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Encoder + Decoder Structure



• Supervised Learning

• we discuss some of the speculative 
approaches to reducing the amount of labeled 
data necessary for existing models to work 
well and be applicable across a broader range 
of tasks. Accomplishing these goals usually 
requires some form of unsupervised or semi-
supervised learning



Linear Factor Models

• Many of the research frontiers in deep learning involve 
building a probabilistic model of the input, p_{model}(x)

• Many of these models also have latent variables h, with 
p_{model}(x)=E_h p_{model}(x|h).

• These latent variables provide another means of 
representing the data. 

• some of the simplest probabilistic models withThey
• also show many of the basic approaches necessary to build 

generative models that
• the more advanced deep models will extend furtherlatent

variables: linear factor models. These models are 
sometimes used as building blocks of mixture models or 
larger, deep probabilistic models.



• A linear factor model is defined by the use of a stochastic, linear 
decoder function that generates x by adding noise to a linear 
transformation of h.

• A linear factor model describes the data generation process as 
follows. First, we sample the explanatory factors h from a 
distribution

ℎ~𝑝 ℎ
p(h) is a factorial distribution with

𝑝 ℎ = 

𝑖

𝑝(ℎ𝑖)

Next we sample the real-valued observable variables given the factors
𝑥 = 𝑊ℎ + 𝑏 + 𝑛𝑜𝑖𝑠𝑒

where the noise is typically Gaussian and diagonal (independent 
across dimensions)





Probabilistic PCA and Factor Analysis



Autoencoder

• An autoencoder is a neural network that is trained to 
attempt to copy its input  to its output. Internally, it has 
a hidden layer h that describes a code used to 
represent the input

• Hidden layer h
• Two parts

– Encoder h= f(x)
– Decoder r=g(h)

• Modern autoencoders also generalized to stochastic 
mappings

𝑝𝑒𝑛𝑐𝑜𝑑𝑒𝑟 ℎ 𝑥 , 𝑝𝑑𝑒𝑐𝑜𝑑𝑒𝑟(𝑥|ℎ)



• Traditionally, autoencoders were used for 
dimensionality reduction or feature learning. 

• Recently, theoretical connections between 
autoencoders and latent variable models have 
brought autoencoders to the forefront of 
generative modeling

• Autoencoders may be thought of as being
• a special case of feedforward networks, and may 

be trained with all of the same techniques, 
typically minibatch gradient descent following 
gradients computed by back-propagation



Undercomplete autoencoder

• One way to obtain useful features from the 
autoencoder is to constrain h to have smaller 
dimension than x

• Learning an undercomplete representation forces the 
autoencoder to capture the most salient features of 
the training data.

• The learning process is described simply as minimizing 
a loss function

𝐿(𝑥, 𝑔 𝑓 𝑥 )

• When the decoder is linear and L is the mean squared 
error, an undercomplete autoencoder learns to span 
the same subspace as PCA



• Autoencoders with nonlinear encoder 
functions f and nonlinear decoder functions g 
can thus learn a more powerful nonlinear 
generalization of PCA

• if the encoder and decoder are allowed too 
much capacity, the autoencoder can learn to 
perform the copying task without extracting 
useful information about the distribution of 
the data



Regularized autoencoders

• Rather than limiting the model capacity by 
keeping the encoder and decoder shallow and 
the code size small, regularized autoencoders
use a loss function that encourages the model 
to have other properties besides the ability to 
copy its input to its output including
– sparsity of the representation, 

– smallness of the derivative of the representation, 
and 

– Robustness to noise or to missing inputs



• Two generative modeling approaches that emphasize this 
connection with autoencoders are the descendants of the 
Helmholtz machine such as the 
– variational autoencoder and 
– the generative stochastic networks.

• These models naturally learn high-capacity, overcomplete
encodings of the input and do not require regularization for 
these encodings to be useful.

