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Kirkpatrick’s optimal planar point location method

Optimal planar point location by Kirkpatrick
[8]

Consider Kirkpatrick’s planar point location method. Suppose we
have a planar graph of n vertices, embedded in the plane where each
face is a triangle.

Exercise 1: Show that there are no more than 3n − 6 edges and that
the equality actually holds.

Let D be the set of vertices with degree less than 12. Then, (Exercise
2) show that there are at least n

2 vertices with degree less than 12.

Now greedily proceed to select one vertex at a time from D, so that
we generate a maximal independent set in the graph.

Assume that the outermost face is a triangle which encloses all other
edges (in the context of Kirkpatrick’s planar point location method);
the three vertices of this outermost triangle cannot be selected.
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Kirkpatrick’s optimal planar point location method

Optimal planar point location by Kirkpatrick
[8] contd.

Since this developing independent set is a subset of D, whenever we
select a vertex, we may also kill at most 11 other vertices of D, which
cannot be selected in the subsequent steps. So, with each vertex
selected in D, a total of no more than 12 vertices of D are out of
consideration.

This helps us estimate a lower bound on the size of the greedy
maximal independent set as follows.

If m is the size of any maximal independent set then show that
(Exercise 3) m ≥ b 1

12 (n2 − 3)c.
Since we are dropping at least a constant fraction (Exercise 4) of the
vertices in each stage, show (Exercise 5) that the total time required
for prepocessing is O(n log n), the total space required is O(n)
(Exercise 6), and (Exercise 7) queries can be answered in O(log n)
time (Theorem 2.7, page 60 in [8]).
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Randomized incremental construction

Planar partition (trapezoidal) computation
by incremental construction [3] Section 3.1

Let n line segments s1, s2, ..., sn in the plane intersect in k = O(n2)
points. Let us consider a random permutation of these n segments.
We process the (i + 1)st segment when the planar partition
(trapezoidal decomposition) H(N i ) of the first i segments, say
s1, s2, ..., si are processed from the random permutation, with ki
intersecting pairs determined between the i segments.

Inserting the segment si+1 is the incremental step, creating H(N i+1),
using the DCEL data structure, starting from one end of si+1 and
tracing the faces of H(N i ) till we walk to the other end of si+1.

Let v denote an intersection point of the k intersections; let Iv be the
0-1 indicator variable for v appearing in H(N i ). The probability that
the two segments intersecting in v are in the first i segments of the
random permutation is O( i2

n2 ). Why? (Exericse 1)
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Randomized incremental construction

Planar partition computation by incremental
construction [3] contd.

Figure:
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Randomized incremental construction

Planar partition computation by incremental
construction [3] contd.
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Randomized incremental construction

Planar partition computation by incremental
construction [3] contd.
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Randomized incremental construction

Planar partition computation by incremental
construction [3] contd.
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Randomized incremental construction

Planar partition computation by incremental
construction [3] contd.

In i events of segments’ selections, a segment intersecting in v could
be picked up with probability roughly 1

n in each selection, and thus
with upperbounded probability of O( i

n ) overall, and so for also the
other segment meeting v .
So, the sum of all the k Iv ’s has expectation k times the probability
upper bound for each v appearing in H(N i ), that is, O(k i2

n2 ).
Now we see the i + 1 equally probable cases about the segment that
was last inserted when we went from H(N i ) to H(N i+1), with cost
proportional to the sizes of faces cut by the segment si+1 and the
conflict list size of one ednpoint of that segment. Here, si+1 can be
any of the i + 1 segments in N i+1.
The buckets of end vertices of segments in faces can get split into
parts on the insertion of a new segment that cuts the face. Exit/entry
of faces as we move across the new segment requires seeing all edges
of the faces.
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Randomized incremental construction

Planar partition computation by incremental
construction [3] contd.

To get the expected running time of the insertion of the new
segment, it is enough to compute the average of the i + 1 equally
probable costs of insertion of each of the i + 1 segments.

Since each face is defined by only a constant number of segments, the
numerator adds up to a quantity proportional to |H(N i+1)| plus the
count of the remaining n − i endpoints in the buckets of H(N i ). The
denominator is i + 1.

This cost is clearly O(n+ki+1

i+1 ) (Exercise 2). Apart from the cost of
intersections, this cost is at most linear in n.

Now we sum this cost over all n iterations to get the expectation of
the sum of all the n insertions.

The n log n term comes from the harmonic series sum, and the term k
is due to use of the expectation k(i + 1)2/n2 of ki+1, thereby adding
up to the total expected cost O(n log n + k) (Exercise 3).
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Configuration spaces [3] [9]

Abstract configuration spaces Section 3.4 in
[3] and Chapter 9, Theorems 9.14 and 9.15 in
[9]

Based on the definitions of triggers set D(σ) and stoppers set L(σ)
for a configuration σ ∈ Π(N), we note the degree d(σ) and the
conflict size or level l(σ) of the trigger and stopper sets.

Several configurations in the set of all configurations Π(N) may have
the same trigger and stopper sets. So, Π(N) is a multiset of say π(N)
elements. Let Πi (N) be the set of πi (N) configurations with level i .

For any R ⊆ N, a trapezoid (configuration) σ is feasible or possible
over N if it occurs in the trapezoidal decomposition of H(R). Each
such trapezoids can appear in the insertion steps of some random
permutation of N.

D(σ) is the set of segments adjacent to the boundary of σ, and L(σ)
is the set of segments in N \ D(σ) intersecting σ.
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Configuration spaces [3] [9]

Abstract configuration spaces Sections 3.2
and 3.4 [3]and Chapter 9, Theorems 9.14 and
9.15 [9]

This definition is somewhat different from the case of the planar
partition incremental construction where we just took endpoints of
segments as conflicts.

Note that Π0(N) is the set of trapezoids in H(N). We can project a
configuration σ of H(N) in H(R) if D(σ) ⊆ R and call it σR if its
conflict set is L(σ) ∩ R.

Π0(R) is the set of trapezoids in H(R). The conflict size of any
trapezoid in H(R) relative to N is the number of lines in N \ R that
intersect the trapezoid.

Example 3.4.4 is the example of “raquets”, culminating in Theorem
3.4.5, whose proof mimics that of Lemma 3.2.1 and Equation 3.7 for
the Example 3.4.2 of convex polytopes.
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Configuration spaces [3] [9]

Abstract configuration spaces (contd.)

For N, a set of half-spaces in Rd , each vertex of the arrangement
G (N) has the trigger set of the halfspaces in N bounded by
hyperplanes containing the vertex. The stopper set is the set of
halfspaces whose complements contain the vertex.

