
Energy Efficient Array Initialization Using Loop

Unrolling with Partial Gray Code Sequence

Sumanta Pyne and Ajit Pal

Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur, West Bengal, 721 302, India

{spyne,apal}@cse.iitkgp.ernet.in

Abstract. The present work introduces a software technique to reduce
energy consumed by the address bus of the on-chip data memory. This
is done by reducing switching activity on the address bus of the on-chip
data memory, with the help of loop unrolling with partial Gray code se-
quence. The present work introduces the translation of a loop with array
initialization to its loop unrolled version with partial Gray code sequence.
The expressions for switching activity consumed on the address bus of
data memory are derived for both unrolled loop with and without partial
Gray code sequence. The proposed translation method finds a relocat-
able base address of the array so that the partial Gray code sequence
is maintained, without any energy-performance overhead and achieves a
considerable amount of energy reduction without any performance loss.
The proposed method achieves 25-50% reduction in switching activity on
the address bus of on-chip data memory. The present work is evaluated
on five benchmark programs and is suitable for programs where array
initialization time is more than computation time.

Keywords: Energy reduction, array initialization, address bus of on-
chip L1-data cache, switching activity, loop unrolling, unrolling factor,
loop unrolling with partial Gray code sequence, translation.

1 Introduction

Energy/power consumed by VLSI circuits is directly proportional to the switch-
ing activity. The address and data bus connecting memory and processor are
highly capacitive which leads to the switching power dissipation when 0− to− 1
and 1 − to − 0 bit transitions occur on the buses at high frequency. As the
technology scales down to the deep-submicron region, the inter-wire capacitance
(CI) becomes significant compared to the wire-to-substrate capacitance (CL).
As CI is the dominant capacitance in deep sub-micron era, it has two signif-
icant effects, large propagation delay due to opposite transitions on adjacent
wires [1,2,3] and power dissipation associated with driving the on-chip buses
[2]. The expression for average bus wire power consumption can be written as
Pavg = 1

2 ×Cbus×V 2
dd×ntrans× f where, Cbus is the bus capacitance, Vdd is the

supply voltage, f is the frequency of operation. ntrans =
∑N−1

t=0 HD(dt,dt+1)
N , which

M.S. Gaur et al. (Eds.): VDAT 2013, CCIS 382, pp. 83–93, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

84 S. Pyne and A. Pal

is the average number of bit transitions (switching activity) on the bus caused
by transfer of N bit patterns. HD(dt, dt+1) is the Hamming Distance between
two consecutive bit patterns dt and dt+1. The present work reduces ntrans on
the address bus of data memory. This work focuses on systems that use Harvard
architecture employing independent data and instruction address buses. This
work considers the address bus between L1-data cache and the processor, where
the L1-data cache is on-chip. The present work exploits the sequential access of
adjacent memory locations, when a set of sequential locations (like an array) is
initialized within a small loop, and introduces loop unrolling with partial Gray
code sequence. This technique reduces on-chip bus switching activity on the ad-
dress bus of data memory, thereby saving energy. The proposed work does not
require any extra hardware for encoding and decoding address on the address
bus. Programmers and/or compilers can exploit this idea to reduce switching ac-
tivity on address bus of data memory, when they encounter loops which initialize
array of considerable size. Loop unrolling reduces the number of loop manipu-
lation instructions by loop unrolling factor (uf) saving both time and energy.
Array initialization using loop unrolling with partial Gray code sequence can
save more energy by reducing switching activity on the address bus of on-chip
L1-data cache.

1.1 Related Work

Several hardware based approaches to reduce bus switching activity has been
proposed earlier which require extra hardware in the form of encoders and de-
coders which consume more silicon space (increasing the design cost), power
and degrades performance. Since, the present work is a software based tech-
nique, the hardware approaches are not discussed. In [4] the authors proposed
the idea for instruction scheduling to reduce switching activity. The authors of
[5] studied Gray code addressing to reduce switching activity on the instruc-
tion address bits and introduced an instruction scheduling technique called cold
scheduling to reorder instruction sequence to reduce the switching activities.
In [6,7] Lee et al proposed a greedy bipartite-matching instruction scheduling
scheme to reduce switching activity in the instruction bus. In [8] Parikh et al
proposed instruction scheduling algorithms considering the activity of switching
from one instruction to another instruction as circuit-state effect (circuit-state
cost or inter-instruction cost). In [9] the authors proposed an algorithm to re-
duce both schedule length by 11.5% and bus-switching activities by an average
of 19.4% for applications with loops. In [11] the authors proposed an algorithm
to reduce bus-switching activities by 52.2% and schedule length by an average of
20.1% while performing scheduling and allocation simultaneously. The method
proposed in [10] modifies operation placement orders within VLIW instructions
to reduce the switching activity between successive instruction fetches by 34%
on an average.

