date: January 2019.

	Abstract
	1 Introduction
	2 Related Work
	3 Model Definition
	3.1 Plant-Controller Model
	3.2 Network Model

	4 Deriving Minimum Loop Executions from Performance Metric
	4.1 Cost Functions for Loop Execution Patterns

	5 Pattern Guided Scheduling and Routing in MCN
	5.1 Formal Modeling of the Network
	5.2 The SMT-based Solution Framework
	5.3 The Overall Co-Synthesis Methodology

	6 Evaluating Fault Tolerance under Pattern Guided Co-Synthesis Framework
	6.1 Finding Schedulable Solution against Simultaneous Link Failures
	6.2 Monitoring Schedulability for K-look-ahead to Link Failures
	6.3 Handling Link Failures

	7 Experimental Evaluation
	7.1 Experimental Setup
	7.2 Experimental Results

	8 Conclusion and Future Work
	References