• Their encodings
• are naturally useful because the models were trained to 

approximately maximize
• the probability of the training data rather than to copy the 

input to the output



Sparse autoencoder

• A sparse autoencoder is simply an 
autoencoder whose training criterion involves 
a sparsity penalty Ω(h) on the code layer h, in 
addition to the reconstruction error:

𝐿(𝑥, 𝑔 𝑓 𝑥 + Ω(ℎ)



Autoencoder
Unlabeled training examples set 

{𝑥(1), 𝑥(2), 𝑥(3) . . . }, 𝑥(𝑖) ∈ ℝ𝑛

An autoencoder neural network is 

an unsupervised learning algorithm 

that applies backpropagation, 

setting the target values to be 

equal to the inputs.  𝑦(𝑖)= 𝑥(𝑖)

Network is trained to output the input 
(learn identify function). 

ℎ𝑤,𝑏 𝑥 ≈ 𝑥

Solution may be trivial.

Unsupervised feature learning with a 
neural network

a1

a2

a3



Autoencoders
and sparsity1. By placing constraints on 

the network, like limiting 
the number of hidden 
units,  can discover 
interesting structure 
about the data.

2. When the number of 
hidden units is large, can 
still discover interesting 
structure, by imposing 
other constraints on the 
network e.g.., sparsity



Auto-Encoders
• A type of unsupervised learning which tries to discover generic 

features of the data
– Learn identity function by learning important sub-features (not by just passing 

through data)
– Compression, etc.
– Can use just new features in the new training set or concatenate both
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Autoencoder

• Suppose the inputs x are the pixel intensity 
values from a 10 × 10 image (100 pixels) so 
𝑛 = 100.

• There are  𝑠2 = 50 hidden units in layer L2.

• Note that we also have 𝑦 ∈ ℜ100

• Since there are only 50 hidden units, the 
network is forced to learn a ”compressed” 
representation of the input.

• Given only the vector of hidden unit 
activations 𝑎(2) ∈ ℜ100

• It must try to ``reconstruct” the 100-pixel 
input 𝑥



Autoencoder

• If the input were completely random—say, each 
𝑥𝑖 comes from an IID Gaussian independent of 
the other features—then this compression task 
would be very difficult.

• But if there is structure in the data, for example, 
if some of the input features are correlated, then 
this algorithm will be able to discover some of 
those correlations. 

(In fact, this simple autoencoder often ends up learning a low-dimensional 
representation very similar to PCAs.)



Autoencoder

• Dimensionality reduction leads to a "dense" 
representation which is nice in terms of parsimony

• All features typically have non-zero values for any input 
and the combination contains the compressed 
information

• However, this distributed and entangled representation 
can often make it more difficult for successive layers to 
pick out the salient features



Outline

• Motivating factors and intuition

• Neural Network: Multi-layer perceptrons

• Deep learning methods

– Autoencoder

• Sparse autoencoders
• Denoising autoencders

– RBMs

– Deep Belief Network

• Applications



Sparse Encoders

• A sparse representation uses more features where 
at any given time a significant number of the 
features will have a 0 value

– This leads to more localist variable length encodings 
where a particular node (or small group of nodes) with 
value 1 signifies the presence of a feature

– A type of simplicity bottleneck (regularizer)

– This is easier for subsequent layers to use for learning
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How do we implement a sparse 
Auto-Encoder?

• Use more hidden nodes in the encoder

• Use regularization techniques which 
encourage sparseness (e.g. a significant 
portion of nodes have 0 output for any 
given input)
– Penalty in the learning function for non-zero nodes

– Weight decay

– etc.
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Sparse Autoencoder

• If we impose a ”‘sparsity”’ constraint on the hidden units, then the 
autoencoder will still discover interesting structure in the data, even if the 
number of hidden units is large.

• Informally, we will think of a neuron as being “active” (or as “firing”) if its 
output value is close to 1, or as being “inactive” if its output value is close 
to 0. We would like to constrain the neurons to be inactive most of the 
time. (assuming a sigmoid activation function). 