Energy Efficient Array Initialization Using Loop Unrolling 85

2 Present Work

2.1 Basic Approach

�define n 1000000
int main()

{
register int i;
int a[n];
for(i = 0; i < n; i++)

{
a[i] = 0;

}
return 0;

}

(a) Original Program

�define n 1000000
int main()
{

register int i;
int a[n];
for(i = 0; i < n; i = i+ 16)

{
a[i] = 0;
a[i+ 1] = 0;
a[i+ 2] = 0;

a[i+ 4] = 0;
a[i+ 3] = 0;

a[i+ 5] = 0;
a[i+ 6] = 0;
a[i+ 7] = 0;
a[i+ 8] = 0;
a[i+ 9] = 0;
a[i+ 10] = 0;
a[i+ 11] = 0;
a[i+ 12] = 0;
a[i+ 13] = 0;
a[i+ 14] = 0;
a[i+ 15] = 0;

}
return 0;

}
(b) Original Program with loop

�define n 1000000
int main()
{

register int i;
int a[n];
for(i = 0; i < n; i = i+ 16)

{
a[i] = 0;
a[i+ 1] = 0;
a[i+ 3] = 0;
a[i+ 2] = 0;
a[i+ 6] = 0;
a[i+ 7] = 0;
a[i+ 5] = 0;
a[i+ 4] = 0;
a[i+ 12] = 0;
a[i+ 13] = 0;
a[i+ 15] = 0;
a[i+ 14] = 0;
a[i+ 10] = 0;
a[i+ 11] = 0;
a[i+ 9] = 0;
a[i+ 8] = 0;

}
return 0;

}
(c) Original Program with unrolled loop

having partial Gray code sequenceunrolling

Fig. 1. Programs for array initialization

Figure 1(a) shows a program where all the ′n′ elements of an array ′a′ are
initialized to an integer value ′0′. This array initialization involves sequential
access of ′n′ memory locations, where the index variable ′i’ is stored in a CPU
register. The program in Fig. 1(b) is the loop unrolled version of the program
in Fig. 1(a), where the loop unrolling factor (uf) is ′16′. Loop unrolling reduces
the number of loop manipulation instructions by a factor ′uf ′, saving time and
energy. The program in Fig. 1(c) is a loop unrolled version of the program in
Fig. 1(a), where the array a′s memory address references within the body of the
unrolled loop follows a Gray code sequence. So, the number of ′0 − to − 1′ and
′1−to−0′ bit transitions for array a′s memory address references within the body
of the unrolled loop, referred as intra-iteration switching, is restricted to ′uf−1′.
The present work refers a simple unrolled loop as LU , and an unrolled loop with
partial Gray code sequence as LUG. The number of ′0− to− 1′ and ′1− to− 0′

bit transitions (switchings) on the address bus of the data memory for LU and
LUG are referred as SLU and SLUG, respectively. Figure 2 shows the generalized
form of the original loop, LU and LUG, where an array ′a′ is initialized with
′value′. Where, value is either a constant or a variable stored in CPU register.
Let, data type be the type of data stored in the array ′a′, data type may be char,

86 S. Pyne and A. Pal

register int i;
data type a[n];
for(i = 0; i < n; i++)

{
a[i] = value;

}
(a) Original Loop

register int i;
data type a[n];
for(i = 0; i < n; i = i+ uf)

{
a[i] = value;
a[i+ 1] = value;
a[i+ 2] = value;
a[i+ 3] = value;
· · ·
a[i+ uf − 2] = value;
a[i+ uf − 1] = value;

}
(b) LU

register int i;
data type a[n];
for(i = 0; i < n; i = i+ uf)

{
a[i] = value;
a[i+ 1] = value;
a[i+ 3] = value;
a[i+ 2] = value;
· · ·
a[i+ uf

2 + 1] = value;

a[i+ uf
2] = value;