Si+1

s

p r
t

Figure: Given set of halfplanes
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Configuration spaces [3] [9]

Abstract configuration spaces (contd.)

The cost of adding Sj , is proportional to the number m(S ,N j) of
newly created vertices in H(N j). The expected cost of this jth step is
therefore proportional to 1

j ΣS∈N jm(S ,N j).

For each j < n, let e(j) denote the expected size (number of vertices)
of Π0(N j), assuming that the N j is a random sample (subset) of N of
size j . Let d = d(Π) denote the maximum degree of a configuration
(vertex) in Π(N). By the definition of a configuration space, d is
bounded by a constant.

Since each configuration (vertex) in H(N j) is defined by (adjacent to)
d objects (halfspaces) in N j , the expected cost of the jth step is
proportional to the quantity 1

j ΣS∈N jm(S ,N j), which itself is at most
d
j times e(j).
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Configuration spaces [3] [9]

Abstract configuration spaces (contd.)

See Lemma 3.2.1 and equation (3.7) [3] for the configuration space of
vertices described in Example 3.4.2. Lemma 3.2.1 and equation (3.7)
use the fact every vertex is adjacent to at most d half-spaces. So, the
corresponding configuration space has the bounded degree property
where every configuration in Π(N) is adjacent to at most d objects in
N.
Just mimicking Lemma 3.2.1 and equation (3.7), the present general
setting can be mirrored by replacing ”vertices” and ”half-spaces” by
the ”configurations” and ”objects,” respectively. The Lemma 3.2.1
stated verbatim from [3] is–
“The expected number of newly created vertices in the jth random
addition, conditional on a fixed N j , is bounded by d

j times the

number of active vertices over N j (i.e., the ones in H(N j)). Since N j

is itself the random sample of N, the expected value, without any
conditioning, is bounded by d e(j)

j , where e(j) denotes the expected
number of active vertices at time j .
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Configuration spaces [3] [9]

Abstract configuration spaces (contd.)

For d = 2, 3, this expected number is O(j). Hence, the expected
amortized cost of the jth addition is O(1), assuming that we are
given a vertex of H(N j−1) in conflict with Sj .”

Now about conflicts–How do we find a vertex of H(N j−1) in conflict
with Sj? We must have it “readymade” and so must “maintain” for
every half-space I ∈ N \ N j−1, a pointer to one vertex in H(N j−1) in
conflict with it, provided there is one indeed.

For each time i , we maintain for every halfspace I ∈ N \N i , a pointer
to one vertex in H(N i ) in conflict with it, if there is one such vertex.

During the addition of S = Si+1, we now need to update conflict
information accordingly (see Figures 3.5(c)-(e)). If the conflict pointer
from some halfspace I ∈ N \ N i+1 points to a vertex r in cap(Si+i ),
then we need to find another vertex in p ∈ H(N i+1) in conflict with I .
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Configuration spaces [3] [9]

Abstract configuration spaces (contd.)

Observe that some newly created vertex of H(N i+l), contained in
Si+1, must conflict with I .

S6
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Configuration spaces [3] [9]

Abstract configuration spaces (contd.)
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Configuration spaces [3] [9]

Abstract configuration spaces (contd.)
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Configuration spaces [3] [9]

Abstract configuration spaces (contd.)

We set j = i + 1. The part of H(N i ) cut off by Si+1 is called
cap(Si+1). If the conflict vertex r for a certain I ∈ N \ N i+1 is in
cap(Si+1) then we need to search for a new conflict vertex for I ,
which must be a newly created vertex in H(Ni+1).

The search will see old vertices in the cap but they get deleted
anyway and thus we focus only on the number k(N j ,S j , I ) of newly
created vertices in H(N j) in conflict with I , and adjacent to Sj .

The sum of the number of all such newly created vertices over all
adjacent S ∈ N j , is no more than d times the number k(N j , I ) of
vertices in H(N j) in conflict with I . Exercise: Explain why so.

The expected value 1
j ΣS∈N jk(N j , S , I ) in the j(= i + 1)th step is thus

at most d×k(N j ,I )
j , just for the the halfspace I , where k(N j , I ) denotes

the number of vertices in H(N j) in conflict with I .
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Configuration spaces [3] [9]

Abstract configuration spaces (contd.)

But this needs to be summed up over all I ∈ N \ N j , giving the upper
bound of Equation 3.2 of [3]

d

j
ΣI∈N\N jk(N j , I ) (1)

Looking from another angle, for j + 1 = i + 2, the expected value by
definition of k(N j , Sj+1) is

E [k(N j ,Sj+1))] =
1

n − j
ΣI∈N\N jk(N j , I ) (2)

because each halfspace in N \ N j is equally likely to occur as Sj+1.

Now we can write Equation 1 using Equation 2 above as

d

j
(n − j)E [k(N j ,Sj+1)]
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Configuration spaces [3] [9]

Abstract configuration spaces (contd.)

Exercise: Note that the conflicting vertices as in k(N j ,Sj+1) are deleted
when Sj+1 is processed. So, the same cost can be written as the expectation
of

Σσd
n − (j(σ)− 1)

j(σ)− 1

where σ varies over all vertices created (eventually destroyed) and j(σ) is
the time instance of destruction of σ.

The fraction n−(j(σ)−1)
j(σ)−1 can again be written as n−i(σ)

i(σ) where i(σ) is the

time instant when σ was created. Exercise: Explain why.

So, we rewrite the expected cost bound as the expectation of

Σσd
n−i(σ)
i(σ) = Σn

i=1d
n−j
j × the expected number of vertices created at time

j=Σσd
n−i(σ)
i(σ) = Σn

i=1d
n−j
j d e(j)

j . See Lemma 3.2.1 from [3] for the bound on

the expected number d
j e(j) of created vertices.

Exercise: Show that e(j) = O(j) in this case of polytope computation.
Exercise: Derive Theorem 3.2.2 based on Lemma 3.2.1 in [3].
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Range spaces and ε-nets

Range spaces [2, 1, 3, 4]

Given a set P of n points in d-dimensional real space Rd , the power
set 2P of P is the set of all the 2|P| = 2n subsets of P.

Limiting our attention to geometrically defined subsets alone, we can
consider considerably smaller subsets than the power set of P.

Consider geometric set systems as follows. A range space is defined
to be a pair (X ,R), where X is an arbitrary set, not necessarily finite,
and R is a subset of the power set of X .

Given a set P ⊆ X , define the projection of R on P as
R|P = {P ∩ Q|Q ∈ R}.
Let X = Rd and P be a set of n points in Rd . Let R consist of the
subsets of real space contained within axis-parallel rectangles.
Observe that R|P therefore has the subsets of P within the rectangles.

