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Branch Target Buffer (BTB) plays an important role for pipelined processors in branch prediction
during the execution of loops, if-then-else, call-return, and multiway branch statements. It has been
observed that 20% of instructions in a program are related to branch. Access to BTB consumes 10%
of total energy consumption of a program in execution. The present work introduces the use of K–d
tree and pattern matcher to generate efficient code, i.e., lesser execution time, for multiway branch.
However, instead of enhancing performance, Voltage Frequency Scaling (VFS) can be applied to
achieve energy efficiency without degradation in performance. The present work is evaluated on a
wide range benchmark programs. The BTB energy saving in the present work lies in the range 20%
to 80% with small improvement performance as well. The total energy reduction is in the range
3–12%.

Keywords: Multiway Branch, K–d Tree, Pattern Matcher, Voltage Frequency Scaling, Branch
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1. INTRODUCTION

The present work introduces some techniques to reduce
Branch Target Buffer (BTB) energy consumption through
efficient translation of multiway branch. Low energy code
generation is an important aspect of modern compilers.1

It has been observed that 20% of instructions in a pro-
gram are branch instructions.2 BTB consumes 10% of total
energy consumption of a program in execution.10�11

In most of the high-level languages, the construct ‘Mul-
tiway Branch’ (MB) is widely used for the selection of
one out of several possible blocks of code to be executed.
For example, it is the case statement in Pascal, it is the
switch statement in C and it is the SELECT statement
in Fortran 90. Figures 1(a) and (b) shows the multiway
branch as switch and if-then-else ladder, respectively, con-
taining n branch destinations. Where, BCj is the block
of code at jth branch destination (BDj �, 1 ≤ j ≤ n. One
or more index variables form an index expression. The
index expression should match with the jth matching value
(valuej � to jump to BDj and execute BCj .
In modern processors Dynamic Branch Prediction is

done and Branch Target Buffer (BTB) is commonly
used to improve the performance of execution of branch

∗Author to whom correspondence should be addressed.
Email: sumantapyne@gmail.com

instructions. Dynamic Branch Prediction uses the informa-
tion about taken or not taken branches gathered at run-time
to predict the outcome of a branch. BTB is a small cache
memory used to hold the branch history and the target
addresses corresponding to different branch instructions.
There are three possible alternatives for the implemen-

tation of multiway branch. The three implementations are
based on the way the index expression with valuej is
searched to find out BDj . These are linear search, binary
search or hashing.3�4 For a given MB the compiler imple-
ments either Blinear , Bbinary, or Bhash on the basis of value(s)
of index expression(s). Blinear , Bbinary, and Bhash requires
O�n�, O(log2n� and O�1� BTB accesses, respectively, to
find out the target address of the BDj . The first choice
of the compiler is to implement a Bhash. The generation
of Bhash depends on the possibility to find a hash func-
tion by analyzing the values matched by the index expres-
sion(s). This may not be possible for every MB. But it is
always possible to generate a Bbinary. However, the simplest
implementation is the Blinear . In case of if-then-else lad-
ders, most of the modern compilers generate Blinear , when
multiway branch decision depends on more than one index
expressions. The present work shows that it is possible
to implement Bhash or Bbinary for such if-then-else ladders.
It introduces the utility of k–d tree6 to generate Bbinary.
Many modern programming languages like C# and Ruby
supports MB where the index expression values are strings.
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Fig. 1. Equivalent forms of multiway branch.

The present work helps to generate efficient code called
Bpattern for such MB using pattern matching. It considers a
source code containing m MBs and translates them to m
TMBs (Translated Multiway Branch) as shown in Figure 2.
The MBl is a based on Blinear , on the other hand TMBl

utilizes either a Bbinary or a Bhash.
As TMBl utilizes either a Bbinary or a Bhash, its execu-

tion time is smaller than that of Blinear . However, instead
of enhancing performance, it is possible to reduce energy
consumption by scaling down the voltage along with fre-
quency, commonly known as Voltage and Frequency Scal-
ing (VFS). However, the processor on which the code
is executed should be a special type of processor that
can operate at different voltages and frequencies, such as
Strong ARM 1100. Here, we have used Intel’s XScale pro-
cessor, which works on nine different voltage–frequency
(v� f � pairs and supports VFS. Table I shows the (v� f �
pairs supported by XScale. The (v1� f1� is the peak (v� f �
pair and (v9� f9� is the least. The BTB Energy Reduc-
tion Algorithm with VFS Algorithm takes MBl as input
and generates TMBl as output, for 1 ≤ l ≤ m. The VFS
Algorithm scales down the (v� f � to minimize energy con-
sumed by MB and the execution of TMB finishes within
the deadline, i.e., Ttranslated ≤ deadline. Where, deadline =
Tlinear is execution time of MB which is a Blinear . Ttranslated
is the execution time of TMB which is based on either
Bbinary or Bhash. It may be noted that the voltage–frequency

Fig. 2. Agenda of the present work.

Table I. Voltage–frequency pairs supported by XScale.

i vi (Volt) fi (MHz)

1 1.5 733
2 1.4 666
3 1.3 600
4 1.2 533
5 1.1 466
6 1.1 400
7 1.0 333
8 1.0 266
9 1.0 200

pairs supported XScale processor have limited number of
discrete values. As a consequence, the chosen voltage–
frequency pair for a particular TMB may not fully utilize
the slack, i.e., the difference between (Tlinear − Ttranslated�.
This can be used to achieve small enhancement in perfor-
mance of the TMB along with energy efficiency provided
by the chosen voltage–frequency pair. This work is appli-
cable to MB where the estimation of time taken and energy
consumed to jump to BDj and execute BCj can be done at
compile time.
The proposed scheme is simulated on XEEMU,7�8

which simulates Intel’s XScale processor. The related
works are discussed in Section 2. Section 3 illustrates the
proposed scheme with illustrative examples and explains
the application of VFS. Section 4 describes the experimen-
tal setup and evaluates the proposed scheme with bench-
mark programs. Section 5 concludes the present work with
its future scopes.

2. RELATED WORKS

The past works on BTB energy/energy reduction were
implemented either by hardware or by software. Both tech-
niques concentrated on the reduction of BTB access.