}
(c) LUG

Fig. 2. Generalized form of the original loop, LU and LUG

int, long int, float, double, etc. Each element belonging to a data type consumes
sizeof(data type) bytes of memory space, where sizeof(data type) is a power of
2. Let, base address(a) be the base address or the starting address of the array
′a′. Let, b be obtained by shifting base address(a) log2sizeof(data type) bits
right. The value of b signifies the portion (bits) of the address of array elements
involved in switching activity. The log2sizeof(data type) least significant bits
(lsbs) of the address of the array elements are not involved in switching activity,
and remain same for all elements of the array. Let, ′a′ be an array of n = 2α

elements and uf = 2β be the loop unrolling factor, where α ≥ β and α, β
are natural numbers. The unrolled loop iterates, n

uf = 2α−β = 2γ times. The
expressions for SLU and SLUG are derived in sections 2.2 and 2.3, respectively,
considering base address(a) = 0 and n is divisible by uf .

2.2 Derivation of SLU

SLU is dependent on intra-iteration switching (SLU intra) and inter-iteration
switching (SLU inter). So, SLU can be written as shown in equation (1)

SLU = SLU intra + SLU inter (1)

SLU intra is the total number of ′0− to− 1′ and ′1− to− 0′ bit transitions on the
address bus of the data memory, which takes place due to the memory address
references of the elements of array ′a′, i.e. a[i], a[i+1], ..., a[i+uf−2], a[i+uf−1]
(in (i

uf + 1)th iteration, where, 0 ≤ i < n and i is a multiple of uf), within the
body of the unrolled loop. For each iteration β lsbs of b follows the sequence
0, 1, 2, 3, · · · , uf−2, uf−1. So, SLU intra can be written as shown in equation (2)

SLU intra =
n

uf
× tβ (2)

where tβ is the number of intra-iteration switchings per iteration. tβ can be
expressed by the recurrence relation as shown in equation (3)

tβ = 2× tβ−1 + β, for β > 1 , and t1 = 1 (3)

Energy Efficient Array Initialization Using Loop Unrolling 87

The solution of the recurrence relation in equation (3) is shown in equation (4)

tβ = 2β+1 − β − 2 (4)

Substituting equation (4) in equation (2) SLU intra is obtained in equation (5)

SLU intra =
n

uf
× (2β+1 − β − 2) =

n

uf
× (2× uf − log2uf − 2) (5)

Let, icurr and inext be the values of i in the current and next iterations,

2
3
4
5
6
7
8

0
16
32
48
64
80
96
112

16
32
48
64
80
96
112
128

0000 1111 0001 0000
0001 1111 0010 0000
0010 1111 0011 0000
0011 1111 0100 0000
0100 1111 0101 0000
0101 1111 0110 0000
0110 1111 0111 0000
0111 1111 1000 0000

0000 1000 0001 0000
0001 1000 0010 0000
0010 1000 0011 0000
0011 1000 0100 0000
0100 1000 0101 0000
0101 1000 0110 0000
0110 1000 0111 0000
0111 1000 1000 0000

5
6
5
7

6
5
8

3
2
4
2
3
2
5

5

2
Iteration icurr inext

ba[icurr+uf−1] ba[inext] �Switching
b
a[icurr+

uf
2] ba[inext] �Switching

Inter-iteration bit transition for LU Inter-iteration bit transition for LUG

1

Fig. 3. Inter-iteration switching on the address bus of data memory for first eight
iterations of LU and LUG in Fig. 2 (b) and (c), respectively, where, uf=16 and
base address(a) = 0

(1, β + 1)
(2, β + 2), (3, β + 1)
(4, β + 3), (5, β + 1), (6, β + 2), (7, β + 1)
(8, β + 4), (9, β + 1), (10, β + 2), (11, β + 1), (12, β + 3), (13, β + 1), (14, β + 2), (15, β + 1)

(2γ−1, β + γ − 1 + 1), (2γ−1 + 1, β + 1), · · · , (2γ − 2, β + 2), (2γ − 1, β + 1)
(2γ−2, β + γ − 2 + 1), (2γ−2 + 1, β + 1), · · · , (2γ−1 − 2, β + 2), (2γ−1 − 1, β + 1)

(Iteration(η), �Switching)

