
Third Week

Instructor: Prof. S. P. Pal

TA: Rahul Gokhale

We know that languages accepted by space bounded machines can be ac-
cepted by space bounded machines that halt on all inputs. Now we wish to
return to nondeterministic space bounded machines and see how we can elim-
inate nondeterminism– naturally the space complexity would go up. In this
context, we consider the proof technique as in the proof of Savitch’s theorem.

Exercise 1 Show that the problem of deciding the acceptance of an input string
w on an S(n)-space bounded machine M is equivalent to deciding whether a
directed graph Gw,M (V, E) has a path from vertex I0 ∈ V to a vertex IA ∈ V ;
here, I0 and IA correspond to starting and accepting configurations of machine
M respectively and V is the set of all possible configurations of M on input w.
Also, E is the set of all configuration transitions possible on M due to input w.
Show that M is deterministic if and only if the outdegree of every vertex in V

in the graph Gw,M is 1.

Exercise 2 How is space reused in the two recursive calls (in the proof of Sav-
itch’s theorem) at the same level of recursion? What is the additional space
required on a recursive call and what is the maximum depth of recursion?

Exercise 3 Analyze the running time complexity of the deterministic simula-
tion as in Savitch’s theorem. Is the whole graph Gw,M stored in the simulating
machine? If not, how is the set E of transitions simulated?

Exercise 4 If L is the language accepted by a nondeterministic S(n)-space
bounded machine then how much space is required to accept the complement
of L with a deterministic space bounded machine? Why?

After studying the tape compression theorem, we now wish to determine
how much more space is required so that newer languages can be accepted. In
this context we consider the space hierarchy theorem as in [HU79].

Exercise 5 Study the proof of the halting problem’s undecibability and partial
decibability and its diagonalization proof technique. What does it mean to say
that a certain language is recursive, recursively enumerable and not recursively
enumerable. Study section 8.3 thoroughly from [HU79]. Study Lemma 8.1,
Theorem 8.4 and Theorem 8.5. How are these results related to the halting
problem?

Exercise 6 What is the encoding of TMs in the proof Theorem 12.8? Why is it
that an arbitrary length prefix of 1’s is attached to encodings of TMs as defined
in Chapter 8? How is the simulating machine forced to use only S2(n) space?

1



Exercise 7 Argue that M simulates machine Mw on input w in DSPACE(S2(n)).
Why would Mw’s tape symbol set cardinality t determine the amount of space
dlogte times S1(n) required for M to simulate Mw on input w.

Exercise 8 Assume (for the sake of contradiction) that L(M) = L(M̂) where
M̂ is an S1(n)-space bounded TM with t tape symbols. Show that there is a w

of such length n that dlogte times S1(n) is dominated by S2(n), and Mw is M̂ .
Show that the way M acts (in terms of accepting or rejecting, in its simulation
of Mw on input w), it follows that L(M) is not equal to L(Mw) (and therefore
to L(M̂)) for such a w as in the previous sentence. In particular, show that
L(M) and L(Mw) differ on how they act on w of sufficient length n as required
above. Conclude therefore that M̂ being in DSPACE(S1(n)) is impossible.

For the case of time hierarchy, we may refer to the similar diagonalization

result of Theorem 12.9 in [HU79]. Here, the ratio T1(n) log
2

T1(n)
T2(n) can exceed

any chosen value c > 0, for sufficiently large n > nc where nc depends on
c. In fact, the simulation of a multitape T1(n) time bounded machine is well
nigh possible in cT1(n) log2 T1(n) time (see Theorem 12.6 [HU79]) for some
constant c > 0. So, a sufficiently long string w of length n can always be
found out to satisfy a suitable c, so that T2(n) suffices in simulating the T1(n)
time bounded machine Mw on input w of such bloated length, thereby helping
realization of the diagonalization conveniently. The contradiction resulting from
the simulation establishes the absurdity of the assumption that the simulating
machine’s language L(M) is also L(M̂), where M̂ is a T1(n) time bounded
machine.

We have also seen a different result, very reminiscent of the halting problem
for Turing machines where we showed that a certain language Hf ={M ; x — M

accepts input string x in less than or equal to f(|x|) steps}, is in DTIME(f 3(n)),
but not in DTIME(f(bn

2 c)). For the former claim see [Papa94].

Exercise 9 Show that Hf ∈ DTIME(f3(n)).

We outline only the latter claim sketching the diagonalization argument. We
assume for the sake of contradiction that Hf ∈ DTIME(f(bn

2 c)). So, there is
a deterministic machine MHf

that decides Hf in time bn
2 c. Define machine Df

such that Df on input M says ‘yes’ if and only if MHf
syas no on input M ; M .

Exercise 10 Show that Df decides in f(n) time. Also show that Df (Df ) is
’yes’ if and only if it is ‘no’ as well ! In other words, establish a contradiction.

Now consider problem of non-deterministically computing the cardinality of
the set of vertices reachable from a source vertex s in a directed graph G(V, E)
in space proportional to log2 |V |. Here |V | = n. We only elaborate on the subtle
steps exploiting space reuse and nondeterminism. Only a constant number of
index variables of length log2 n are used in the computation. Also note that
only the last step uses nondeterminism. The crucial step is the penultimate
level where a conjunction over an iterator is computed for determining whether
a certain vertex u is in S(k); this is done by checking for all vertices v whether
(i) v ∈ S(k − 1), and whether (ii) u = v, or u is directly reachable from v. If
u ∈ S(k) then for some v this must hold. However, if we are trying to determine
whether this v ∈ S(k− 1), using only a nondeterminsitic guessing method, then
the path of computation making a wrong guess would fail to verify that v is

2



indeed in S(k − 1). So, the way we resolve this problem is by running the for
loop over all v and keeping the count of successes where we actually get certified
that a vertex v is indeed discovered to be in S(k − 1). If this count matches
|S(k − 1)|, which is alreadycomputed and stored in a counter, then we succeed.
Otherwise, we reject the entire computation in the for loop. The correctness
follows from the fact that there is always a correct guessing path for the for loop
iterating over vertices v. No wonder this method is called ‘inductive counting’,
using S(k − 1), to compute S(k).

Exercise 11 Show that NSPACE(S(n)) = co − NSPACE(S(n)) for S(n) ≥
log2 n, where S(n) is a fully space constructible function.

3