2.1. Hardware Techniques

In Ref. [9] Deris et al. introduced Speculative BTB Access
(SABA), to identify cycles where there is no control
flow instruction among those fetched, at least one cycle
in advance. By identifying such cycles and eliminating
unnecessary BTB accesses BTB energy reduction varies
between 6–15% with an average performance loss of 1.5%.
In Ref. [10] the non-necessary accesses to BTB are

reduced by taking into account this fact that there exists
distances between different consecutive branch instruc-
tions. This method decides the access to BTB by a constant
value and a counter. After an instruction entrance, the BTB
is accessed if the counter is zero, and if the instruction is
a branch instruction and exists in the BTB the counter is
reset. The approach achieves BTB energy saving by 25%.
In Ref. [11] the authors introduced the use of a static

BTB that achieves the similar performance to the tradi-
tional branch target buffer but which eliminates most of
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the state updates thus reducing the energy consumption
of the BTB significantly. They also introduce a correla-
tion based static prediction scheme into a dynamic branch
predictor so that those branches that can be predicted stat-
ically or can be correlated to the previous ones will not
go through normal prediction algorithm. This reduces the
activities and conflicts in the branch history table. It saves
43.9% energy of the branch prediction unit without degra-
dation of performance.
Hu et al. in Ref. [12] proposed two approaches to reduce

BTB accesses. The first approach expects the distance of
every two dynamic branch instructions to be a constant N ,
where N can be statically profiled, and forces BTB to
response for N instructions after a BTB hit. The sec-
ond approach dynamically predicts the address of the next
branch instruction, and accesses BTB only on the predicted
address. This reduces 22.033% of useless BTB access.
In Ref. [13] the authors studied two mechanisms that

reduce dynamic energy dissipation. The first one is a
serial-BTB configuration. The second mechanism is the
filter-BTB, a combination of a low energy counting Bloom
filter placed in front of a conventional BTB. They also
studied the effect of placing a small 32 entry direct-
mapped BTB, functioning as a bypass, in parallel with the
first two mechanisms. The filter-BTB reduces the number
of lookups relative to a conventional BTB and the dynamic
energy dissipated. The serial-BTB variant only accesses
the data array of the BTB upon a hit, therefore for most
of the accesses the actual energy dissipated is only what is
dissipated by accessing the tag array. The bypass is used
in parallel to either the filter-BTB or the serial-BTB and
reduces the performance cost by providing a low latency
response in case of a hit. By integrating these mechanisms
into a BTB design the scheme achieved an average reduc-
tion of 51% in the dynamic energy dissipation of the BTB.
These benefits come at a small performance cost that is on
average slightly less than 1.2%.
In Ref. [14] Kahn et al. investigated three architectural

methods to reduce the leakage energy dissipated by the
BTB data array. The first method (called here window)
periodically places the entire BTB data array into drowsy
mode. A drowsy entry is woken up by the first access
in the time interval and remains active for the remainder
of the interval (window). There is an associated perfor-
mance loss which is related to the size of the window,
since there is a delay when a specific line must be woken
up. The second method, awake line buffer (ALB), limits
the number of active BTB entries to a predetermined max-
imum. While this reduces energy dissipation it comes with
a performance penalty that is relative to the size of the
buffer. ALB, however, reduces the energy dissipation of
the data array more than the window method. The third
method, 2-level ALB (2L-ALB), uses a two level buffer
with the identical number of combined entries as the pre-
vious method. This method exploits the fact that many
branches operate numerous times in a fixed sequence.

By predicting the next BTB access, 2L-ALB achieves fur-
ther reduction in leakage energy without incurring any fur-
ther performance loss, compared to the ALB method.
Levison et al. in Ref. [15] proposed two BTB designs

that fit the tight energy budgets of embedded processors.
In the first design, the energy consumption of a single
BTB access is reduced by reading only the lower part of
the predicted target address bits. This design has energy
savings of up to 25% dynamic energy, with effectively
no performance degradation. In the second design, they
avoid redundant BTB accesses to the same set by using a
small buffer that holds the most recently accessed set. This
design results in 75% dynamic energy savings at the cost
of up to 0.64% system slowdown in a 2-way BTB, and
80% dynamic energy savings at the cost of up to 0.58%
system slowdown in a 4-way BTB.
In Ref. [16] Baniasadi et al. introduced branch predictor

prediction (BPP) which reduces branch prediction energy
dissipation by selectively turning on and off two of the
three tables used in the combined branch predictor BPP
which relies on a small buffer that stores the addresses and
the sub-predictors used by the most recent branches exe-
cuted. They refer to this buffer to decide if any of the sub-
predictors and the selector could be gated without harming
performance. They show that on the average and for an
8-way processor, BPP can reduce branch prediction energy
dissipation by 28% and 14% compared to non-banked and
banked 32 k predictors respectively. This comes with a
negligible impact on performance (1% max).
The authors in paper Ref. [17] proposed to use the

loop cache to reduce static energy consumption as well
as dynamic one. They combined it with CMOS circuits
having sleep mode, and thus instruction cache can go to
sleep mode when the loop cache is active. They also apply
the technique to branch target buffer, and its static and
dynamic energy consumption is reduced by up to 40.4%
and 40.7%, respectively.
In Ref. [18] Tomas et al. analyzes at what extent tag

and target address lengths could be reduced to benefit both
dynamic and static energy consumption, silicon area, and
access time, while sustaining performance. The tag length
and the target address could be reduced by about a half and
one byte, respectively with no performance losses. BTB
energy savings can reach about 35%.
Levison et al. in Ref. [19] propose a novel micro-

architectural method referred to as Shifted-Index BTB
with a Set-Buffer, which reduces both dynamic and static
energy. It achieves up to 80% reduction in dynamic energy
is achieved at the cost of up to 0.64% system slowdown.
58% reduction is static energy is also achieved by apply-
ing low-leakage energy techniques that mesh well with the
Set-Buffer design.
In Ref. [20] Deris et al. introduce Branchless Cycle Pre-

diction (BLCP) which predicts cycles where there is no
branch instruction among those fetched, at least one cycle
in advance. They avoid accessing BTB during such cycles.