Iteration Range
1
2 to 3
4 to 7
8 to 15

2γ−2 to 2γ−1 − 1

2γ−1 to 2γ − 1

Total �Switching
σ1 = β + 1
σ2 = β + 2 + β + 1 = 2× σ1 + 1
σ3 = β + 3 + β + 1 + β + 2 + β + 1 = 2× σ2 + 1
σ4 = 2× σ3 + 1

σγ−1 = 2× σγ−2 + 1
σγ = 2× σγ−1 + 1

= 20 × β + 21 − 1
= 21 × β + 22 − 1
= 22 × β + 23 − 1
= 23 × β + 24 − 1

= 2γ−2 × β + 2γ−1 − 1
= 2γ−1 × β + 2γ − 1

(a) Inter-iteration switching after each iteration from iteration 1 to iteration 2γ − 1

(b) Total inter-iteration switching in mentioned iteration ranges

· · ·

· · · · · · · · ·

Fig. 4. Inter-iteration switching on the address bus of data memory for LU in Fig. 2(b),
where, base address(a) = 0

88 S. Pyne and A. Pal

respectively. Where, inext = icurr+uf . SLU inter is the total number of ′0−to−1′

and ′1 − to − 0′ bit transitions on the address bus of the data memory, which
takes place due to the last memory address reference (of a[icurr+uf − 1]) in the
(i
uf +1)th iteration (current iteration), and the first memory address reference (of

a[inext]) in the (i
uf + 2)th iteration (next iteration). Let, ba[icurr+uf−1], ba[inext],

ba[icurr+
uf
2] be the portion (bits) of the address of array elements a[icurr+uf−1],

a[inext], a[icurr+
uf
2], rescpectively, which are involved in inter-iteration switching

activity. Figure 3 shows the inter-iteration switching on the address bus of data
memory for first eight iterations of LU and LUG in Fig. 2 (b) and (c), respec-
tively, where, uf=16 and base address(a) = 0. SLU inter can be obtained from
Fig. 4. Figure 4(a) shows the inter-iteration switchings for each iteration (from
iteration 1 to iteration 2γ − 1). In Fig. 4(b) the total inter-iteration switching in
mentioned iteration ranges forms a series whose summation forms the SLU inter .
This can be written as, SLU inter = β × (20 + 21 + 22 + · · · + 2γ−2 + 2γ−1) +
(21 + 22 + 23 + · · ·+ 2γ−1 + 2γ)− γ = β × (2γ − 1) + (2γ+1 − 2)− γ. The final
expression for SLU inter can be written as shown in equation (6).

SLU inter = (log2uf + 2)×
(

n

uf
− 1

)
− log2

n

uf
(6)

Substituting equations (2) and (6) in equation (1), the expression of SLU is

obtained as SLU = n
uf ×(2×uf− log2uf−2)+(log2uf + 2)×

(
n
uf − 1

)
− log2

n
uf .

2.3 Derivation of SLUG

SLUG is dependent on intra-iteration switching (SLUG intra) and inter-iteration
switching (SLUG inter). So, SLUG can be written as shown in equation (7).

SLUG = SLUG intra + SLUG inter (7)

SLUG intra is the total number of ′0−to−1′ and ′1−to−0′ bit transitions on the
address bus of the data memory, which takes place due to the memory address
references of the elements of array ′a′, i.e. a[i], a[i+ 1], a[i+ 3], a[i+ 2], ..., a[i+
uf
2 +1], a[i+ uf

2] (in (i
uf +1)th iteration, where, 0 ≤ i < n and i is a multiple of

uf), within the body of the unrolled loop. For each iteration β lsbs of b follows
the Gray code sequence 0, 1, 3, 2, · · · , uf

2 + 1, uf2 . So, SLUG intra can be written
as shown in equation (8)

SLUG intra =
n

uf
× (uf − 1) (8)

where, (uf − 1) is the intra-iteration switching per iteration due to a Gray code
sequence of address references within the body of the unrolled loop. SLUG inter

is the total number of ′0− to− 1′ and ′1− to− 0′ bit transitions on the address
bus of the data memory, which takes place due to the last memory address
reference (of a[icurr +

uf
2]) in the (i

uf + 1)th iteration (current iteration), and

Energy Efficient Array Initialization Using Loop Unrolling 89

(1, 2)
(2, 3), (3, 2)
(4, 4), (5, 2), (6, 3), (7, 2)
(8, 5), (9, 2), (10, 3), (11, 2), (12, 4), (13, 2), (14, 3), (15, 2)