S P Pal Design and analysis of geometric algoruthms April 22, 2023 23 / 106



Range spaces and ε-nets

Range spaces: Measures and samples

Given a range space (P, R) and any ε > 0, a subset S ⊆ P is an ε-net if for any range Q ∈ R, if µ(Q) ≥ ε then Q

contains at least one point of S. For example, if ε = 0.2 and |P | = 24, then any range Q that contains at least

0.2x24 ≈ 5 points of P must contain at least one point of the ε-net (See Fig. (c)).

µ(Q) = 11
24 = 0.46

µ̂(Q) = 3
7 = 0.43

(a) (b)

ε-samples and ε-nets.

(c)

P
Q

Figure:
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Range spaces and ε-nets

Range spaces: Measures and samples

Not all subsets of P may lie in R|P . For example, if the point set {1, 4}
defines the opposite corners of an axis-oriented rectangle then for any point
3 inside that rectangle the set {1, 3, 4} is in RP but not the set {1,4}.
Given a range space (P,R) and any ε > 0, a subset S ⊆ P is an ε-net if for
any range Q ∈ R, if µ(Q) ≥ ε then Q contains at least one point of S . See
[2]. For example, if ε = 0.2 and |P| = 25, then any range Q that contains at
least 0.2× 25 = 5 points of P must contain at least one point of the ε-net.

The µ measure function over a subset Q of P is the fraction of points in Q
with respect to P. Instead of the whole set P we may take a subset S of P
and find the fraction of the points in Q that are in S . See [2].

This approximation of µ(Q) is termed µ′(Q). We would like this

approximation to be bounded by ε. We call such samples S of P ε-samples;

we will see that such ε-samples (or epsilon-approximations) are ε-nets.

S P Pal Design and analysis of geometric algoruthms April 22, 2023 25 / 106



Range spaces and ε-nets

Range spaces: Shattering

P

1

2

3

4

{1, 3}

{1, 2}

{3, 4}

{2, 4}

Cannot generate {1, 4} without including 3

A 4-point set and the range space of axis-parallel rectangles.

Figure:
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Range spaces and ε-nets

Range spaces: Shattering

Suppose that we do not need such a good estimate like an ε-sample,
but we just wish that any sufficently large group of the population
should contribute at least one member to the sample.

An ε-sample always does so but we may simply use an ε-net instead.

Given an arbitrary range space (X ,R) and finite point set P, we say
that R shatters P if R|P is equal to the power set of P, that is, we

can form any of the 2|P| subsets of P by taking intersections of P
with the ranges of R.

Note that if the range space is of axis-parallel rectangles then no
5-point set can be shattered. However, there are 4-point subsets that
can be shattered.

Similarly, 3-point subsets can be shattered by the range space of
circles but no 4-point subset can be shattered.

S P Pal Design and analysis of geometric algoruthms April 22, 2023 27 / 106



Range spaces and ε-nets

Range spaces: VC-dimensions: Sauer’s lemma.
See [2].

Sauer’s lemma says that the size of the range space R, is bounded by φd(n),
where d is the VC-dimension of the range space defined on n points. This
function φd(n) is the number Σd

i=1

(
n
i

)
of subsets of size at most d over a

ground set of size n.

We show that φd(n) = φd(n− 1) + φd−1(n− 1) by induction on n and d . If
a subset has a fixed element x then we need choose only d − 1 more
elements from the remaining n − 1 elements, and if it does not have x then
we need to choose all the d elements from the remaining n − 1 elements.

The proof of Sauer’s lemma is by induction on d and n. It holds trivially for
d = 0 or n = 0.

Let Rx be formed from pairs of ranges from R that are identical except that
one contains x and the other does not.

The set R \ {x} is the result of throwing x entirely out of the point set and
considering the induced sub-hypergraph of R.
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Range spaces and ε-nets

Range spaces: VC-dimensions: Sauer’s lemma.
See [2].

We show that |R| = |Rx |+ |R \ {x}|.
Charge each range of R to its corresponding range in R \ {x}. Every range
of R \ {x} receives at least one charge, but it receives two charges if there
exist two ranges that are identical except that one contains x and one does
not have x .

These extra charges are the elements of Rx .

The VC-dimension of R \ {x} cannot be larger than that of R; it is at most
d .

The range space (X \ {x},Rx) has VC-dimension d − 1; no set P ′ of size d
can be shattered. If this was the case and we were to return x back into P ′,
then pairs of ranges of R that gave rise to the ranges of Rx would then
shatter the d + 1 element set P ′ ∪ {x}.
Now apply the induction hypothesis on the φ upper bounds for

VC-dimensions of (X \ {x},Rx) and R \ {x} to bound the cardinality of R
by φd(n).
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Random sampling [5]

The method of random sampling for a set
system or hypergraph [5]

Take any set system (hypergraph) G (V ,S) where V = {v1, · · · , vn}
and S = {e1, · · · , em}; here, ei ⊆ V for all 1 ≤ i ≤ m.

Given any integer 1 ≤ r ≤ n, we wish to find a subset N ⊆ V that
intersects every ei of size greater than n

r .

We can assume that |ei | > n
r , for any i , and m > 1.

Let p = cr(log m)
n , for some large enough constant c .

Sample the set V by Binomial distribution, that is, construct the set
N by including in it vi with probability p.

Then, N ∩ ei = φ with probability less than (1− p)
n
r for a single value

of i .

The probability that N does not intersect some ei is less than
m(1− p)

n
r .
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Random sampling [5]

Binomial random sampling of the set of
vertices

We can make this probability smaller than any constant. Why?

The probability can be shown to be bounded by 1
mc−1 , which can be made

smaller than any given limiting constant as m grows beyond a certain value
for each valid choice of the constant c .

So, the sample N of expected size np = cr logm intersects every set ei of
size n

r ; note also that the random sample N is of size O(r logm) with high
probability.

Therefore, we have a way of getting random samples such as N of size
O(r logm) with high probability, so that N intersects all the sets ei of size
greater than n

r .

This was a simple randomized construction of such a set N (with high
probability), that intersects all the sets of size not lesser than n

r .

We now discuss a greedy deterministic method, and later we consider

another method, which is a derandomization of the above randomized

sampling technique.
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Determinisic construction of ε-nets [5]

Deterministic construction of ε-nets [5]

We state a greedy and deterministic way of generating an ε-net N as
follows.

Find a vertex vi contained in most sets ej ⊆ S .