J. Low Power Electron. 8, 1–20, 2012 3



Branch Target Buffer Energy Reduction Through Efficient Multiway Branch Translation Techniques Sumanta Pyne and Ajit Pal

By using BLCP, it is possible to reduce BTB energy dissi-
pation by 32% while paying a negligible performance cost
(average: 0.2%).
The paper Ref. [21] proposes an energy-aware branch

predictor by accessing the BTB selectively. To enable the
selective access to the BTB, the PHT (Pattern History
Table) in the proposed branch predictor is accessed one
cycle earlier than the traditional PHT if the program is exe-
cuted sequentially without branch instructions. As a side
effect, two predictions from the PHT are obtained through
one access to the PHT, resulting in more energy savings.
In the proposed branch predictor, if the previous instruc-
tion was not a branch and the prediction from the PHT is
untaken, the BTB is not accessed to reduce energy con-
sumption. If the previous instruction was a branch, the
BTB is always accessed, regardless of the prediction from
the PHT, to prevent the additional delay/accuracy decrease.
The proposed branch predictor reduces the energy con-
sumption by 29–47% with little hardware overhead, not
incurring additional delay and never harming prediction
accuracy.
Briejer et al. in Ref. [22] proposed energy-efficient

dynamic branch predictors for the Cell SPE, which
normally depends on compiler-inserted hint instructions
to predict branches. The prediction scheme predecodes
instructions when they are fetched from the local store
and accesses the BTB only for branch instructions, thereby
saving energy compared to conventional dynamic predic-
tors that access the BTB for every instruction. The authors
also introduce branch warning instructions which initiate
branch prediction before the actual branch instruction is
fetched. This allows fetching the instructions starting at
the branch target and thus completely removes the branch
penalty for correctly predicted branches. For a 256-entry
BTB, a speedup of up to 18.8% is achieved. The energy
consumption of the branch prediction schemes is estimated
at 1% or less of the total energy dissipation of the SPE and
the average energy-delay product is reduced by up to 6.2%.

2.2. Software Techniques

Software techniques like loop unrolling and loop fusion
reduce BTB access as well as BTB energy consumption.
In Ref. [23] Yang et al. study the impact of loop opti-
mizations such as loop unrolling and software pipelin-
ing in terms of performance and energy tradeoffs. Zhu
et al. in Ref. [24] consider the effect of loop fusion on
energy. Loop fusion combines corresponding iterations of
different loops. It decreases program run time increasing
instruction per cycle (IPC), by reducing loop overhead.
The fusion-induced improvements in program energy are
slightly smaller than improvements in program run time.
If IPC is held constant, however, by reducing frequency
and voltage-particularly on a processor with multiple
clock domains then energy improvements may significantly
exceed run time improvements. They demonstrate energy

savings ranging from 7–40%, with run times ranging from
1% slowdown to 17% speedup.

3. PRESENT WORK

The present work proposes BTB Energy Reduction Algo-
rithm which takes MBl as input and produces TMBl as out-
put. Figure 3(a) shows the format of an MBl. Here MBl is
a Blinear enclosed in a loop, which executes p times, where
p ≥ 1. Blinear contains a multiway branch construct having
n branch destinations. In other words, Blinear can be consid-
ered as an if-then-else ladder having n branch destinations.
The proposed scheme applies VFS. The VFS_Algorithm
finds the opportunity to scale down (v� f ) of TMBl. Table II
shows the two cases of VFS algorithm. These cases are
based on the input dependency of p, where, p is the num-
ber of times the MBl will execute. The value of p is input
dependent means p’s value is obtained at runtime as an
input. If p is input independent, then its value is always
a constant. The proposed scheme considers two different
forms of VFS algorithm. Figures 3(b) and (c) show the for-
mat of the TMB produced by different forms of VFS algo-
rithm. The variable min_vf _pair (1 < min_vf _pair ≤ 9)
in Figure 3(c) implies that execution of TMB at (vmin_vf _pair ,
fmin_vf _pair � will minimize the energy consumed by it.
In Figure 3(c) P�min_vf _pair�, P�min_vf _pair-1�,
P�min_vf _pair-2�� � � � � P �2� are the minimum values

Fig. 3. Format of the multiway branch (MB) and translated multiway
branch (TMB) codes.
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Table II. Input dependency.

Case p VFS_Algorithm

A Input independent VFS_Algorithm_A
B Input dependent VFS_Algorithm_B

of p required to execute TMBl at voltage–frequency
pairs (vmin_vf _pair � fmin_vf _pair �, �vmin_vf _pair-1� fmin_vf _pair-1��
�vmin_vf _pair-2� fmin_vf _pair-2�� � � � � �v2� f2�� respectively. The
subroutines setVoltage and setFrequency helps to scale up
and scale down the (v� f � pair at runtime.

3.1. Illustrative Examples

To demonstrate the efficacy of the approach, three illustra-
tive examples are provided in this section. In the illustra-
tive example EX1 the MB can be implemented as Blinear ,
Bhash, or Bbinary. For the illustrative example EX2 com-
pilers generate Blinear . It is hard to implement Bhash for
EX2. In this case, k–d tree6 is used to implement Bbinary

for EX2. The illustrative example 3 EX3 deals with an
MB where the index variables and values are strings. The
branching takes place on string matching. The compilers
generate Blinear for such MBs. Here it introduces the use
of pattern matcher to generate time and energy efficient
Bpattern code for EX3. The assembly language used in this
paper is based on the instruction set of XScale processor.
The assembly language codes for Blinear and Bhash are gen-
erated by xscale-gcc-elf compiler. The Bbinary and Bpattern

codes are generated by traversal of k–d tree and pattern
matcher graph, respectively. The experimental values in
Tables III–V are obtained by executing the possible Blinear ,
Bhash, Bbinary and Bpattern implementations of the illustra-
tive examples on XEEMU simulator. These tables use the

Table III. EX1 results.

EX1 code Metric Value Gain (%) BTB parameter Value

Blinear at (v1� f1� Time (sec) 0.0832 − Total branches 8999968
Total energy (J) 0.0616 − Miss predictions taken 56
BTB energy (�J) 353.08 − Miss predictions not taken 18

Non prediction taken 11
Bhash at (v1� f1� Time (sec) 0.0450 45.91 Total branches 3000116

Total energy (J) 0.0338 45.12 Miss predictions taken 36
BTB energy (�J) 117.67 66.67 Miss predictions not taken 4

Non prediction taken 81
Bhash at (v5� f5� Time (sec) 0.0707 15.02 Total branches 3000116

Total energy (J) 0.0169 72.56 Miss predictions taken 36
BTB energy (�J) 47.71 86.48 Miss predictions not taken 4

Non prediction taken 81
Bbinary at (v1� f1� Time (sec) 0.0477 42.66 Total branches 7000076

Total energy (J) 0.0359 41.72 Miss predictions taken 49
BTB energy (�J) 274.62 22.22 Miss predictions not taken 12

Non prediction taken 11
Bbinary at (v5� f5� Time (sec) 0.0750 9.85 Total branches 7000076

Total energy (J) 0.0179 70.94 Miss predictions taken 49
BTB energy (�J) 111.31 68.47 Miss predictions not taken 12

Non prediction taken 11

following metrics to compare the different energy and per-
formance implementations of the illustrative examples:
(i) ‘Time’ is the total execution time taken of the program
in seconds (sec),
(ii) ‘Total Energy’ is the energy consumed by the program
in Joules (J),
(iii) ‘BTB Energy’ is the energy consumed by the BTB
during the execution of the program micro Joules (�J).