(2γ−1, γ − 1 + 2), (2γ−1 + 1, 2), · · · , (2γ − 2, 3), (2γ − 1, 2)
(2γ−2, γ − 2 + 2), (2γ−2 + 1, 2), · · · , (2γ−1 − 2, 3), (2γ−1 − 1, 2)

(Iteration(η), �Switching)

Iteration Range
1
2 to 3
4 to 7
8 to 15

2γ−2 to 2γ−1 − 1
2γ−1 to 2γ − 1

Total �Switching
s1 = 2
s2 = s1 + 3× 20 = 2 + 3
s3 = s2 + 3× 21 = 5 + 6
s4 = s3 + 3× 22 = 11 + 12

sγ−1 = sγ−2 + 3× 2γ−3

sγ = sγ−1 + 3× 2γ−2

= 2
= 5
= 11
= 23

= 3× 2γ−2 − 1
= 3× 2γ−1 − 1

(a) Inter-iteration switching after each iteration from iteration 1 to iteration 2γ − 1

(b) Total inter-iteration switching in mentioned iteration ranges

· · ·

· · · · · ·· · · · · ·

Fig. 5. Inter-iteration switching on the address bus of data memory for LUG in
Fig. 2(c), where, base address(a) = 0

the first memory address reference (of a[inext]) in the (i
uf + 2)th iteration (next

iteration). SLUG inter can be obtained from Fig. 5. Figure 5(a) shows the inter-
iteration switchings for each iteration (from iteration 1 to iteration 2γ − 1). In
Fig. 5(b) the total inter-iteration switching in the mentioned iteration ranges
forms a series whose γth term is obtained from the recurrence relation as shown
in equation (9)

sγ = sγ−1 + 3× 2γ−2, for γ > 1 , and s1 = 2 (9)

The solution of the recurrence relation in equation (9) is shown in equation (10)

sγ = 3× 2γ−1 − 1. (10)

The SLUG inter can be obtained from the summation of the series obtained in
Fig. 5(b). This can be written as SLUG inter = 3×(20+21+22+ · · ·+2γ−1)−γ =
3× (2γ − 1)− γ. The final expression for SLUG inter can be written as shown in
equation (11).

SLUG inter = 3×
(

n

uf
− 1

)
− log2

n

uf
(11)

Substituting equations (8) and (11) in equation (7), the expression of SLUG is

obtained as SLUG = n
uf × (uf − 1) + 3 ×

(
n
uf − 1

)
− log2

n
uf . Table 1 compares

SLU and SLUG considering n = 210. For any n, n ≥ uf reduction in SLUG is
minimum (25%) when uf = 22 and maximum (50%) when a loop is totally
unrolled (n = uf). But, total loop unrolling is impractical due to hardware
limitations of the system.

90 S. Pyne and A. Pal

Table 1. Comparision between SLU and SLUG

uf n
uf

SLU SLUG Gain(%)

22 28 2036 1525 25.09
23 27 2036 1270 37.62
24 26 2036 1143 43.86
25 25 2036 1080 46.95
26 24 2036 1049 48.47
210 1 2036 1023 49.75

2.4 Translation to LUG

In section 2.2 and 2.3 the expressions for SLU and SLUG have been derived, re-
spectively, assuming ′0′ as the base address(a). But, in reality when the program
in Fig. 2 will execute, the base address(a) may not be ′0′. The base address(a)
may vary for different executions because it depends on system’s memory man-
ager that allocates space for array a at runtime. So, it is not possible for a
compiler to predict the actual base address base address(a). The present work
considers both b and n are divisible by uf . When the array a is allocated at com-
pile time the compiler does not know the actual base address base address(a),
but knows the relocatable base address of the array, which is an offset address.
The compiler finds a relocatable base address such that the logic values cor-
responding to the intra-iteration switching bits are 0, which implies that b is
divisible by uf . If the array a is allocated in runtime then the dynamic memory
allocation subroutine can be directed to find a base address such that b divisible
by uf .