Remove this vertex from further consideration and add it to N.

Then, remove all sets containing vi from future consideration.

Repeat these steps until all hyperedges from S are removed.

Show that this algorithm can be made to run in O(mn) time.
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Determinisic construction of ε-nets [5]

Deterministic construction of ε-nets

Does N turn out to be quite small as required?

Let mk be the number of hyperedges remaining after k iterations.
Clearly, m0 = m.

Sticking to the assumption that each set ei has at least n
r elements,

we now have mk sets left after the kth iteration with at least n
r

elements.

We can select any of the n− k remaining vertices in the next iteration.

We have a distribution of n − k distinct vertices in at least mk × n
r

instances over the mk sets.

So, the most frequent vertex of the mk sets must be in at least
mk× n

r
n−k ≥

mk
r sets. Why?
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Determinisic construction of ε-nets [5]

Deterministic construction of ε-nets

Hint: What is the expected number of vertices in these sets?

Thus, mk+1 ≤ mk(1− 1
r ).

So, mk ≤ m(1− 1
r )k .

For a large enough constant c > 0, and any k ≥ cr logm, we have
mk < 1, and therefore mk = 0.

In other words, picking any sufficiently large number k ≥ cr logm of
vertices we can ensure that we hit all the hyperedges that have at
least n

r vertices.

So, we can deterministically compute a 1
r -net N of size O(r logm),

greedily as above. See Theorem 4.3 in Chazelle’s book [5].
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ε-nets and VC-dimension

ε-nets, infinite sets, measures [1]

We have seen the measure µ and its approximation µ′, defining ε-samples or
ε-approximations in [2]. To deal with finite subsets in infinite continuous
spaces, we need such measures.

For infinite sets we cannot measure the size as the number of points;
suppose µ is concentrated on finitely many points in a finite set Y ⊆ X and
a there is a positive function w mapping w(y) in to (0, 1], for each y ∈ Y ,
with normalization Σy∈Yw(y) = 1; so µ is given by µ(A) = Σy∈A∩Yw(y),
for any A ⊆ Y .

So, a uniform measure over Y would assign weights 1
|Y | to each point y ∈ Y .

Let µ be a probalility measure on a set X , and let F be a system of
µ-measurable subsets of X . For ε in [0, 1], a subset N ⊆ X is called an ε-net
for range space (X ,F) with respect to µ if N meets S for all S ∈ F with
µ(S) ≥ ε. Definition 10.2.2 in [1].

The ε-net Theorem 10.2.4 in [1] due to Haussler and Welzl states that there

is a 1
r -net for (X ,F) with respect to µ of size at most Cdr ln r , where C is

an absolute constant.
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ε-nets and VC-dimension

ε-nets, infinite sets, measures (contd.) [1]

The size of this set is independent of the sizes of X and F and d is the
upper bound on the VC-dimension dim(F).

Firstly, we can drop all S from F that satisfy µ(S) < 1
r as these sets S do

not matter. Also, the probability (1− 1
r )s of a random sample N of at least

s = r ln(|F|+ 1) items, missing a fixed set out of the F sets is at most
1

|F|+1 , and thus the probability of missing “some” set out of the F sets is at

most |F|
|F|+1 < 1.

So, we can have such a big 1
r -net ! However, we need a smaller one of size

s = Cdr ln r . So we take a random sample N of size s, where each choice is
drawn independently from X using the probability distribution µ. We also
take another random sample M of similar size and construction. It really
does not matter whether or not µ is a uniform measure with each element in
Y getting the weight 1

|Y | .

Event E0 is that N misses some set in F . Event E1 is that E0 happens with N not meeting some S ∈ F as well as S
meeting M in at least k = s

2r
points.

It suffices to show that Prob[E1] ≤ Prob[E0] ≤ 2Prob[E1], and also that Prob[E1] < 1
2

. Why?
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ε-nets and VC-dimension

ε-nets, infinite sets, measures (contd.) [1]

For n trials, the expectation E(X ) = E(X1 + X2 + ... + Xn) is np(say ≥ 8) and variance npq ≤ np, where p + q = 1.

Here, we set n = s = Cdr ln r and p = 1
r

. By Chebyshev’s inequality we have

Prob[X < 1
2
np = 1

2
Cd ln r ] ≤ Prob[|X − E(X )| ≥ 1

2
np] ≤ np

( 1
2
np)2

= 4
np
≤ 1

2
; consequently,

Prob[X ≥ 1
2
np] ≥ 1

2
.

Prob[E1] ≤ Prob[E0] as E1 requires E0 to happen.

If N is fixed and M thus random and N is a 1
r -net then Prob[E1/N] = 0

because E1 cannot occur.

However, if S ∈ F with N ∩ S = φ, fix any such S as SN .

So, Prob[E1/N] ≥ Prob[|M ∩ SN | ≥ k = s
2r = 1

2np] ≥ 1
2 for all such N.

Each of these k matches is in a hyperedge SN with µ(SN) ≥ 1
r , where these

k matches may be viewed as successes in binomial sampling s times with k
successes, each with probability at least 1

r .

Since E0 happens for N, Prob[E0/N] ≤ 1 and so it is at most 2Prob[E1/N]
for all N, and thus Prob[E0] ≤ 2Prob[E1].

What remains to show now is that Prob[E1] < 1
2 , as this will show

Prob[E0] < 1.
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ε-nets and VC-dimension

ε-nets, infinite sets, measures (contd.) [1]

The draws M and N can be viewed alternatively as an initial random sample
A = (z1, z2, ..., z2s) of 2s draws from X , and then fix N as one of the

(
2s
s

)
combinations, and choose the favourable probability of

(2s−k
s )

(2s
s )

as an upper

bound for the conditional probability PS for a specific S missed by N and M
meeting at least k elements of the same set S . Note that PS is at most the
probability of the set N of s items missing S entirely, and thus at least k
items in A of S , which go into the s items in M. Why? The number of ways
to choose s items in N from A is

(
2s
s

)
, and the number of ways this choice is

done avoiding k items is
(

2s−k
s

)
.

So, PS ≤
(2s−k

s )
(2s

s )
≤ (1− k

2s )s ≤ e−( k
2s

s
) = e−

k
2 = e−

Cd ln r
4 = r−

Cd
4

This was for a fixed S ∈ F missed by N given a fixed A of 2s sized sample.
So, releasing S to be any of Φd(2s) possibilities for a fixed A of (X ,F), we
use Sauer’s lemma to show that
Prob[E1/A] ≤ (Σd

i=1

(
2s
i

)
)r−

Cd
4 ≤ ( 2es

d )d r−
Cd
4 < 1

2 , as C = 1, for d > 2,
beyond all r > r0 for some r0 [1].