The tables also show the performance and energy gained
by Bhash, Bbinary and Bpattern implementations with respect
to Blinear in percentage (%). The tables also compare the
following BTB parameters:
(i) ‘Total branches’ is the total number of branch instruc-
tions executed in the program,
(ii) ‘Miss prediction taken’ is the total number wrong pre-
dictions taken by the Branch Prediction Unit (BPU) when
a branch takes place,
(iii) ‘Miss prediction not taken’ is the total number wrong
predictions taken by the BPU when no branch takes place,
(iv) ‘Non prediction taken’ is the total number of branches
taken when no predictions are taken by the BPU because
the BTB has no entry for the branch history and target
addresses of the corresponding branch instructions.

3.1.1. Illustrative Example 1 (EX1)

EX1 considers a simple MB which can implemented as
if-then-else and switch-case, as shown in Figures 4(a)
and (b), respectively. Here, ‘marks’ is the index variable
that forms the index expression. The matching value set
for index variable marks is value (marks) = {4, 5, 6, 7,
8, 9, 10}. The GCC compiler xscale-gcc-elf translates the
source code in Figure 4(a) to Blinear code. For the source
code in Figure 4(b) the xscale-gcc-elf generates Bhash code.
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Table IV. EX2 results.

EX2 code Metric Value Gain (%) BTB parameter Value

Blinear at (v1� f1� Time (sec) 0.0560 Total branches 8008955
Total energy (J) 0.0411 – Miss predictions taken 1085
BTB energy (�J) 314.225 – Miss predictions not taken 56

Non prediction taken 11
Bbinary at (v1� f1� Time (sec) 0.0273 51.25 Total branches 5008198

Total energy (J) 0.0213 48.17 Miss predictions taken 3071
BTB energy (�J) 196.578 37.44 Miss predictions not taken 2040

Non prediction taken 11
Bbinary at (v5� f5� Time (sec) 0.0430 23.21 Total branches 5008198

Total energy (J) 0.0106 74.20 Miss predictions taken 3071
BTB energy (�J) 79.682 74.64 Miss predictions not taken 2040

Non prediction taken 11

This depends on the ability of the compiler to find a pos-
sible hash function. Sometimes it is not possible to find a
hash function. However, it is always possible to generate
a Bbinary code for a MB. The MB in EX1 can be trans-
lated to Bbinary code as shown in Figure 19, in Appendix A.
Figure 5 shows the binary search tree formed with all pos-
sible values to be matched with index variable. Bbinary is
generated by preorder traversal of the binary search tree.
For a MB with n branch destinations belonging to the
class of EX1, Blinear will take O�n� time to jump to a
branch destination. While Bhash and Bbinary will take O�1�
and O(log2n� time, respectively. The Blinear , Bhash, and
Blinear codes of EX1 are shown in the Appendix A. Table
III compare the energy and performance of the different
implementations of the EX1 and show the values of the
BTB parameters. It also shows the energy and performance
gained by Bhash and Bbinary with respect to Blinear . The exe-
cution time of Blinear at (v1,f1� is considered as the deadline
for Bhash and Bbinary to finish execution. VFS is applied to
Bhash and Bbinary to minimize energy consumption.

3.1.2. Illustrative Example 2 (EX2)

The MB in Figure 6 is an if-then-else ladder which
performs a two-dimensional range testing. The if-then-
else ladder contains three branch destinations BD1, BD2

and BD3 for the blocks of code ‘z = 1,’ ‘z = 2’ and

Table V. EX3 results.

EX2 code Metric Value Gain (%) BTB parameter Value

Blinear at (v1� f1� Time (sec) 0�7771 – Total branches 71933373
Total energy (J) 0�5909 – Miss predictions taken 3866738
BTB energy (�J) 2944.25 – Miss predictions not taken 3666680

Non prediction taken 8600003
Bpattern at (v1� f1� Time (sec) 0�6695 13�84 Total branches 33133409

Total energy (J) 0�4969 15�90 Miss predictions taken 3466753
BTB energy (�J) 1532.97 47�93 Miss predictions not taken 1066672

Non prediction taken 7866669
Bpattern at (v5� f5� Time (sec) 0�7364 5�23 Total branches 33133409

Total energy (J) 0�4246 28�14 Miss predictions taken 3466753
BTB energy (�J) 1267.61 56�94 Miss predictions not taken 1066672

Non prediction taken 7866669

‘z = 3,’ respectively. When none of the conditions in
the if-then-else ladder are satisfied, the control jumps
to a branch destination NEXT. For such MB it is hard
for a compiler to generate Bhash code. Compilers gener-
ate Blinear code for this type of MB, which is inefficient
in terms of energy and performance. The present work
introduces that it is possible to generate Bbinary code for
such MBs. This is done with the help of k–d tree.6 k–d
tree is a multidimensional binary search tree. The match-
ing value set for index variable ‘x’ is the value�x� =
�3�5�6�12�13�16	. The matching value set for index
variable ‘y’ is value(y� = �1�3�4�7�8�12	. The ordered
pair set or point set of matching values is value�x� y� =
��3�1�� �3�3�� �5�1�� �5�3�� �6�4�� �6�7�� �12�4�� �12�7��
�13�8�� �13�12�� �16�8�� �16�12�	, as obtained from the
source code in Figure 6. The k–d tree decomposition for
the point set value(x� y) (as shown in Fig. 7) is done with
the help of Bentley’s approach in Ref. [6]. The resulting
k–d tree for the point set value(x� y) is shown in Figures 8.
In Figure 7 lines l3, l7, l10 and l14 encloses the region
related to BD1. The lines l9, l6, l13 and l1 enclose the region
related to BD2. The lines l8, l12, l2 and l4 enclose the
region related to BD3. The rest of the regions are related
to NEXT. Each non-leaf node of the k–d tree has left and
right edges which connects it to its left and right subtrees,
respectively.
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Fig. 4. Two possible source codes of EX1.

