
Autoencoders

Auto-Encoder?

2

Input

Output

En
co

d
in

g
D

ec
o

d
in

g

Auto-Encoder?

3

Encoder + Decoder Structure

• Supervised Learning

• we discuss some of the speculative
approaches to reducing the amount of labeled
data necessary for existing models to work
well and be applicable across a broader range
of tasks. Accomplishing these goals usually
requires some form of unsupervised or semi-
supervised learning

Linear Factor Models

• Many of the research frontiers in deep learning involve
building a probabilistic model of the input, p_{model}(x)

• Many of these models also have latent variables h, with
p_{model}(x)=E_h p_{model}(x|h).

• These latent variables provide another means of
representing the data.

• some of the simplest probabilistic models withThey
• also show many of the basic approaches necessary to build

generative models that
• the more advanced deep models will extend furtherlatent

variables: linear factor models. These models are
sometimes used as building blocks of mixture models or
larger, deep probabilistic models.

• A linear factor model is defined by the use of a stochastic, linear
decoder function that generates x by adding noise to a linear
transformation of h.

• A linear factor model describes the data generation process as
follows. First, we sample the explanatory factors h from a
distribution

ℎ~𝑝 ℎ
p(h) is a factorial distribution with

𝑝 ℎ =

𝑖

𝑝(ℎ𝑖)

Next we sample the real-valued observable variables given the factors
𝑥 = 𝑊ℎ + 𝑏 + 𝑛𝑜𝑖𝑠𝑒

where the noise is typically Gaussian and diagonal (independent
across dimensions)

Probabilistic PCA and Factor Analysis

Autoencoder

• An autoencoder is a neural network that is trained to
attempt to copy its input to its output. Internally, it has
a hidden layer h that describes a code used to
represent the input

• Hidden layer h
• Two parts

– Encoder h= f(x)
– Decoder r=g(h)

• Modern autoencoders also generalized to stochastic
mappings

𝑝𝑒𝑛𝑐𝑜𝑑𝑒𝑟 ℎ 𝑥 , 𝑝𝑑𝑒𝑐𝑜𝑑𝑒𝑟(𝑥|ℎ)

• Traditionally, autoencoders were used for
dimensionality reduction or feature learning.

• Recently, theoretical connections between
autoencoders and latent variable models have
brought autoencoders to the forefront of
generative modeling

• Autoencoders may be thought of as being
• a special case of feedforward networks, and may

be trained with all of the same techniques,
typically minibatch gradient descent following
gradients computed by back-propagation

Undercomplete autoencoder

• One way to obtain useful features from the
autoencoder is to constrain h to have smaller
dimension than x

• Learning an undercomplete representation forces the
autoencoder to capture the most salient features of
the training data.

• The learning process is described simply as minimizing
a loss function

𝐿(𝑥, 𝑔 𝑓 𝑥)

• When the decoder is linear and L is the mean squared
error, an undercomplete autoencoder learns to span
the same subspace as PCA

• Autoencoders with nonlinear encoder
functions f and nonlinear decoder functions g
can thus learn a more powerful nonlinear
generalization of PCA

• if the encoder and decoder are allowed too
much capacity, the autoencoder can learn to
perform the copying task without extracting
useful information about the distribution of
the data

Regularized autoencoders

• Rather than limiting the model capacity by
keeping the encoder and decoder shallow and
the code size small, regularized autoencoders
use a loss function that encourages the model
to have other properties besides the ability to
copy its input to its output including
– sparsity of the representation,

– smallness of the derivative of the representation,
and

– Robustness to noise or to missing inputs

• Two generative modeling approaches that emphasize this
connection with autoencoders are the descendants of the
Helmholtz machine such as the
– variational autoencoder and
– the generative stochastic networks.

• These models naturally learn high-capacity, overcomplete
encodings of the input and do not require regularization for
these encodings to be useful.