As this holds for all A, we have Prob[E1] < 1
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Random sampling in geometry

Random sampling in geometry [3, 7]

We have n objects in the set N, and subsets of N can be the defining
elements of configurations comprising the set Π = Π(N) of configurations.

Let σ ∈ Π be one such configuration.

Imagine a one-dimensional space (the real line) with n distinct points and
the pairs of n points as configurations, which are actually linear intervals.

If we fix a constant r < n, we may take a random sample R of r elements,
selected out of the n elements in N.

Sampling is done without repetitions; each time an element is selected
independently and randomly.

Here, the cardinality d(σ) of the set D(σ) of triggers or defining elements of
any of these configurations σ is exactly 2.

Each configuration σ may contain (intersect) a set L(σ) of elements from N

called stoppers. The number of stoppers is denoted by l(σ) and is called the

conflict size.
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Random sampling in geometry

Random sampling in geometry

We say that σ ∈ Π is active over a subset R ⊆ N if it occurs as an
interval in H(R), the partition formed on the line by R.

This occurs if and only if R contains all the points defining σ but no
point in conflict with σ.

Such configurations are called active configurations of Π over the
random sample R.

We show (as in Theorem 5.0.1 from [3]) that with probability at least
1
2 , every active configuration over the random sample R of cardinality
r , would have conflict size O(nr log r).

Let p(σ, r) denote the conditional probability that R has no point in
conflict with σ, given that R contains the points defining σ

p(σ, r) ≤ (1− l(σ)

n
)r−d(σ) (3)
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Random sampling in geometry

Random sampling in geometry

The intuitive justification is as follows. The interval being of conflict
size l(σ), the probability of choosing a conflicting point is at least
l(σ)
n .

Since we select r − d(σ) points without conflicts, the probability
required is upper bounded as in Inequality 3.

However, since 1− x ≤ exp(−x) where exp(x) = ex , we have

p(σ, r) ≤ exp(− l(σ)

n
(r − d(σ))) (4)

Since d(σ) ≤ 2, putting l(σ) ≥ c(n ln s)/(r − 2) for some c > 1 and
s ≥ r , we get

p(σ, r) ≤ exp(−c ln s) =
1

sc
(5)

Now an active configuration σ due to the random sample R must be
such that all its defining points must be in R.
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Random sampling in geometry

Random sampling in geometry

In other words, σ ∈ Π(R).

Let this probability be q(σ, r).

The probability that σ is an active configuration in the partition
created by the random sample R is at most

p(σ, r)q(σ, r)

The probability that there is some active configuration created by the
partition due to the random sample R with conflict size lower
bounded by cn ln s

r−2 , is upper bounded by the sum of the probabilities
over all such configurations∑

σ∈Π:l(σ)> cn ln s
r−2

p(σ, r)q(σ, r)
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Random sampling in geometry

Random sampling in geometry

≤
∑

σ∈Π:l(σ)> cn ln s
r−2

q(σ, r)/sc ≤ 1

sc

∑
σ∈Π

q(σ, r)

Now the last summation in the above inequality is E (π(R)) and
π(R) = |Π(R)| = O(r2). So, choosing c > 2 we can ensure that the
probability of having a “long” active configuration in σ ∈ Π(R) is less
than 1

2 for a random sample R (Theorem 5.0.1 from [3]).
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The weak cutting lemma

The weak cutting Lemma 4.6.1 in [1]

With n lines in the plane, we can have at most O(n2) cells, and a lower

bound of at least n2

2 cells. Let L be this set of n lines.

Any triangle that cuts k lines is divided into at most 2k2 parts.

Suppose we have only t (arbitrary) triangles partitioning the whole plane
containing the arrangement of n lines, and each such triangle is cut by at
most k of the n given lines.

Since each of these at least n2

2 cells has be be covered by only t triangles,
each of which has at most 2k2 cells as stated above, we need to have
t ≥ n2

4k2 = Ω(r2) triangles, provided we fix k ≤ n
r .

We now show that a set of O(r2 log2 n) triangles can be used to ensure that
less than n

r lines of the arrangement of n lines cross each such triangle.

Use a random sample S ⊂ L of size s = 6r log n to create O(s2) regions as
follows. If there are non-triangular regions, we triangulate them.

A bad triangle T (defined by any three lines of the n lines in L) has strictly
more than k = n

r lines intersecting T .

Such a bad triangle is also called interesting if it appears in the triangulation
of S ⊂ L, as one of the O(s2) triangles created by a random sample S of
size s as mentioned above.
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The weak cutting lemma

The weak cutting lemma (contd.)

There are at most n6 interesting triangles since each triangle is defined by
three of the

(
n
2

)
points of intersections as vertices.

The probability that T is a bad triangle is less than n−6 if we choose
s = 6r log n. Why?

So, the probability that some interesting triangle is bad is strictly less than
unity, as we show now.

This probability is strictly less than
n6(1− k

n )s ≤ n6(1− 1
r )6r ln n < n6e−6 ln n = n6n−6 = 1

Therefore, there exists a random sample S of size s = 6r log n such that the
none of the O(s2) triangles induced by S meet more than n

r lines of L.

This can be used to design data structures for searching in an arrangement
of lines.

S P Pal Design and analysis of geometric algoruthms April 22, 2023 45 / 106



2d linear programming in expected linear time

2d linear programming in expected linear
time [9]

The “sickle” (Section 7.2.1) method or the “slab” method (Sections
2.2.2.1 and 7.2.1), recursively computes the common intersection of
halfplanes in the 2d plane [8].

We can represent the sequence of the common intersections of the
constraint halfplanes as C0, C1, C2,..., Cn, as we process the
halfplanes h1, h2, ...hn, even if we do not compute these common
intersections.

The current optimal for the 2d linear program vi−1 changes giving a
new optimal vi if and only if the new halfplane hi does not contain
vi−1 (see Lemma 4.5 in [9]).

Since we randomly permute the sequence of constraints, there is a
change in the current optimal in the ist step if one of the two defining
lines for the new optimal is the ist constraint.
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2d linear programming in expected linear time

2d linear programming in expected linear
time [9]

This happens only if one of the two halfplanes defining the edges
incident on the current optimal vi is hi (which happens with
probability 2

i−2 ), provided more than two halfplane boundaries do pass
through vi (Theorem 4.8 in [9]).

The random permutation renders each of the i halfplanes to appear
as the ist constraint in the processing of constraints with equal
probability.

