
Tape compression and completeness

Instructor: Prof. S. P. Pal

TA: Rahul Gokhale

Space and time are the two most important and commonly studied compu-
tational resources. We study space and time complexities of algorithms on TMs
because TMs are very simple machines with finite state control and transition
rules, and potentially infinite memory on tape(s). By Church’s thesis, all other
‘resonable’ computational models are equivalent to TMs in computability, as
well as, polynomially related in terms of time and space complexities.

Definition 1 If for every input word of length n, TM M scans at most S(n)
cells on any writable storage or work tape, then M is said to be an S(n) space-
bounded TM, or of space complexity S(n).

Definition 2 If for every input word of length n, TM M makes at most T (n)
moves before halting, then M is said to be a T (n) time-bounded TM, or of time
complexity T (n).

1 Tape compression: [Theoreom 12.1, HU79]

It is instructive to first get familiar with tape cell symbol manipulation to the
extent that one machine M2 is used to simulate another machine M1 where
each tape cell of M2 encodes several (say r) cells of M1. Using such an encoding
⌈S(n)/r⌉1 cells suffice in M2 for S(n) cells in M1; ⌈S(n)/r⌉ is upper bounded

by
⌈

S(n)
2/c

⌉

if rc > 2, for any choice c > 0. This bound is less than ⌈cS(n)/2⌉ and

therefore bounded by cS(n). Also if S(n) < r, then M2 needs just one tape cell.
So, M2 can simulate M1 in cS(n) tape cells with compression factor r, where
rc > 2.

See [Lemma 12.1, Hu79]. As we saw in class, the number of configurations
of the simulated machine is (n + 2) · s · S(n) · tS(n); the simulating TM can use
a 4st base counter with S(n) cells to count at least upto such a number of
configurations. It is worthwhile working out the details of the simulation where
an additional counter cell is used every time a new tape cell is first visited by
the simulated machine. So, we see that languages accepted by space bounded
computations are also accepted within similar space bounds by a machine that
halts.

Exercise 1 Show that 4st raised to S(n) exceeds the number of configurations
of machine M1 above.

All this concerns a deterministic TM. What happens if the machines were
non-deterministic?

1⌈x⌉ is the smallest integer larger than x.

1



2 Nondeterminstic machines and complexity classes

NFAs and DFAs that match in language acceptance capabilities have an expo-
nential relationship in terms of the number of states. For the case of polynomial
amount of writable memory as in the case of Turing machines running in poly-
nomial time, nondeterminism gives rise to the famous P=NP question.

For definitions of P and NP, see [Papadimitriou 1994], henceforth called
[P94]. (See page 181.)

Exercise 2 Show that the decision problem of determining whether an n-vertex
undirected graph has a vertex cover of size ⌈n/3⌉ is NP-complete.

Exercise 3 Show that the problem of determining whether the language L(G)
generated by a given context-free grammar G is the empty set, is in the class P.
(See HU79). What happens for regular grammars? What is the input in these
decision problems? [Note that regular grammars and context-free grammars may
be nondeterministic.]

2


