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1 The overall idea of partitioning with a random sample

and using Canham’s bound recursively for bounding

the complexity of many faces

We consider the problem of estimating the number K(m,n), the many faces complexity of edges
of m faces in an arrangement of n lines. One way to visualize is to consider a set P of m points
in the plane, and a set L of n lines in the plane. The (at most) m faces are determined by
the m points in the arrangement A(L) of lines in L. We get the inferior upper bound (known
as the Canham bound) of O(m

√
n + n) using the forbidden subgraph property of the bipartite

incidence graph of lines and faces in an arrangement of lines. [The forbidden subgraph is K2,5.
Using the result by Kovari, Sos and Turan (Theorem 9.6 in [3]) for such forbidden component
subgraphs, we get the above loose upper bound. See Pach and Agarwal [3], for a proof of the
Kovari, Sos and Turan result.] We proceed to use a divide-and-conquer approach as follows, in
order to derive a much better bound that also asymptotically matches the best known lower
bounds (see Theorem 11.9 of [3]).

1.1 A divide-and-conquer approach using a grosser partition with a
random sample subset of lines

Suppose we form an arrangement with a subset R of size r of the set L of n lines. The
arrangement A(L) is of our interest. However, we may first convert A(R) into a trapezoidal
map A∗(R) with k = s ≤ 3r2 trapezoids/triangles as faces, by dropping plumbline vertical
segments from vertices and intersection points of A(R). It is nice if not too many lines from
L \ R intersect an arbitrary trapezoid ∆j of A∗(R), where the (fixed) point pj ∈ P lies in the
(unique) trapezoid ∆j. Even if this trapezoid is intersected by qj lines, we wish to have the
expectation E(qj) = O(n

r
), where the expectation is over all the

(
n
r

)
random samples R ⊂ L.

This is indeed possible and we show this later using combinatorial arguments in Section 1.3.2;
this is a technical result of independent and deep import, which we will use crucially in Section
1.3.1.
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Let the face ∆i of A∗(R) intersect ni lines of L \R and contain mi of the m points from the
point set P . [Here, the set Li of lines from L\R that intersect ∆i, form an arrangement A(Li);
the convex faces (cells) in A(Li) are just the faces of arrangements A(L) or A(R). In contrast,
by the very definition of A∗ A∗(R), A∗(L) and A∗(Li) have only trapezoids and triangles for
faces (or cells).] Now, using recursion we write

K(m,n) ≤
s∑
i=1

K(mi, ni) +O(nr)

We will explain the O(nr) term using the zone theorem and its non-trivial application in Section
1.2. for r. Using the Canham bound, can write

K(m,n) ≤
s∑
i=1

(mi

√
ni + ni) +O(nr)

In Section 1.3, we use the existence of random sample R of size r to establish the upper bound

s∑
i=1

mi(ni)
α = O(m(

n

r
)α)

[This bound is established in part (ii) of Theorem 11.2 in [3]; part (i) of the same theorem
claims that Σs

i=1ni ≤ c1nr, which holds for any R ⊂ L, where |R| = r.] So, we can write

K(m,n) ≤ O(m(n/r)
1
2 ) +O(nr)

Now, by setting r = min(n, m
2
3

n
1
3

) we get nr = (mn)
2
3 and therefore, K(m,n) = O(m

2
3n

2
3 + n).

[A quick and simple application of the zone theorem is instructive and useful now. Even
if we consider an arbitrary R ⊂ L so that |R| = r, the sum Σs

i=1ni = O(nr). In other words,
the average number of lines of L \R intersecting the s = O(r2) trapezoids of A∗(R) is O(n

r
), a

very good bound. Such a bound is certainly ‘good on the average’. This is essentially part (i)
of Theorem 11.2 of [3]. In addition, if R is a random sample, then the quantity

s∑
i=1

mi(ni)
α = O(m(

n

r
)α)

and the random sample R of lines R works like a ‘(1
r
)− cutting on the average’ for applications

such as this very many faces complexity problem.]

1.2 The zone theorem and its non-trivial application in the estab-
lishing the O(nr) term

See Theorem 11.7 from pages 175-176 [3].
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1.3 Bounding the expectation of the (weighted) sum of αth moments
over a space of random samples: Existence of a good random
sample

As mentioned in Section 1, we outline the proof of Theorem 11.2 (ii) of [3]. In order to show
that

∑s
i=1 mi(ni)

α = O(m(n
r
)α), for some random sample R of r lines of L, it is sufficient to

show that the expected value or expectation of
∑s

i=1 mi(ni)
α over all possible (random samples)

choices of R, is O(m(n
r
)α).