In cases the current optimal shifts, we need to find its location on the
bounding line of hi in O(i) time, solving a 1d linear program ! See
Lemma 4.6 and Figure 4.6 in [9].

Whence, the expected running time is Σn
i=1( 2

i−2 )O(i) = O(n).
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Computing Voronoi diagrams

Computing the Voronoi diagram [8]

Theorem 5.8 [8] says that every vertex of the Voronoi diagram must
be the circumcentre of a circle with three sites defining the circle,
such that the circle contains no site inside it.

Theorem 5.9 says that Voronoi edges are defined by neighbouring
pairs of sites.

Theorem 5.10 says that all unbounded regions correspond to excatly
the convex hull vertices.

See Figures 5.25 (a) and (b) of the two vertically separated subsets of
roughly equal sizes, along with their respective Voronoi diagrams,
overlapping in the plane.

Figures 5.26, 5.27 and 5.28 depict the merging step that computes
the convex hull of the entire set of points from the two hulls in Figure
5.25.
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Computing Voronoi diagrams

Computing the Voronoi diagram [8] contd.

We start with the (perpendicular) bisector of the vertices of the upper
common tangent and move downwards towards the edges of the two
hulls along the (would-be) zig-zag polyline σ.

This polyline σ is made up of bisectors of sites from opposite sides,
thus defining the final convex hull, cuttting and pruning off some
edges of both previous Voronoi diagrams.

The downwards ride along σ has one or more right (left) turns when
it crosses edges of the right (left) hull, keeping the left (right) hull
vertex unchanged for the new bisector and switching over to a
neighbour of the current right (left) hull vertex of the current
bisector, for the new edge (bisector) along σ.
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Computing Voronoi diagrams

Computing the Voronoi diagram [8] contd.

A clockwise (counterclockwise) traversal of the current left (right)
hull face prudently avoids repeated scans for intersection points of the
changing right (left) turning edges of σ for the final exit, a left (right)
turn, on the current left (right) hull face with a left (right) turn. See
Figures 5.28 and 5.29.

This kind of traversal permits linear time computation of the path σ.
The DCEL data structures of both hulls are merged into a single one
for the merged hull with the pruning off of right (left) hull edges on
the right (left) sides of σ. The necessary boundary edges of
intersected hull faces are inserted as edges, the edges of σ.
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Fortune’s sweepline algorithm

Online Voronoi diagram computation,
Chapter 7 [9]

We sweep a horizontal line downwards through the n sites and stop at
”site” events and other events to take actions.

A ”beachline” lower envelope of certain vertical parabolas is
maintained as an x-monotone chain.

The parabolas grow in width from a start that is just a thin segment
when the ”site” event triggers the respective parabola on.

The lower envelope of the parabolas has precisely those points p
which have minimal vertical distance from the sweepline, from
amongst the distances of p from all the sites; the focus of the
parabola is a site that is of the same distance from the lower envelope
point p, as its vertical distance from the sweepline. The algorithm
maintains a portion of the Voronoi diagram which does not change
due to the appearance of further new sites below sweep line.
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Fortune’s sweepline algorithm

Online Voronoi diagram computation [9]
(contd.)

Consequently, every instant as we sweep, any two neighbouring
parabolas must be meeting at a point p of a Voronoi edge; the point
p is at minimal distance from the sweep line and also equidisdant
from two (closest) sites, and thus a point on a Voronoi edge.

If a new arc (parabola) appears on the beach line through an event
other than through a site event (like if a new parabola breaches
through the beachline, overtaking the beachline), then we can derive
a contradiction.

There can therefore be at most 2n − 1 parabolic arcs on the
beachline. How?

A shrinking arc that corresponds to a site which has distinct
neighbours, whose respective flanking sites define converging Voronoi
edges (edges reaching out to meet at a Voronoi vertex), vanishes.
This is called a ”circle” event.
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Fortune’s sweepline algorithm

Online Voronoi diagram computation [9]
(contd.)

These three sites define their circumcentre (a Voronoi vertex), of an
empty circle.

Now we will see how the steps for incrementally updating the Voronoi
diagram on each event is aided by three differnt kinds of data
structures- the DCEL, the dynamically balanced binary search tree,
and a priority queue.
All Voronoi vertices are detected at circle events; a circle event
created may however be a false alarm and in that case will be
destroyed subsequent to its creation. Why?
The tree that stores the beach line permits
insertion/deletion/splitting of parabolas in logarithmic time, where
the parabolas are stored symbolically, not explicitly. Why?
After all site events and circle events are done, the beachline may
continue with the infinite edges of open cells of the Voronoi diagram.
The total cost is O(n log n).
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Computing using higher dimensional structure

Halfplane intersections and Voronoi
diagrams [9] Chapter 11

If all points q closest to a site p (and no other points) can be lifted to
a halfplane h(p) corresponding to the point p, then that part of h(p)
can be projected back to the Voronoi region for p.

So, all such halfplanes can be used to compute their upper halfplanes’
intersections.

Points of other Voronoi cells would land up in other similar halfplanes.

This is brought about by Theorem 11.8 in [9] by showing first that
q(r) lies lower than q(p) for all sites r 6= p by using the fact that
q(p)q distance is the square of the distance pq.

Let z = x2 + y2 denote the unit paraboloid U. Let p = (px , py , 0).
Consider the vertical line through p intersecting U in the point
p′ = (px , py , p

2
x + p2

y ). Let h(p) be the non-vertical plane
z = 2pxx + 2pyy − (p2

x + p2
y ). Notice that h(p) contains the point p′.
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Computing using higher dimensional structure

Halfplane intersections and Voronoi
diagrams

Like p and p′ we define for any point q in the Voronoi cell of p, the
points q′ on the paraboloid and a point q(p) on the plane h(p), and
show that q′q(p) = dist2(p, q).

We know that dist(q, p) < dist(q, r) for all r ∈ P with r 6= p. We
show that the vertical line through q intersects the upper envelope of
the planes at a point lying on h(p).

Recall that for a point r ∈ P, the plane h(r) is intersected by the
vertical line through q at the point
q(r) = (qx , qy , q

2
x + q2

y − dist2(q, r)).

Of all points in P, the point p has the smallest distance to q, so q(p)
is the highest intersection point.

Hence, the vertical line through q intersects the upper envelope at a
point lying on h(p).
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Optimal online convex hull computation

Online convex hull computation [8]

We need to maintain the convex hull as we add the new point pi to the
convex hull CH(Si−1), yielding CH(Si ), where Si = Si−1 ∪ {pi}. (Pages
119-124, Theorem 3.11)

The new point pi can be anywhere in the plane.