The left edge either labeled with the symbol ‘<’ or
with ‘≤’. The right edge is either labeled with the sym-
bol ‘>’or with ‘≥’. The left and right edge symbols of
a node depend on the source code. For example, the left
edge symbol of the node l1 is ‘<’ and its right edge sym-
bol is ‘≥’. This is because in the source code in Figure 6
there is an expression ‘x ≥ 6’ and l1 is the line repre-
senting ‘x = 6’. So for any node with ‘x ≥ 6’ will be in
the right subtree of l1, while nodes with ‘x < 6’ will be
in the left subtree of l1. The leaf nodes of the k–d tree
contain the branch destinations. The leaf nodes BD1, BD2,
and BD3 contain the branch destinations for the blocks of
code ‘z= 1,’ ‘z= 2’ and ‘z= 3,’ respectively. The rest of
the leaves contain NEXT as branch destination. There are

Fig. 5. Binary search tree for EX1.

two kinds of non-leaf k–d tree nodes considered in this
work. The circular non-leaf nodes are the mandatory nodes
required to form the k–d tree. The square non-leaf node
ensures that a branch destination is enclosed within the
desired region. For example in Figure 7 the lines l12, l13
and l14 provides enclosure for the regions related to BD3,
BD2, and BD1, respectively. To jump to BD3, the following

Fig. 6. Source code of EX2 as if-then-else ladder.
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Fig. 7. k–d tree decomposition for the point set value(x� y).

sequences of conditions are to be satisfied, ‘x < 6,’ ‘y < 3,’
‘x ≥ 3,’ ‘y ≥ 1’ and ‘x ≤ 15’. But, the conditions ‘x < 6’
and ‘x ≤ 5’ are redundant because ‘x’ is an integer vari-
able. The node l12 can be deleted to obtain the modified
k–d tree in Figure 9. Similarly, l13 can also be deleted.
In Figure 8 all the leaves of the right subtrees of the

nodes l2 and l6 contain NEXT. Each of these subtrees are
pruned and replaced with a leaf node containing NEXT as

Fig. 8. The resulting k–d tree for the point set value(x, y).

shown in Figure 9. Figure 10 shows two possible assem-
bly language implementations of the if-then-else ladder in
EX2. These assembly language code fragments are writ-
ten using ARM instruction set. Blinear in Figure 10(a) is
a brute-force implementation. Bbinary in Figure 10(b) is
obtained by a preorder traversal of the modified k–d tree
in Figure 9. The preorder traversal algorithm of the k–d
tree in Figure 9 is shown in Appendix C.
The detailed Blinear and Bbinary implementations of

EX2 are shown in Figures 20 and 21, respectively,
in Appendix B. For a MB with n branch destinations
belonging to the class of EX2 having d distinct index
variables in each of the n index expressions, Blinear will
take O(2× d× n� time to jump to a branch destination.
While Bbinary will take O�log2 n+d+ 1� time, where d is
the dimension of the k–d tree. In EX2 d = 2. Table IV
compares the energy and performance of the different
implementations of EX2 and shows the values of BTB
parameters. It also shows the gain achieved by Bbinary with
respect to Blinear . The execution time of Blinear at (v1� f1� is
considered as the Tlinear , which is the deadline for Bbinary

to finish execution. VFS is applied to Bbinary to minimize
energy consumption maintaining the constraint Tbinary ≤
Tlinear . Table IV shows the maximum gain in BTB energy
achieved by Bbinary is 74.64% along with a performance
gain of 23.21%, when Bbinary is executed at (v5, f5�.
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Fig. 9. Modified k–d tree of the for the point set value(x, y).

3.1.3. Illustrative Example 3 (EX3)

Programming languages like Ruby provides multiway
branch with strings as shown in Figure 11. Blinear imple-
mentations of these multiway branches are inefficient in
terms of time and energy. The pattern matcher in form of
a finite state machine in Figure 11 can help to generate
Bpattern which is both energy and time efficient. The match-
ing value set for index variable ‘month’ is value(month)=
{“JANUARY,” “FEBRUARY,” “MARCH,” “APRIL,”
“MAY,” “JUNE,” “JULY,” “AUGUST,” “SEPTEMBER,”
“OCTOBER,” “NOVEMBER,” “DECEMBER”}. Bpattern is
generated by breadth first traversal of the pattern matcher
graph. Bpattern makes use of a data structure called trie (or
prefix-tree) to restrict the state transition time while pattern
matching to O�1�. Table V shows the energy-performance
gain, and the BTB parameters of the Blinear and Bpattern,
respectively. Bpattern takes O�
� time to reach a BD, where

 is the maximum external path length of the pattern
matcher graph. The execution time of Blinear at (v1� f1� is
considered as the deadline for Bpattern to finish execution.

3.2. BTB Energy Reduction Algorithm

This algorithm takes MBl as input and produces TMBl as
output. The MBl taken as input is considered to be imple-
mented as Blinear code. Btranslated code in TMBl is either
a Bhash code or a Bbinary code or a Bpattern code. After

translating the code from Blinear code to Bhash or Bbinary

or Bpattern, the algorithm finds the possibility of VFS. On
the basis of input dependency of p as shown in Table II
the desired VFS algorithm is called. The VFS algorithm
scales down the (v, f � to minimize the energy consumed
by TMBl such that Ttranslated ≤ deadline.

BTB_Energy_Reduction_Algorithm
1. {
2. Given a Blinear as input;
3. if (Blinear can be translated to its equivalent Bhash�

then
4. Btranslated := Bhash;
5. else
6. if (Blinear can be translated to its equivalent Bbinary�

then
7. Btranslated := Bbinary;
8. else
9. if (Blinear can be translated to its equivalent Bpattern�

then
10. Btranslated := Bpattern;
11. else
12. goto 17;
13. if (p is input dependent) then
14. Call VFS_Algorithm B(Blinear�Btranslated�;
15. else
16. Call VFS_Algorithm A(Blinear�Btranslated�;
17. }

J. Low Power Electron. 8, 1–20, 2012 9
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Fig. 10. Assembly language codes representing if-then-else ladder in
EX2.

3.3. VFS_Algorithm

This subsection explains the VFS algorithms in detail.
The VFS algorithms find the value of min_vf_pair. The
min_vf_pair is the (v, f � that minimizes the energy con-
sumed by TMBl. The VFS algorithms calculates the energy
overhead (Eoverhead� and time overhead (toverhead� due to
VFS. They are calculated using the following formulae.25

Overheads when switching from (vi� fi� to (vw, fw�

Eoverhead�i�w�= �1−��×C×�V 2
i −V 2

w � (1)

toverhead�i�w�= 2× C

IMAX

×�V 2
i −V 2

w � (2)

Fig. 11. Multiway branch with strings.

where, � is the energy efficiency of the energy regulator
which is considered as 90%, C is the voltage regulator’s
capacitance to be 10 �F, IMAX is the maximum current
allowed which is assumed to be 1 A and 1 ≤ w ≤ 9. The
VFS algorithms make use of a C library function sprintf
which prints a formatted output to the string S. The sub-
routine generate code generates the assembly equivalent of
the high-level code in S and inserts it to the target pro-
gram file.

3.3.1. VFS_Algorithm_A

VFS_Algorithm_A finds the possibility of VFS to save
energy of TMBl when p is input independent.