We achieve this objective as follows, first by simplifying the expression whose expectation
is being bounded in Section 1.3.1, and then using the expectations of certain simpler quantities
in Section 1.3.2.

1.3.1 Simplifying the expectation of a sum over random samples

We define qj as the number of lines of L intersecting the interior of the unique trapezoid in
A∗(R) that contains pj ∈ P . We can now see that E[

∑s
i=1 min

α
i ] = E[

∑m
j=1 q

α
j ] =

∑m
j=1E[qαj ] ≤∑m

j=1(E[qj])
α. The last inequality is given as Exercise 11.5 in [3]. The property that the

expectation of a sum is the sum of expectations is a very powerful and simplifying property
used above so that now we may only concentrate on establishing

E[qj] = O(
n

r
)

So, we can now write
∑m

j=1(E[qj])
α = O(m(n

r
)α).

1.3.2 Bounding the expectation E[qj] over all random samples using counting and
probabilistic arguments

See page 172 of [3] in the last part of the proof of Theorem 11.2 (ii) to see how an brilliant
probabilistic argument is used to show that E[qj] = O(n

r
).

2 1
r-cuttings and ‘cuttings on the average’

The Cutting Lemma in [1], Lemma 4.5.3 is a stronger version of the Weaker Cutting Lemma,
Lemma 4.6.1. The number of lines (in the Weaker Cutting Lemma) in the random sample
S ⊂ L is s = 6r lnn, whose O(s2)-sized arrangement in the plane results in t = O(s2) generalized
triangles, as opposed to only O(r2) generalized triangles in the (ambititious) Cutting Lemma.
Clearly, the dependence on n, eventhough on a slowly growing ln(n) function, is a disadvantage
of the Weaker Cutting Lemma; the advantage is a very short and elegant probabilistic argument
in its proof (see page 66 of [1]). In Section 1, we have already seen such cutting-like structures,
where the random sample R gives rise to s = O(r2) triangles, whose conflicts sets are of
cardinality O(n

r
) ‘on the average’ which is ‘good’, in contrast to the individual O(n

r
) bound

that we need for each triangle in a 1
r
− cutting.
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3 Point-line incidences, many faces complexity, crossings

and probabilistic methods

Pach et al. [3] (Lemma 10.6) demonstrates the close relationship between the number of maxi-
mum possible number of point-line incidences I(m,n), and the many faces complexity K(m,n)
for a set of m cells in the arrangement of n lines, where I(m,n) ≤ 1

2
K(m, 2n) +m. This upper

bound on I(m,n) along with the many faces upper bound on K(m,n) of Section 1 leads to the

upper bound on I(m,n) = O(m
2
3n

2
3 + m + n) (see Corollary 11.8 based on Lemma 10.6 and

Theorem 11.7 of Pach et al. [3]). We state an alternative method for establishing this upper
bound in Section 3.2, based on the lower bound for crossings in Section 3.1. Also, a matching,
asymptotically tight lower bound for I(m,n) in Theorem 11.9 in [3] holds for K(m,n), because
it is developed for I(m,n) using some geometric construction that also uses elementary number
theory.

3.1 A lower bound on crossing numbers: An elegant probabilistic
argument

An embedding of a graph G = (V,E) in the plane is a planar representation of it, where each
vertex is represented by a point in the plane, and each edge {u, v} is represented by a curve
connecting the points corresponding to the vertices u and v. The crossing number of such
an embedding is the number of pairs of intersecting curves that correspond to pairs of edges
with no common endpoints. The crossing number cr(G) of G is the minimum possible crossing
number in an embedding of it in the plane. The only and trivial planar embedding of the graph
K3 has crossing number 0. Hence it is a planar graph. The complete graph K4 of four vertices
has crossing number o as well. In every planar embedding, the graph K5 has at least one pair
of edges crossing. Hence, it is a non-planar graph. K3,3 also has crossing number 1. Hence, it
is a non-planar graph. Kuratowski showed 1930 that a graph is planar if and only if it has no
subgraph homeomorphic to K5 or K3,3. The following Crossing Number Theorem was proved by
Ajtai, Chvatal, Newborn and Szemeredi in 1982, and independently, by Leighton. The crossing
number of any simple graph (i.e., a graph with no multi-edges or no self-loops) with |E| ≥ 4|V |
is at least |E|3/64|V |2. Let us describe a short probabilistic proof of this theorem.