3 Experimental Results

The present work is evaluated on five benchmark programs on XEEMU sim-
ulator [12]. XEEMU is a power-performance simulator which simulates Intel’s
XScale processor. Each benchmark program (as described in Table 3) have array
initialization loops (as in Fig. 2(a)) which are translated to LUG (as in Fig. 2(c)).
Table 2 shows the reduction in switching activity, execution time, energy con-
sumption by the translated loop (ETL) and energy drawn by the address bus
of dl1-cache (Edl1−addr bus) for the programs in Fig. 1. Since Edl1−addr bus is di-
rectly propotional to SLUG they experience equal amount of reduction. Table 4
shows the time taken and energy consumed by the benchmark programs having
the original loop (Org), LU , and LUG. SCount and CSort with LUG achieves
more gain in total energy (ETot) because their array initialization time (Tinit)
is much longer than computation time (Tcomp). KS, TI and DFS with LUG
have less gain in ETot because their Tinit is much lesser than Tcomp. Thus, LUG
is more applicable for the programs having Tinit ≥ Tcomp.

Energy Efficient Array Initialization Using Loop Unrolling 91

Table 2. Comparision of Switching activity, Time and Energy consumption of the
programs in Fig. 1

Program Metric Value Metric LU’s Gain LUG’s Gain LUG’s Gain
wrt Org (%) wrt Org (%) wrt LU (%)

Original �Switching 1999986 �Switching - - -
(Org) Time(ms) 36.90 Time - - -

ETL(mJ) 28.10 ETL - - -
Edl1−addr bus(mJ) 5.69 Edl1−addr bus - - -

Loop Unrolling �Switching 1999986 �Switching 0.0 - -
(LU) Time(ms) 27.60 Time 25.20 - -

ETL(mJ) 19.90 ETL 29.18 - -
Edl1−addr bus(mJ) 5.69 Edl1−addr bus 0.0 - -

Loop Unrolling �Switching 1124989 �Switching - 43.75 43.75
with partial Time(ms) 27.60 Time - 25.20 0.0
Gray code ETL(mJ) 16.70 ETL - 40.56 16.08
sequence (LUG) Edl1−addr bus(mJ) 3.2 Edl1−addr bus - 43.75 43.75

Table 3. Benchmark Programs

Benchmark Description Tinit Tcomp

Symbol Count Finds frequency of symbols in a string of size ω = 103, each
(SCount) symbol belongs to a set of n = 220 symbols. uf = 24 O(n) O(ω)

Counting Sort A linear time sort on an array of m = 103 integers, each integer lies
(CSort) between 0 and n = 220. uf = 24 O(n) O(m)

0-1 Knapsack Given costs and weights of r = 3 types of items, fill a knapsack of
(KS) capacity n = 106 such that the sum of cost of the elements to fill it O(n) O(r × n)

is maximum. uf = 24

Treasure Given an n× n grid, each coordinate of the grid has a cost, staring
Island from the lower-left corner (1, 1) one has to reach upper-right corner
(TI) (n, n), either by moving upward or rightward in each step, such O(n) O(n2)

that the cost of the path traversed is maximum. n = 29, uf = 24

Depth First Depth First Traversal of a randomly generated graph with n = 210

Search (DFS) vertices and e = O(n2) edges. uf = 24 O(n) O(max{n, e})

4 Conclusion

The present work introduces a software based approach to reduce energy con-
sumed on the address bus of the data memory. This is done by reducing switching
activity on the address bus of the data memory, with the help of LUG. Transla-
tion of a loop with array initialization to LUG is introduced. The expressions for
switching activity on the bus for LU and LUG are derived. The proposed trans-
lation technique finds a relocatable base address of the array so that the partial
Gray code sequence is maintained, without any energy-performance overhead
and achieves a considerable amount of energy reduction without any perfor-
mance loss. The proposed method achieves 25-50% reduction in switching activ-
ity on the address bus of on-chip data memory. The proposed work is evaluated
on five benchmark programs. LUG is more applicable for the programs having

92 S. Pyne and A. Pal

Table 4. Comparision of Time and Energy consumption of the benchmark programs

Benchmark Metric Org LU LUG Metric LU ’s Gain LUG’s Gain LUG’s Gain
wrt Org (%) wrt Org (%) wrt LU (%)

SCount T ime (ms) 40.6 29.3 29.3 T ime 27.83 27.83 0.0
ETot (mJ) 30.7 21.1 17.7 ETot 31.27 42.34 16.11
ETL (mJ) 30.5 20.9 17.5 ETL 31.47 42.62 16.26