VFS_Algorithm_A(Blinear�Btranslated�
1. {
2. char S�50�;
3. p:=constant value fixed in compile time;

4. Tlinear �=
1
n
×

n∑
j=1

�tlinear_j + tbranch_exe_j�×p�

5. Elinear �=
1
n
×

n∑
j=1

�elinear_j + ebranch_exe_j�×p�

6. deadline �= Tlinear�
7. Emin �= Elinear�
8. min_vf_pair �= 1;
9. for(i �= 1; i ≤ 9; i++)

10. {

11. T �i� �= 2× toverhead�1� i�×
1
n×∑n

j=1 �ttranslated_ij + tbranch_exe_ij�×p�

12. E�i� �= 2×Eoverhead�1� i�×
1
n

×∑n
j=1 �etranslated_ij + ebranch_exe_ij�×p�

13. if (T �i�≤ deadline) then
14. {
15. if (E�i� < Emin� then
16. {
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17. Emin �= E�i��
18. min_vf _pair �= i;
19. }
20. }
21. }
22. if (min_vf_pair> 1) then
23. {
24. sprintf(S, “setFrequency(%d); setVoltage

(%d);” min_vf_pair, min_vf_pair);
25. generate_code(S);
26. }
27. generate_code(Btranslated��
28. if �min_vf_pair> 1� then
29. {
30. sprintf�S, “setVoltage�1�; setFrequency�1�;”);
31. generate_code(S);
32. }
33. }

Here, tlinear_j and tbranch_exe_j are time taken to jump to
BDj and execute BCj of Blinear , respectively, at (v1� f1�.
elinear_j and ebranch_exe_j are energy consumed to jump to
BDj and execute BCj of Blinear , respectively, at (v1� f1�.
ttranslated_ij and tbranch_exe_ij are time taken to jump to BDj and
execute BCj of Btranslated , respectively, at (vi� fi�. etranslated_ij
and ebranch_exe_ij are energy consumed to jump to BDjand
execute BCj of Btranslated , respectively at (vi� fi�. In steps
4 and 5, Tlinear and Elinear are calculated as p times the
average time taken and p times the average energy con-
sumed to jump to BDj and execute the block of code
BCj at (v1� f1�. Similarly, for Btranslated , T �i� and E�i� are

Fig. 12. Pattern matcher for multiway branch with strings (EX3).

calculated in steps 11 and 12. The algorithm finds the
value of min_vf_pair, the (v, f � that will minimize energy
consumed by TMBl and allow the execution of the TMBl

to finish within the deadline.

3.3.2. VFS_Algorithm_B

VFS_Algorithm_B finds the possibility of VFS to save
energy of TMBl when p is dependent. Tlinear , Elinear ,
T �i� and E�i� are calculated in a similar way as in
VFS_Algorithm_A.

VFS_Algorithm_B(Blinear�Btranslated�
1. {
2 char S[50];
3. p �= 106�
4. Linked_List linkedlist := null;

5. Tlinear �=
1
n
×

n∑
j=1

�tlinear_j + tbranch_exe_j�×p�

6. Elinear �=
1
n
×

n∑
j=1

�elinear_j + ebranch_exe_j�×p�

7. deadline �= Tlinear�

8. tlin_avg �=
Tlinear
p

�

9. Emin �= Elinear�
10. min_vf_pair �= 1;
11. for�i �= 1; i ≤ 9; i++�
12. {

15. ti �=
1
n
×

n∑
j=1

�ttranslated_ij + tbranch_exe_ij��

16. T �i� �= 2× toverhead�1� i�+ ti×p;

17. E�i� �= 2×Eoverhead�1� i�×
1
n

×
n∑

j=1

�etranslated_ij + ebranch_exe_ij�×p�

18. if �tlin_avg > ti� then
19. {

20. P�i� �=
⌈
2× toverhead�1� i�

tlin_avg− ti

⌉
�

21. }
22. if (T �i�≤ deadline) then
23. {
24. if �E�i� < Emin� then
25. {
26. Emin �= E�i�;
27. min_vf_pair �= i;
28. if (i > 1� then
29. {
30. L �= create_node��;
31. L→ vf_pair �= i;
32. linkedlist.addfirst�L�;
33. }
34. }
35. }
36. }
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37. for(L �= linkedlist.header_node� �;
L �= null; L �= L→ next_node)

38. {
39. sprintf�S,”if �p ≥%d��setFrequency�%d�;

setVoltage�%d�� 	,” P�L→ vf_pair],
L→ vf _pair�L→ vf _pair�;

40. generate_code�S�;
41. if (L→next node �= null) then
42. {
43. sprintf�S,”else”�;
44. generate_code�S�;
45. }
46. last_node �= L;
47. }
48. generate_code�Btranslated��
49. if �min_vf_pair> 1� then
50. {
51. sprintf�S,”if �p >=%d��setVoltage�1�;

setFrequency�1�� 	”; P�last_node→vf_pair��;
52. generate_code�S�;
53. }
54. }

Since, p is input dependent; its value is not known at
compile time. The value of p is assigned 106 in step 3.
Apart from finding min_vf_pair the algorithm calculates
P�i� for every (vi� fi�. P�i� is the minimum value of p
required to execute TMBl at (vi� fi�. The formula for P�i�
is derived as follows. Let, tlin_avg be the average execu-
tion time of Blinear , executed once at (v1� f1�. Let, ti be
the average execution time of Btranslated , executed once at
(v1, f1�. Steps 8 and 15 of VFS_Algorithm_B calculates
tlin_avg and ti, respectively, when, tlin_avg > ti. If Btranslated is
executed P�i� times at (vi� fi�, then the time taken to do
this should be atmost that of P�i� time execution of Blinear

at (v1� f1�. Considering the overhead of (v, f � scale up and
scale down, this can be written as

P�i�× ti+2× toverhead�1� i�≤ P�i�× tlin_avg

⇒ P�i�× �tlin_avg− ti�≥ 2× toverhead�1� i�

⇒ P�i�≥ 2× toverhead�1� i�
�tlin_avg− ti�

(3)

Fig. 13. Linked list created by VFS_Algorithm_B.