One way is to compute the two tangents form pi to CH(Si−1).

We show how we can use concatenable queues for storing convex hulls to
achieve this goal in O(log n) time where n is the total number of points
processed.

Let m be the left end, M be the median or the middle point and α be the
counterclockwise angle ∠mpiM.

The first four cases have α convex (≤ π) and the last four have it reflex
(> π) (See Figure 3.16 [8]).
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Optimal online convex hull computation

Online convex hull computation (contd.) [8]

If m and M are both concave (or nonconcave-reflex) incidences, then the
same subtree R(M) (L(M)), will receive both tangents (Cases (1) and (3),
Figure 3.16).

Cases 1 and 2 are complemetary about M, with M turning nonconcave
from concave, so the right tangent remains on R(M) (as in Case 1) but
the left tangent goes to T − R(M), including M. Case 4 changes m from
concave in Case 1 to nonconcave, making the right tangent land on L(M).
Also M becomes nonreflex, that is, either supporting or reflex, making the
left tangent land on T − L(M). Cases 5-8 are just replicas of Case 1-4
with roles of m and M exchanged and the ∠mpiM being reflex.

Note that in all the eight cases we can discard search on one half of the
concatenable queue for either tangent, making the search for both
tangents logarithmic.
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Range searching

1-dimensional Range searching

a b

Problem: Given a set P of n points {p1, p2, · · · , pn} on the real line,
report points of P that lie in the range [a, b], a ≤ b.

Using binary search on an array we can answer such a query in
O(log n + k) time where k is the number of points of P in [a, b].

However, when we permit insertion or deletion of points, we cannot
use an array answering queries so efficiently.
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Range searching 1-d range searching

1-dimensional Range searching

2 4 7 13 20 22 26 35

2
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35
4
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22

Search range [6,25]

7 13 20 22

Report 7,13,20,22

26

We use a binary leaf search tree where leaf nodes store the points on
the line, sorted by x-coordinates.

Each internal node stores the x-coordinate of the rightmost point in
its left subtree for guiding search.
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Range searching 2-d range searching

2-dimensional Range Searching

1
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2

Q

Problem: Given a set P of n points in the plane, report points inside
a query rectangle Q whose sides are parallel to the axes.

Here, the points inside R are 14, 12 and 17.
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Range searching 2-d range searching

2-dimensional Range Searching

1

3 4

5

6
7

8

9
11

12

1315
16

17

14

10

2

Q

Using two 1-d range queries, one along each axis, solves the 2-d range
query.

The cost incurred may exceed the actual output size of the 2-d range
query.
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Range searching Range trees and kd-trees

Range searching with range trees and
Kd-trees

Given a set S of n points in the plane, we can construct a 2d-range
tree in O(n log n) time and space, so that rectangle queries can be
executed in O(log2 n + k) time.

The query time can be improved to O(log n + k) using the technique
of fractional cascading.

Given a set S of n points in the plane, we can construct a Kd-tree in
O(n log n) time and O(n) space, so that rectangle queries can be
executed in O(

√
n + k) time. Here, the number of points in the query

rectangle is k.
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Range searching Range searching with 2-d range trees

Range searching in the plane using range
trees

a b

Given a 2-d rectangle query [a, b]X [c , d ], we can identify subtrees whose
leaf nodes are in the range [a, b] along the X-direction.

Only a subset of these leaf nodes lie in the range [c , d ] along the
Y-direction.S P Pal Design and analysis of geometric algoruthms April 22, 2023 63 / 106



Range searching Range searching with 2-d range trees

Range searching in the plane using range
trees

assoc(v)

v

T

T

p

p

p

p

T

Tassoc(v) is a binary search tree on y-coordinates for points in the leaf
nodes of the subtree tooted at v in the tree T .

The point p is duplicated in Tassoc(v) for each v on the search path for p
in tree T .

The total space requirement is therefore O(n log n).
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Range searching Range searching with 2-d range trees

Range searching in the plane using range
trees

a b

We perform 1-d range queries with the y-range [c , d ] in each of the
subtrees adjacent to the left and right search paths within the x-range
[a, b] in the tree T .

Since the search path is O(log n) in size, and each y-range query requires
O(log n) time, the total cost of searching is O(log2 n). The reporting cost
is O(k) where k points lie in the query rectangle.
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Range searching Range searching with 2-d range trees

2-range tree searching
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Range searching Range searching with 2-d range trees

2-range tree searching
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Range searching Range searching using kd-trees

Partition by the median of x-coordinates
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Range searching Range searching using kd-trees

Partition by the median of y-coordinates
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Range searching Range searching using kd-trees
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Range searching Range searching using kd-trees
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Range searching Range searching using kd-trees

2-dimensional range searching using Kd-trees
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Range searching Range searching using kd-trees

Description of the Kd-tree
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The tree T is a perfectly height-balanced binary search tree with
alternate layers of nodes spitting subsets of points in P using x- and
y- coordinates, respectively as follows.

The point r stored in the root vertex T splits the set S into two
roughly equal sized sets L and R using the median x-cooordinate
xmedian(S) of points in S , so that all points in L (R) have abscissae
less than or equal to (strictly greater than) xmedian(S).

The entire plane is called the region(r).
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less than or equal to (strictly greater than) xmedian(S).

The entire plane is called the region(r).

S P Pal Design and analysis of geometric algoruthms April 22, 2023 74 / 106



Range searching Range searching using kd-trees

Description of the Kd-tree

1

2

3
4

5

6

7

8

9

10

11

12

13
15

16

17

14

L R

RU

RD

LU

LD
8

LU LD RD

RL

S

2 14 6
11

4

16

1 2 3 16
15 14 13 12 5 6 7 8 17 10 11 9

4

RU

The tree T is a perfectly height-balanced binary search tree with
alternate layers of nodes spitting subsets of points in P using x- and
y- coordinates, respectively as follows.

The point r stored in the root vertex T splits the set S into two
roughly equal sized sets L and R using the median x-cooordinate
xmedian(S) of points in S , so that all points in L (R) have abscissae
less than or equal to (strictly greater than) xmedian(S).

The entire plane is called the region(r).

S P Pal Design and analysis of geometric algoruthms April 22, 2023 74 / 106



Range searching Range searching using kd-trees

Answering rectangle queries
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A query rectangle Q may (i) overlap a region, (ii) completely contain
a region, or (iii) completely miss a region.