We know Eulers formula for any spherical polyhedron, with |V | vertices, |E| edges and
|F | faces, |V | − |E| + |F | = 2. Any maximal planar graph (i.e., one to which no edge can
be added without losing planarity) has triangular |F | triangular faces implying 3|F | = 2|E|.
Hence, for any simple planar graph with |V | = n ≥ 3 vertices, we have |E| = |V | + |F | − 2 ≤
|V |+(2/3)|E|−2 or |E| ≤ 3n−6, implying that it has at most 3n edges. Therefore, the crossing
number of any simple graph with n vertices and m edges is at least m− 3n. Let G = (V,E) be
a graph with |E| ≥ 4|V | embedded in the plane with t = cr(G) crossings. Let H be the random
induced subgraph of G obtained by picking each vertex of G, randomly and independently, to
be a vertex of H with probability p (whose value is to be chosen later). Then, the expected
number of vertices in H is p|V |, the expected number of edges is p2|E|, and the expected number
of crossings (in its given embedding) is p4t. Therefore, we have p4t ≥ p2|E| − 3p|V |, implying
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t ≥ |E|/p2 − 3|V |/p3. Substituting p = 4|V |/|E|, which is less than one, we get the result.

3.2 The Szemeredi-Trotter point-line incidence upper bound and
crossing numbers

Now we state the famous Szemeredi-Trotter Theorem. Let P be a set of n distinct points in
the plane, and let L be a set of m distinct lines. Then the number of incidences I between
the members of P and those of L (i.e., the number of pairs (p, l) with p ∈ P , l ∈ L, p ∈ L)

is at most c(m
2
3n

2
3 + m + n), for some absolute positive constant c. We state a proof using

probabilistic arguments. This proof is due to Szekely (1997).

We assume that every line in L is incident with at least one of the points of P and every
point is on some line. Denote the number of such incidences by I. Form a graph G = (V,E)
with V = P , where for p, q ∈ P, (p, q) ∈ E if and only if they are consecutive points of P on
some line in L.

Clearly, |V | = n, and |E| = Σm
j=1(kj − 1) = (Σm

j=1kj)−m = I −m, where kj is the number
of points of P on line j ∈ L. Note that G is already embedded in the plane where the edges
are represented by segments of the corresponding lines in L. In this embedding, every crossing
is an intersection point of two members of L. So, cr(G) ≤

(
m
2

)
≤ m2

2
. By the Crossing Number

Theorem, either I −m = |E| < 4|V | = 4n, that is,

I ≤ m+ 4n

or

m2

2
≥ cr(G) ≥ (I −m)3

64n2

implying
I ≤ (32)

1
3m

2
3n

2
3 +m

In both cases,
I ≤ 4(m

2
3n

2
3 +m+ n)

4 Random sampling for geometric/searching applications

The following discussion is based on Chapter 5 (pages 173-175) of [2]. We have n objects in
the set N , and subsets of N can be the defining elements of configurations. Let Π = Π(N) be
the set of all configurations and σ ∈ Π be one such configuration. For an example, imagine a
one-dimensional space (the real line) with n distinct points and the O(n2) pairs of n points as
configurations, which are actually linear intervals. If we fix a constant r < n, we may take a
random sample R of r elements, selected out of the n elements in N . [Sampling is done without
repetitions; each time an element is selected independently and randomly.] We can see that the
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set R immediately defines the set Π(R) of
(
r
2

)
= O(r2) configurations or intervals. We say that

the set D(σ) of cardinality d(σ), is the set of triggers or defining elements of any configuration
σ ∈ Π(R); d(σ) ≤ 2 in this example of intervals on a line because each interval has at most
two endpoints. Each configuration σ may contain (intersect) a set of elements from N . These
are called stoppers. The set of stoppers is denoted by L(σ) and its cardinality is denoted by
l(σ); l(σ) is called the conflict size of the configuration σ ∈ Π(R). We wish to bound the
probability that we get a configuration with a large number of stoppers but no triggers (except
for the two extreme defining triggers of the configuration). Such configurations are called active
configurations of the random sample R. In other words, we say that a configuration σ ∈ Π(N)
is active over a subset (random sample) R ⊂ N if it occurs as an interval in Π(R). We show
that probability that each active configuration of a random sample R of cardinality r would
have conflict size O(n

r
log r), is at least 1

2
.