• Let  𝑎𝑗
2

𝑥 denotes the activation of hidden unit 𝑗 in the autoencoder

when the  network is given a specific input 𝑥.

• The average activation of hidden unit 𝑗 is   (averaged over the training set)

 𝜌𝑗 =
1

𝑚
 

𝑖=1

𝑚

[𝑎𝑗
2
(𝑥(𝑖))]



Sparsity constraint

Overall cost function:

𝐽𝑠𝑝𝑎𝑟𝑠𝑒 𝑊, 𝑏 = 𝐽 𝑊, 𝑏 + 𝛽 

𝑗=1

𝑠2

𝐾𝐿(𝜌||  𝜌𝑗)

• We enforce the constraint 
 𝜌𝑗 = 𝜌

• 𝜌 is a “sparsity parameter” typically a small 
value close to zero (say 0.05)

• To satisfy this constraint, the hidden unit’s 
activations must mostly be near 0.

• add an extra penalty term to our optimization 
objective that penalizes  𝜌𝑗 deviating 
significantly from 𝜌, e.g., 

𝐾𝐿(𝜌|  𝜌𝑗 =  

𝑗=1

𝑠2

𝜌 log
𝜌

 𝜌𝑗
+ (1 − 𝜌) log

1 − 𝜌

1 −  𝜌𝑗



• To incorporate the KL-divergence term into your 
derivative calculation
– where previously for the second layer (l=2), during 

backpropagation you would have computed 

– now compute  

– you'll need to know  𝜌𝑖 to compute this term. 
– compute a forward pass on all the training examples 

first to compute the average activations on the 
training set, before computing backpropagation on 
any example



Sparse Representation
• For bases below, easier to see intuition for 

current pattern, if a few of these are on and the 
rest 0, or if all have a significant value? 

• Machines can learn more easily if sparse
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Stacked Autoencoders

• Bengio (2007) – After Deep Belief Networks 
(2006)

• greedy layerwise approach for pretraining a 
deep network works by training each layer in 
turn.

• multiple layers of sparse autoencoders in 
which the outputs of each layer is wired to the 
inputs of the successive layer.



Stacked Auto-Encoders
• Stack many (sparse) auto-encoders in succession and train them using 

greedy layer-wise training

• Drop the decode layer each time
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Stacked Auto-Encoders
• Do supervised training on the last layer using final 

features
• Then do supervised training on the entire network 

to fine- tune all weights
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• Formally, consider a stacked autoencoder with n layers. Using notation 
from the autoencoder section, let W(k,1),W(k,2),b(k,1),b(k,2) denote the 
parameters W(1),W(2),b(1),b(2) for kth autoencoder. Then the encoding step 
for the stacked autoencoder is given by running the encoding step of each 
layer in forward order: 

• The decoding step is given by running the decoding stack of each 
autoencoder in reverse order: 

• The information of interest is contained within a(n), which is the activation 
of the deepest layer of hidden units. This vector gives us a representation 
of the input in terms of higher-order features. 

• The features from the stacked autoencoder can be used for classification 
problems by feeding a(n) to a softmax classifier. 



Denoising auto-encoder



Encoder?
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Denoising Auto-Encoder?
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Input and output data of the auto-encoder is basically 
identical. 

Then, how can we make this network to have 
denoising power?



Denoising Auto-Encoder?
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Just add noise to the input layer while training!



De-noising Auto-Encoder

• A stochastic version of the auto-encoder. 
• Stochastically corrupt training instance each time, but 

still train auto-encoder to decode the uncorrupted 
instance, forcing it to learn conditional dependencies 
within the instance

C
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u

Hidden code 
(representation)

Raw input reconstruction

KL(reconstruction||
raw input)



De-noising Auto-Encoder

• Better empirical results, handles missing values 
well

• Unsupervised initialization of layers with an 
explicit denoising criterion appears to help 
capture interesting structure in the input 
distribution.

• This leads to intermediate representations much 
better suited for subsequent learning tasks such 
as supervised classification.



Denoising Auto-Encoder?
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Results
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