The obtained expression of P�i� is the minimum value
of p required to execute TMBl at (vi� fi�. In other words,
if the value of p is obtained at runtime and p ≥ P�i�
then TMBl can be executed at (vi� fi�. The algorithm
also generates a linked list as shown in Figure 13(b).
Each node of the linked list is an instance of a node
type structure as shown in Figure 13(a). The vf_pair
field of the header node of the linked list contains the
min_vf_pair. The nodes of the linked list are ordered by
the value of vf_pair field, as min_vf_pair, min_vf_pair-1,
min_vf _pair-2� � � � � and 2, where, 1< min_vf_pair ≤ 9.
The linked list is arranged in such a manner because
P[min_vf_pair] > P�min_vf_pair− 1� > P�min_vf_pair−
2� > · · · > P�2� ≥ 1. The reason behind this is, as (vi� fi�
decreases, P�i� increases. After the formation of the linked
list the algorithm generates the TMBl shown in Figure 3(b).
The utility of the VFS_Algorithm_B is explained with
the help of an MB and its equivalent TMB, as shown in
Figure 14. Figure 14 considers MB and its equivalent TMB,
where p is input dependent. The MB in Figure 14(a) con-
tains an if-then-else ladder for which compiler generates
Blinear . TMB in Figure 14(b) contains a switch-case for
which compiler generates Bhash. For simplicity, the codes
for MB and TMB in Figure 14 are shown in high level
language. For the TMB in Figure 14 VFS_Algorithm_B
generates the linked list shown in Figure 15. The linked
list informs that the TMB can be run at four different
(v, f � pairs other than (v1� f1�, depending on the value of
p. The value of min_vf_pair is 5. The value of tlin_avg is
0.0832 �sec. Table VI shows the values of ti, Tov_i required
to calculate P�i�. Tov_i�= 2×toverhead�1� i�� is the time taken
to scale down from (v1� f1� to (vi� fi� and scale up from
(vi� fi� to (v1� f1�. Table VI also shows the values of
TMB�v1�f1�P�i��

, EMB�v1�f1�P�i��
, TTMB�vi�fi�P �i��

, and ETMB�vi�fi�P �i��
.

These values are obtained for experimental verification of
VFS_Algorithm_B. TMB�v1�f1�P�i��

and EMB�v1�f1�P�i��
are the

time taken and energy consumed, respectively, by the MB
in Figure 14(a), when it is executed at (v1� f1� and p =
P�i�. TTMB�vi�fi�P �i��

and ETMB�vi�fi�P �i��
are time taken and

energy consumed, respectively, by TMB in Figure 14(b),
when it is executed at (vi� fi� and p = P�i�. TMB�v1�f1�P�i��
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Fig. 14. High level representation of an MB and its equivalent TMB, where p is input dependent.

is the deadline for TMB in Figure 14(b). In Table VI
TTMB�vi�fi�P �i��

≤ TMB�v1�f1�P�i��
for each i (2 ≤ i ≤ 5). This

ensures the utility of VFS_Algorithm_B. The VFS algo-
rithms can save more energy, when the delays of blocks
of code at all the branch destinations are equal and the
blocks of code contain few branch instructions.

Fig. 15. Linked list created by VFS_Algorithm_B for the TMB in
Figure 14(b).

Table VI. The time and energy values of mb and tmb in Figure 14.

i ti (�sec) Tov_i (�sec) P�i� TMB�v1�f1�P�i��
(�sec) EMB�v1�f1�P�i��

(�J) TTMB�vi �fi �P�i��
(�sec) ETMB�vi �fi �P�i��

(�J)

2 0.0495 60.49 1795 158.51 115.11 156.69 58.11
3 0.0550 60.46 2144 186.63 136.34 185.27 60.38
4 0.0619 60.48 2840 242.90 178.67 242.24 65.57
5 0.0707 60.53 4843 406.21 300.50 405.15 86.87

4. EXPERIMENT AND RESULT

The proposed scheme is evaluated on eight benchmark pro-
grams on XEEMU simulator.7�8 XEEMU simulates Intel’s
XScale processor. Since there does not exist standard
benchmark programs involving MB, several representative
examples in which MB are possible are considered as syn-
thetic benchmarks. These synthetic benchmark programs
impose the workload on the branch prediction unit caus-
ing BTB access, which implies their utility for testing the
proposed work. This section explains the experimental pro-
cedure along with the analysis of the experimental results.

4.1. Experiment

The benchmark programs in Table VII contain one or more
MBs. Each MB belongs to the class of the illustrative
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Table VII. Benchmark programs.

Benchmark Description Source

PL Evaluates proposition logic formula cse.iitkgp.ac.in/∼spyne/benchmarks
LR A shift-reduce bottom up parser cse.iitkgp.ac.in/∼spyne/benchmarks
GUI A GUI controller of a database system cse.iitkgp.ac.in/∼spyne/benchmarks
P’man Pacman, a computer game www.javaboutique.internet.com/PacMan
Chess A computer game www.caspercomsci.com/pages/javasource.htm
B’ship Battleship, a computer game www.caspercomsci.com/pages/javasource.htm
M’Conv The mode converter, does base conversion of numbers www.caspercomsci.com/pages/javasource.htm
B’Jack The black Jack, a computer game www.caspercomsci.com/pages/javasource.htm

Fig. 16. Experimental setup.

examples as discussed in Section 3.2. All the energy and
performance values in this work are measured in XEEMU.
The translated codes are written using ARM instruction
set. All the programs are run on XEEMU which simulates

Table VIII. Benchmark result.

Benchmark Metric Naïve code Translated code Gain (%) Type of k–d tree #k–d tree Size range

PL Time (sec) 1�7213 1�589 7�68 1D 16 5–11
Total energy (J) 1�243 1�153 7�24 2D – –
BTB energy (�J) 5746 1187 79�34 3D – –

LR Time (sec) 1�1119 0�998 10�24 1D 10 3–11
Total energy (J) 0�8368 0�7824 6�50 2D – –
BTB energy (�J) 3380 989 70�73 3D – –

GUI Time (sec) 1�1504 1�1297 1�79 1D 5 5–10
Total energy (J) 1�8761 1�6572 11�66 2D 2 10–35
BTB energy (�J) 3753 1023 72�74 3D 4 4–12

P’man Time (sec) 2�175 1�962 9�79 1D 1 7
Total energy (J) 1�875 1�1787 4�69 2D 1 4
BTB energy (�J) 7054 2987 57�65 3D – –

Chess Time (sec) 3�154 2�942 6�72 1D – –
Total energy (J) 1�725 1�597 7�42 2D 3 3–8
BTB energy (�J) 9432 4763 49�50 3D – –

B’Ship Time (sec) 3�187 3�082 3�29 1D – –
Total energy (J) 1�472 1�386 5�84 2D 1 3
BTB energy (�J) 5087 3986 21�64 3D 2 2

M’Conv Time (sec) 0�482 0�374 22�40 1D 2 26–32
Total energy (J) 0�6427 0�6182 3�81 2D – –
BTB energy (�J) 4876 1928 60�45 3D – –

B’Jack Time (sec) 3�257 3�162 2�91 1D 3 3–13
Total energy (J) 1�876 1�677 10�6 2D 1 14
BTB energy (�J) 14872 6748 54�62 3D – –

Intel’s XScale processor. XScale has a 128-entry BTB.26

Each entry contains the address of a branch instruction, the
target address associated with the branch instruction, and
a previous history of the branch being taken or not-taken.
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The history is recorded as one of four states: strongly
taken, weakly taken, weakly not-taken, or strongly not-
taken. If the address of the branch instruction hits in
the BTB and its history is strongly or weakly taken, the
instruction at the branch target address is fetched; if its
history is strongly or weakly not-taken, the next sequen-
tial instruction is fetched. In either case the history is
updated. Each BTB access and update of its state causes
energy consumption. The experimental setup in Figure 16
shows the proposed scheme in a sequence right from syn-
tactical analysis (parsing) to translated multiway branch
generation.

