
Chan’s optimal output- sensitive convex hull
algorithm

CS60064: Computational Geometry: Spring 2023
Instructor: Sudebkumar Prasant Pal

Teaching Assistants: Prosenjit Kundu and Sandipan Bera

January 14, 2023

Given a set P of n points in the plane, we wish to compute the convex
hull of P . The convex hull of a set of points in the plane is the smallest
convex polygon containing the points.

Figure 1: A set of points (blue) and its convex hull (black)

Chan’s algorithm finds out the convex hull in O(n log h) time, where h
is the number of vertices on the hull. It uses Graham’s Scan and Jarvis’s
March for finding the convex hull.

We must run Graham’s scan on less than n points so that we get an
overall complexity of O(n log h. We choose a sets of size m and hope that
h ≤ m ≤ h2, though we do not know h apriori. So, our guesses for m can
start from 2 and grow towards the unknown h, or evencross h towards say
a maximum of h2. Since, there are m points in a group, the number of
groups is d n

m
e. Lets denote it by r. Using Graham’s Scan on each group

takes O(m logm) time. So, total time for Graham’s Scan on r groups is

1



O(rm logm) = O(n logm).

Now, we need to run Jarvis’s March for merging the r hulls into a single
hull. We know that the time required for computing the tangents between
a point and convex m-gon is O(logm). For finding the next hull vertex, we
need to find tangents to each of the r hulls. We need to find h hull vertices.
Hence, the time complexity for Jarvis’s March step becomes O(hr logm) =
O((hn/m) logm). Combining the two steps, we get a time complexity of
O((n + (hn/m)) logm). If h ≤ m ≤ h2, the time complexity is O(n log h).
However, we do not know h, so we try many values for m, increasing m
gradually.

Pk − 1

q2q4

q3

Pk

q1

Figure 2: Modified Jarvis’ march

PartialHull(P; m) :

(1) Let r = d(n/m)e. Partition P into disjoint subsets P (1), P (2), ...P (r),
each of size at most m.

(2) For i = 1 to r do: (a) ComputeHull(P (i)) using Graham’s scan and
store the vertices in an ordered array.

(3) Let p(0) = (−Inf ; 0) and let p(1) be the bottommost point of P .

(4) For k = 1 to m do:

2



(a) For i = 1 to r do: Compute point q in P (i) that maximizes the angle
p(k − 1)p(k)q

(b) Let p(k + 1) be the point q in q(1), q(2), ...q(r), that maximizes the
angle p(k − 1)p(k)q.

(c) If p(k + 1) = p(1) then return p(1), p(2), ...p(k).

(5) Else return ‘m was too small, try again’.

We do not know the value of h. If we try m = 1, 2, 3, ...,, then time com-
plexity becomes O(nh log h) which is too slow. Instead, we can use doubling
search and try m = 1, 2, 4, 8, ...2t until it succeeds. This results in a time com-
plexity of O(n log2 h) which is again slow. We can try m = 2, 4, 16, 256, ..., 22t .

In this case, we will find the correct value of m when 22t ≥ h. In total,
we need to try t = dlog log he different values of m. So, the running time is
at most a multiple of

∑log log h
t=1 n2t = n

∑log log h
t=1 2t ≤ n21+log log h = 2n2log log h =

2n log h = O(n log h)

3


