Linear speedup

Instructor: Prof. S. P. Pal. TA: Rahul Gokhale

July 31, 2006

Last week we considered space compression. Now we consider a similar result for time complexity. For an (intuitively) super-linear time-bounded machine, arbitrary constant factor (with respect to the input size) speedups are possible.

1 Linear speedup

We simulate a k>1 tapes, T(n)-time bounded TM compressing m cells into 1 to get the same language recognized in cT(n) time, provided $T(n)/n \to \infty$ and $n \to \infty$, when we choose m such that $mc \ge 16$. That is, to get speed up 1/c times, we require $c \ge 16/m$. [This result is established by using that fact about T(n) above that for any d, there is an n_d such that $n \ge n_d$ implies $T(n)/n \ge d$ or (equivalently) $n \le T(n)/d$. That is, the special limit T(n)/n tends to infinity.]

The steps include initial reading of n cells of M_1 's input and converting that n symbol string into an $\lceil n/m \rceil$ -symbol string on M_2 's own machine. Then, M_2 simulates T(n) steps of M_1 in its $8 \left\lceil \frac{T(n)}{m} \right\rceil$ moves.

Exercise 1 Show that M_2 can indeed simulate T(n) steps of M_1 as above.

So, M_2 requires following number of moves

 $n+\lceil n/m \rceil + 8 \cdot \lceil T(n)/m \rceil \le n + (n/m+1) + (8T(n)/m) + 8 \le n + n/m + 8T(n)/m + 9$

Since $inf_{n\to\infty}T(n)/n=\infty$, for any constant d (however large), there is an n_d so that for $n\geq n_d$, we have $T(n)/n\geq d$ or, equivalently, $n\leq T(n)/d$. Also, putting $n\geq 9$ (thus $n+9,\leq 2n$) we have the above upper bound on the number of steps of M_2 as $T(n)[\frac{2}{d}+\frac{1}{md}+\frac{8}{m}]$ for $n\geq n_d$. [Note that n+9<2n, so $n+9\leq 2n\leq 2T(n)/d$.] [These terms therefore come from respectively, n+9, n/m and 8T(n)/m.] Now choose $m\geq 6/c$ and d=m/4+1/8, we have the simulation time of M_2 as less than cT(n). [Note that $\frac{2}{d}+\frac{1}{md}$ is the same as 8/m if $d=\frac{m}{4}+\frac{1}{8}$. And 8/m is less than c/2!]

This is the main idea in the proof of Theorem 12.3 in [HU79].

Exercise 2 Establish and interpret the corollary following this theorem in [HU79].

Exercise 3 What happens in contrast when T(n) is a constant multiple of n? (See Theorem 12.4 and its corollary in [HU79].)

Exercise 4 Extend these results to nondeterministics Turing machines.

Exercise 5 Study Theorems 12.5 and 12.6 in [HU79].