The probability that σ has no point of R in conflict, given that its defining points are in R
is

p(σ, r) ≤ (1− l(σ)

n
)r−d(σ) (1)

The intuitive justification is as follows. The interval being of conflict size l(σ), the probability

of choosing a conflicting point is at least l(σ)
n

. Since we select r− d(σ) points without conflicts,
the probability required is upper bounded as in Inequality 1. [For a rigorous derivation, see
page 175 in [2] or a simlar derivation in [4].] However, since 1−x ≤ exp(−x) where exp(x) = ex,
we have

p(σ, r) ≤ exp(− l(σ)

n
(r − d(σ))) (2)

Since d(σ) ≤ 2, putting l(σ) ≥ c(n ln s)/(r − 2) for some c > 1 and s ≥ r, we get

p(σ, r) ≤ exp(−c ln s) =
1

sc
(3)

Now an active configuration σ due to the random sample R must be such that all its defining
points must be in R. In other words, σ ∈ Π(R). Let this probability be q(σ, r). The probability
that σ is (i) an active configuration due to random sample R, with (ii) conflict set at least as
big as cn ln s

r−2
, is therefore no more than

p(σ, r)q(σ, r)

The probability that some active configuration has such a “long” conflict set is no more than
the sum of probabilities for all such “long” configurations σ ∈ Π(R)∑

σ∈Π:l(σ)> cn ln s
r−2

p(σ, r)q(σ, r) ≤
∑

σ∈Π:l(σ)> cn ln s
r−2

q(σ, r)/sc ≤ 1

sc

∑
σ∈Π

q(σ, r) (4)
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Now the last summation in the Inequality 4 is the expectation E(π(R)) and π(R) = |Π(R)| =
O(r2). So, choosing c > 2 we can ensure that the probability of having a long active configu-
ration in σ ∈ Π(R) is less than 1

2
for a random sample R.

For a reading exercise, study Section 5.1, pages 176-180, from [2] where generalizations to
two and higher dimensions are considered. The configurations spaces considered have bounded
valence. It is shown that a result similar to that derived above holds for such spaces (see Theo-
rem 5.1.2 [2]). Similar results are also derived in [4] in Section 9.9 (Random Sampling), Lemma
9.11 (probability of getting a good cutting), Corollary 9.12 (Las Vegas algorithm for the parti-
tion/cutting), and Theorem 9.13 (a point-location data structure with query and preproscessing
time complexities). See also the simpler Exercise 9.19 and 9.20 in [4].

5 The weak cutting lemma: Demonstration of a 1
r-cutting

using a probabilistic argument

With n lines in the plane, we can have at most O(n2) cells, and a lower bound of at least n2

2

cells. Let L be this set of n lines. Any triangle that cuts k lines is divided into at most 2k2 parts.
Suppose we have only t triangles partitioning the whole plane containing the arrangement of
n lines, and each such triangle is cut by at most k of the n lines. Since each of these at least
n2

2
cells has be be covered by triangles, each of which has at most 2k2 cells as stated above, we

need to have n2

4k2
= Ω(r2) cells provided we fix k ≤ n

r
.

We show that a set of O(r2 log2 n) triangles can be used to ensure that less than n
r

lines of
the arrangement of n lines cross each such triangle. Let L be the set of n lines. Use a random
sample S ∈ L, of size s = 6r log n to create O(s2) regions as follows. If there are non-triangular
(convex) regions in the arrangement of these s lines, then we triangulate them. A bad triangle
T (defined by three lines of the n lines in L) has at least k = n

r
lines intersecting T . Such a

bad triangle is also called interesting if it appears in the triangulation of S ⊆ L as one of the
O(s2) triangles of the random sample S of size s as mentioned above.

There are at most n6 interesting triangles; each triangle has three of the
(
n
2

)
points of

intersections as vertices. The probability that T is a bad triangle is less than n−6 if we choose
s = 6r log n. The upper bound on this probability is

(1− k

n
)s = (1− 1

r
)6r lnn ≤ e−6 lnn = n−6

So, the probability that some interesting triangle is bad is strictly less than unity. Therefore,
there exists is a random sample S of size s = 6r log n such that the none of the O(s2) triangles
induced by the triangulation of the arrangement of S meets more than n

r
lines of L. This is the

Weak Cutting Lemma (Lemma 4.6.1) from [1].
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