CSort T ime (ms) 160.7 142.2 142.2 T ime 11.51 11.51 0.0
ETot (mJ) 116.7 102.2 99.7 ETot 12.42 14.46 2.44
ETL (mJ) 36.6 22.1 19.5 ETL 39.61 46.72 11.76

KS Time (ms) 766.1 751.1 751.1 T ime 1.95 1.95 0.0
ETot (mJ) 576.9 564.1 559.7 ETot 2.21 2.98 0.78
ETL (mJ) 52.0 39.3 35.0 ETL 24.42 32.69 10.94

TI T ime (ms) 124.5 120.1 120.1 T ime 3.53 3.53 0.0
ETot (mJ) 91.2 88.0 87.4 ETot 3.5 4.16 0.68
ETL (mJ) 15.4 12.3 12.1 ETL 20.12 21.42 1.62

DFS T ime (ms) 246.5 246.4 246.4 T ime 0.04 0.04 0.0
ETot (mJ) 180.23 180.212 180.211 ETot 0.01 0.01 0.0
ETL (mJ) 0.0583 0.0499 0.0466 ETL 14.40 20.06 6.61

Tinit ≥ Tcomp. The future work will investigate on other software techniques to
reduce switching activity on address, data and control bus of instruction and
data memory.

References

1. Caignet, F., Delmas-Bendhia, S., Sicard, E.: The Challenge of Signal Integrity in
Deep-submicrometer CMOS Technology. Proceedings of the IEEE 89(4), 556–573

2. Sylvester, D., Hu, C.: Analytical Modeling and Characterization of Deepsubmi-
crometer Interconnect. Proceedings of the IEEE 89(5), 634–664

3. Victor, B., Keutzer, K.: Bus Encoding to Prevent Crosstalk Delay. In: Proceedings
of ICCAD, pp. 57–63 (2001)

4. Tiwari, V., Malik, S., Wolfe, A.: Compilation Techniques for Low Energy: An
Overview. In: Proceedings of Symposium on Low-Power Electronics, San Diego,
CA (October 1994)

5. Su, C.-L., Tsui, C.-Y., Despain, A.M.: Reducing Power Consumption at Control
Path of High Performance Microprocessors. IEEE Design and Test of Computers
(December 1994)

6. Lee, C., Lee, J.K., Hwang, T.T.: Compiler Optimization on Instruction Schedul-
ing for Low Power. In: Proceedings of 13th International Symposium on System
Synthesis, pp. 55–60 (2000)

7. Lee, C., Lee, J.K., Hwang, T.T., Tsai, S.: Compiler Optimization on VLIW In-
struction Scheduling for Low Power. ACM Transactions on Design Automation of
Electronic Systems (TODAES) 8(2), 252–268

8. Parikh, A., Kim, S., Kandemir, M., Vijaykrishnan, N., Irwin, M.J.: Instruction
Scheduling for Low Power. Journal of VLSI Signal Processing 37(1), 129–149

Energy Efficient Array Initialization Using Loop Unrolling 93

9. Shao, Z., Xiao, B., Xue, C., Zhuge, Q., Sha, E.H.M.: Loop scheduling with timing
and switching-activity minimization for VLIW DSP. ACM Transactions on Design
Automation of Electronic Systems (TODAES) 11(1), 165–185

10. Shin, D., Kim, J., Chang, N.: An Operation Rearrangement Technique for Low-
Power VLIW Instruction Fetch. In: Proceedings of DATE, p. 809 (2001)

11. Shao, Z., Xiao, B., Xue, C., Sha, E.H.M.: Algorithms and analysis of scheduling
for loops with minimum switching. Int. J. Computational Science and Engineer-
ing 2(1/2)

12. Herczeg, Z., Kiss, Á., Schmidt, D., Wehn, N., Gyimóthy, T.: XEEMU: An Improved
XScale Power Simulator. In: Azémard, N., Svensson, L. (eds.) PATMOS 2007.
LNCS, vol. 4644, pp. 300–309. Springer, Heidelberg (2007)

	Energy Efficient Array Initialization Using Loop Unrolling with Partial Gray Code Sequence
	Introduction
	Related Work

	Present Work
	Basic Approach
	Derivation of SLU
	Derivation of SLUG
	Translation to LUG

	Experimental Results
	Conclusion