• Their encodings
• are naturally useful because the models were trained to

approximately maximize
• the probability of the training data rather than to copy the

input to the output

Sparse autoencoder

• A sparse autoencoder is simply an
autoencoder whose training criterion involves
a sparsity penalty Ω(h) on the code layer h, in
addition to the reconstruction error:

𝐿(𝑥, 𝑔 𝑓 𝑥 + Ω(ℎ)

Autoencoder
Unlabeled training examples set

{𝑥(1), 𝑥(2), 𝑥(3) . . . }, 𝑥(𝑖) ∈ ℝ𝑛

An autoencoder neural network is

an unsupervised learning algorithm

that applies backpropagation,

setting the target values to be

equal to the inputs. 𝑦(𝑖)= 𝑥(𝑖)

Network is trained to output the input
(learn identify function).

ℎ𝑤,𝑏 𝑥 ≈ 𝑥

Solution may be trivial.

Unsupervised feature learning with a
neural network

a1

a2

a3

Autoencoders
and sparsity1. By placing constraints on

the network, like limiting
the number of hidden
units, can discover
interesting structure
about the data.

2. When the number of
hidden units is large, can
still discover interesting
structure, by imposing
other constraints on the
network e.g.., sparsity

Auto-Encoders
• A type of unsupervised learning which tries to discover generic

features of the data
– Learn identity function by learning important sub-features (not by just passing

through data)
– Compression, etc.
– Can use just new features in the new training set or concatenate both

18

Autoencoder

• Suppose the inputs x are the pixel intensity
values from a 10 × 10 image (100 pixels) so
𝑛 = 100.

• There are 𝑠2 = 50 hidden units in layer L2.

• Note that we also have 𝑦 ∈ ℜ100

• Since there are only 50 hidden units, the
network is forced to learn a ”compressed”
representation of the input.

• Given only the vector of hidden unit
activations 𝑎(2) ∈ ℜ100

• It must try to ``reconstruct” the 100-pixel
input 𝑥

Autoencoder

• If the input were completely random—say, each
𝑥𝑖 comes from an IID Gaussian independent of
the other features—then this compression task
would be very difficult.

• But if there is structure in the data, for example,
if some of the input features are correlated, then
this algorithm will be able to discover some of
those correlations.

(In fact, this simple autoencoder often ends up learning a low-dimensional
representation very similar to PCAs.)

Autoencoder

• Dimensionality reduction leads to a "dense"
representation which is nice in terms of parsimony

• All features typically have non-zero values for any input
and the combination contains the compressed
information

• However, this distributed and entangled representation
can often make it more difficult for successive layers to
pick out the salient features

Outline

• Motivating factors and intuition

• Neural Network: Multi-layer perceptrons

• Deep learning methods

– Autoencoder

• Sparse autoencoders
• Denoising autoencders

– RBMs

– Deep Belief Network

• Applications

Sparse Encoders

• A sparse representation uses more features where
at any given time a significant number of the
features will have a 0 value

– This leads to more localist variable length encodings
where a particular node (or small group of nodes) with
value 1 signifies the presence of a feature

– A type of simplicity bottleneck (regularizer)

– This is easier for subsequent layers to use for learning

23

How do we implement a sparse
Auto-Encoder?

• Use more hidden nodes in the encoder

• Use regularization techniques which
encourage sparseness (e.g. a significant
portion of nodes have 0 output for any
given input)
– Penalty in the learning function for non-zero nodes

– Weight decay

– etc.

24

Sparse Autoencoder

• If we impose a ”‘sparsity”’ constraint on the hidden units, then the
autoencoder will still discover interesting structure in the data, even if the
number of hidden units is large.

• Informally, we will think of a neuron as being “active” (or as “firing”) if its
output value is close to 1, or as being “inactive” if its output value is close
to 0. We would like to constrain the neurons to be inactive most of the
time. (assuming a sigmoid activation function).