4.2. Result

The Table VIII shows the comparison of energy, per-
formance and the maximum gain achieved by the trans-
lated code. The metrics ‘Time,’ ‘Total Energy’ and ‘BTB
Energy’ are same as in Tables III–V in Section 3.1.
Naïve Code is the code generated by the compiler xscale-
elf-gcc, which contains mainly Blinear implementations of
MBs. Translated code contains possible Bhash and Blinear as
TMBs. The performance gain lies within a range of 1 to
22%. The gain in total energy lies within a range of 3 to
12%. The gain in BTB energy lies within a range of 21
to 80%. The size of a k–d tree is the number of nodes
in it. For a particular multiway branch, the size of a k–d
tree depends on the number of branch destinations (n� and
the dimension (d� of the k–d tree. For a multiway branch
with n branch destinations and index expression values
as d-dimensional discrete points, a k–d tree will have n
nodes. For a multiway branch with n branch destinations
and index expression values as d-dimensional ranges, a
k–d tree will have 2d×n nodes. The programs with more
number of k–d trees with larger size achieve better energy
and performance gain. Table VIII also keeps an account
of the of the k–d trees formed during the code translation
of the benchmark programs. It shows the number of k–d
trees (#k–d tree) belonging to different dimensions (Type
of k–d tree) and the range of their size (Size range). Here,
the ‘Type of k–d tree’ is either 1D (one-dimensional), 2D
(two-dimensional) or 3D (three dimensional).

5. CONCLUSION AND FUTURE WORK

The present work reduces energy consumption for BTB
access by translating multiway branch with VFS. The
translated multiway branch also improves the performance
of the program. It first transforms the multiway branch
and then applies VFS to scale down the (v, f � to mini-
mize energy consumed by MB under the execution time
constraint. It introduces the use of k–d tree and pattern
matcher to generate efficient code for multiway branch
when hashing is not applicable. A wide range of illustra-
tive examples and benchmark programs are used to high-
light the efficacy of the approach. The energy savings

ranges from 21 to 80% with performance improvement
ranging from 1 to 22%. The total energy is reduced within
a range of 3 to 12%. As in the present work, the access
to BTB is reduced; the future work will concentrate on
reducing runtime leakage energy of BTB when it is not in
use. We have restricted the index variables and matching
values to integers and strings. The work may be extended
to consider real numbers. There are if-then-else ladders
where the index expressions are formed with several index
variables, and the conditions are separated by several log-
ical or conditional operators. The future work will also
investigate on efficient translation of such MBs.

APPENDIX

A. Blinear, Bhash and Bbinary Implementations of EX1

The Blinear and Bhash codes of EX1 are generated by xscale-
elf-gcc compiler. Step 30 of Bhash code of EX1 in Figure 18
shows the application of hashing. The Bbinary code of EX1
is generated by preorder traversal of the binary search tree
in Figure 5.

B. Blinear and Bbinary Implementations of EX2

The Blinear code of EX2 is generated by xscale-elf-gcc com-
piler. The Bbinary code of EX2 is generated by preorder
traversal of the k–d tree in Figure 8. Appendix C illus-
trates the algorithm for preorder traversal of K–d tree.

C. Bbinary Code Generation from K–d Tree

C.1. Structure of the K–d Tree Node

struct Kd_Tree_Node
{
char variable_name[20];
int value;
char left_edge_symbol, right_edge_symbol;
boolean left_tree_visited, right_tree_visited;
Kd_Tree_Node *left_child, *right_child;

};

C.2. Code Generation

B_binary_code_generation_from_Kd_Tree(Kd_Tree_node
*root)

1. {
2. for(all nodes q in the K–d tree)
3. {
4. q→ left_tree_visited �= false;
5. q→ right_tree_visited �= false;
6. }
7. Preorder_Traversal_Kd_Tree(root,1);
8. }
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Fig. 17. Blinear code of EX1.

Fig. 18. Bhash code of EX1.
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Fig. 19. Bbinary code of EX1.

Fig. 20. Blinear code of EX2.
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Fig. 21. Bbinary code of EX2.

C.3. Preorder Traversal of k–d Tree

Preorder_Traversal_Kd_Tree(Kd_Tree_node ∗root, int
label)
1. {
2. if(root!=null) then
3. {
4. if(root is a non leaf node) then
5. {
6. sprintf(S, “cmp %s, %d,”

root→ variable_name, root→ value);
write(S);

7. if(root→ right_edge_symbol= ‘>’) then
8. sprintf(S1, “bgt”);
9. else
10. sprintf(S1, “bge”);
11. if(all leaf nodes of root node’s right

subtree contain NEXT) then
12. {
13. sprintf(S, “%s NEXT,” S1);
14. root->right_tree_visited �= true;
15. }
16. else
17. sprintf(S, “%s L%d,” S1, 2∗ label+1);
18. write(S);
19. if(root->left_edge_symbol= ’<’) then
20. sprintf(S1, “blt”);
21. else
22. sprintf(S1, “ble”);

23. if(all leaf nodes of root node’s left subtree
contain NEXT) then

24. {
25. sprintf(S, “%s NEXT,” S1);
26. root->left_tree_visited:= true;
27. }
28. else
29. sprintf(S, “%s L%d,” S1, 2*label);
30. write(S);
31. }
32. else
33. {
34. if(root node do not contain NEXT) then
35. {
36. sprintf(S, “L%d:,” label); write(S);
37. generate code for the content in the

leaf node and write it;
38. }
39. }
40. if(root→ left_tree_visited= false) then
41. Preorder_Traversal_Kd_Tree(root→

left_child, 2∗label);
42. sprintf(“L%d:,” 2∗label+1);
43. if(root→ right_tree_visited= false) then
44. Preorder_Traversal_Kd_Tree(root→

right_child, 2∗label+1);
45. }
46. }
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