If R contains the entire bounded region(p) of a point p defining a
node N of T then report all points in region(p).
If R misses the region(p) then we do not treverse the subtree rooted
at this node.
If R overlaps region(p) then we check whether R also overlaps the
two regions of the children of the node N.
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Range searching Range searching using kd-trees

2-dimensional Range Searching: Kd-trees
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The set L (R) is split into two roughly equal sized subsets LU and LD
(RU and RD), using point u (v) that has the median y -coordinate in
the set L (R), and including u in LU (RU).

The entire halfplane containing set L (R) is called the region(u)
(region(v)).
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Range searching Range searching using kd-trees

Nodes traversed in the Kd-tree
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Range searching Range searching using kd-trees

Time complexity of output point reporting

Reporting points within R contributes to the output size k for the
query.

No leaf level region in T has more than 2 points.

So, the cost of inspecting points outside R but within the intersection
of leaf level regions of T can be charged to the internal nodes
traversed in T .

This cost is borne for all leaf level regions intersected by R.
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Range searching Range searching using kd-trees

Worst-case cost of traversal

It is sufficient to determine the upper bound on the number of
(internal) nodes whose regions are intersected by a single vertical
(horizontal) line.

Any vertical line intersecting S can intersect either L or R but not
both, but it can meet both RU and RD (LU and LD).

Any horizontal line intersecting R can intersect either RU or RD but
not both, but it can meet both children of RU (RD).
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Range searching Range searching using kd-trees

Time complexity of rectangle queries for
Kd-trees

v

lc(v)

R1 R2

Therefore, the time complexity T (n) for an n-vertex Kd-tree obeys
the recurrence relation

T (n) = 2 + 2T (
n

4
)

T (1) = 1

The solution for T (n) = O(
√

(n)).

The total cost of reporting k points in R is therefore O(
√

(n) + k).
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Range searching Other kinds of range searching

More general queries

General Queries:

Triangles can be used to simulate polygonal shapes with straight
edges.

Circles cannot be simulated by triangles either.
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Range searching Other kinds of range searching

Triangle queries

Using O(n2) space and time for preprocessing, triangle queries can be
reported in O(log2 n + k)) time, where k is the number of points
inside the query triangle.

For counting the number k of points inside a query triangle,
worst-case optimal O(log n) time suffices.

Goswami, Das and Nandy: Comput. Geom. Th. and Appl. 29 (2004) pp.
163-175.
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Interval trees

Finding intervals containing a vertical query
line/segment

A

B

C

D

E

F

G

H

xquery

queryx’   

y’

y

Simpler queries ask for reporting all intervals intersecting the vertical line
X = xquery .

More difficult queries ask for reporting all intervals intersecting a vertical
segment joining (x ′query , y) and (x ′query , y

′).S P Pal Design and analysis of geometric algoruthms April 22, 2023 84 / 106



Interval trees

Constructing the interval tree

1. F

2. F

1. H

2. H

1. G

2. G1. C−D

2. D−C

1. A−E−B

2. B−E−A

A

B

C

D

E

F

G

H

xmid

M

L R

M

L
R

I

The set M has intervals intersecting the vertical line X = xmid , where xmid

is the median of the x-coordinates of the 2n endpoints.

The root node has intervals M sorted in two independent orders (i) by
right end points (B-E-A), and (ii) left end points (A-E-B).
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Interval trees

Answering queries using an interval tree

1. F

2. F

1. H

2. H

1. G

2. G1. C−D

2. D−C

1. A−E−B

2. B−E−A

A

B

C

D

E

F

G

H

xmid

M

L R

M

L
R

I

The set L and R have at most n endpoints each.

So they have at most n
2 intervals each.

Clearly, the cost of (recursively) building the interval tree is O(n log n).

The space required is linear.

S P Pal Design and analysis of geometric algoruthms April 22, 2023 86 / 106



Interval trees

Answering queries using an interval tree

xmidxquery queryx’

A

B

C

D

E

F

G

H

List 2List 1

(Only A & E) (Only B)

M

A,E,B B,E,A

R

L

For xquery < xmid , we do not traverse subtree for subset R.

For x ′query > xmid , we do not traverse subtree for subset L.

Clearly, the cost of reporting the k intervals is O(log n + k).
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Interval trees

Reporting (portions of) all rectilinear
segments inside a query rectangle

For detecting segments with one (or both) ends inside the rectangle, it is
sufficient to maintain rectangular range query apparatus for
output-sensitive query processing.
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Interval trees

Reporting segments with no endpoints inside
the query rectangle

Report all (horizontal) segments that cut across the query rectangle or include an
entire (top/bottom) bounding edge.

Use either the right (or left) edge, and the top (or bottom) edge of the query

rectangle.
S P Pal Design and analysis of geometric algoruthms April 22, 2023 89 / 106



Interval trees

Right edges X and X’ of two query
rectangles

X
X’

X
mid

A

B

C
D

Use an interval tree of all the horizontal segments and the right bounding edge of
the query rectangle like X or X’.
This helps reporting all segments cutting the right edge of the query rectangle.
Use the rectangle query for vertical segment X and find points A, B and C in the
rectangle with left edge at minus infinity. For X’, report B, C and D, similarly.
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Computing visible regions using angular sweep

Computing the visible region in a polygon
with opaque obstacles
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Computing visible regions using angular sweep

Computing the visible region in a polygon
with opaque obstacles

A

B

C
D

E

F

GH

I J

K

L

M

O

P

Q
R

S

Z

12

3

4

6

7

N

5

SQ,SR,DC,1−−>SQ,SR,DE,2−−>DE,3−−>

FG,FE,DE,4−−>NP,NO,FG,FE,DE,5−−>

NP,NO,FG,FE,DE,6−−>LM,MK,NP,NO,FG,7

Z6,NP−−>Z7, NP and LM

Z4,FG and DE−−>Z5,NP and FG−−>

Z1 ,SQ−−>Z2,SQ−−>Z3,DE−−>

S P Pal Design and analysis of geometric algoruthms April 22, 2023 93 / 106
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Computing the visible region in a polygon
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Computing visible regions using angular sweep

Computing the visible region in a polygon
with opaque obstacles
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Computing visible regions using angular sweep

Computing the visible region in a polygon
with opaque obstacles
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Computing visible regions using angular sweep

Planar point location by triangulation
refinement
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Computing visible regions using angular sweep

Planar point location by triangulation
refinement
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Computing visible regions using angular sweep

Planar point location by triangulation
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Computing visible regions using angular sweep
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Computing visible regions using angular sweep

Planar point location by triangulation
refinement
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Computing visible regions using angular sweep

Planar point location by triangulation
refinement
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Computing visible regions using angular sweep

Planar point location by triangulation
refinement
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Computing visible regions using angular sweep

Planar point location by triangulation
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