• Let 𝑎𝑗
2

𝑥 denotes the activation of hidden unit 𝑗 in the autoencoder

when the network is given a specific input 𝑥.

• The average activation of hidden unit 𝑗 is (averaged over the training set)

 𝜌𝑗 =
1

𝑚

𝑖=1

𝑚

[𝑎𝑗
2
(𝑥(𝑖))]

Sparsity constraint

Overall cost function:

𝐽𝑠𝑝𝑎𝑟𝑠𝑒 𝑊, 𝑏 = 𝐽 𝑊, 𝑏 + 𝛽

𝑗=1

𝑠2

𝐾𝐿(𝜌|| 𝜌𝑗)

• We enforce the constraint
 𝜌𝑗 = 𝜌

• 𝜌 is a “sparsity parameter” typically a small
value close to zero (say 0.05)

• To satisfy this constraint, the hidden unit’s
activations must mostly be near 0.

• add an extra penalty term to our optimization
objective that penalizes 𝜌𝑗 deviating
significantly from 𝜌, e.g.,

𝐾𝐿(𝜌| 𝜌𝑗 =

𝑗=1

𝑠2

𝜌 log
𝜌

 𝜌𝑗
+ (1 − 𝜌) log

1 − 𝜌

1 − 𝜌𝑗

• To incorporate the KL-divergence term into your
derivative calculation
– where previously for the second layer (l=2), during

backpropagation you would have computed

– now compute

– you'll need to know 𝜌𝑖 to compute this term.
– compute a forward pass on all the training examples

first to compute the average activations on the
training set, before computing backpropagation on
any example

Sparse Representation
• For bases below, easier to see intuition for

current pattern, if a few of these are on and the
rest 0, or if all have a significant value?

• Machines can learn more easily if sparse

28

Stacked Autoencoders

• Bengio (2007) – After Deep Belief Networks
(2006)

• greedy layerwise approach for pretraining a
deep network works by training each layer in
turn.

• multiple layers of sparse autoencoders in
which the outputs of each layer is wired to the
inputs of the successive layer.

Stacked Auto-Encoders
• Stack many (sparse) auto-encoders in succession and train them using

greedy layer-wise training

• Drop the decode layer each time

30

Stacked Auto-Encoders
• Do supervised training on the last layer using final

features
• Then do supervised training on the entire network

to fine- tune all weights

31


j

z

z

i
j

i

e

e
y

• Formally, consider a stacked autoencoder with n layers. Using notation
from the autoencoder section, let W(k,1),W(k,2),b(k,1),b(k,2) denote the
parameters W(1),W(2),b(1),b(2) for kth autoencoder. Then the encoding step
for the stacked autoencoder is given by running the encoding step of each
layer in forward order:

• The decoding step is given by running the decoding stack of each
autoencoder in reverse order:

• The information of interest is contained within a(n), which is the activation
of the deepest layer of hidden units. This vector gives us a representation
of the input in terms of higher-order features.

• The features from the stacked autoencoder can be used for classification
problems by feeding a(n) to a softmax classifier.

Denoising auto-encoder

Encoder?

34

Denoising Auto-Encoder?

35

Input and output data of the auto-encoder is basically
identical.

Then, how can we make this network to have
denoising power?

Denoising Auto-Encoder?

36

Just add noise to the input layer while training!

De-noising Auto-Encoder

• A stochastic version of the auto-encoder.
• Stochastically corrupt training instance each time, but

still train auto-encoder to decode the uncorrupted
instance, forcing it to learn conditional dependencies
within the instance

C
o
r
r
u

Hidden code
(representation)

Raw input reconstruction

KL(reconstruction||
raw input)

De-noising Auto-Encoder

• Better empirical results, handles missing values
well

• Unsupervised initialization of layers with an
explicit denoising criterion appears to help
capture interesting structure in the input
distribution.

• This leads to intermediate representations much
better suited for subsequent learning tasks such
as supervised classification.

Denoising Auto-Encoder?

39

Results

40

