
Implementation of Geometric Algorithms
for visibility problems

Bachelor of Technology Project Report
-under the supervision of Prof. Sudebkumar Prasant Pal

L ASWANTH KUMAR
13CS30019

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR

Department of Computer Science and Engineering
INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

AUGUST 2016

TABLE OF CONTENTS

Page

1 Geometric Implementations-CGAL Software 1
1.1 Introduction to CGAL Software . 2

1.1.1 Goal and Examples . 2

1.1.2 Various Real-world projects using CGAL . 2

1.1.3 Benefits of using CGAL . 3

1.1.4 CGAL concepts . 3

1.2 Important CGAL Packages . 4

1.2.1 Arthimetic and Algebraic . 4

1.2.2 Convex Hull . 5

1.2.3 Polygons . 6

1.2.4 Triangulations . 6

1.2.5 2D Visibility . 8

2 Art Gallery Problem 11
2.1 Art Gallery Implementation with high precision . 11

2.1.1 Introduction . 11

2.1.2 Objective of our Implementation . 12

2.1.3 Methods of Implementation and Program . 12

2.1.4 Correctness and Precision . 16

Bibliography 21

i

C
H

A
P

T
E

R

1
GEOMETRIC IMPLEMENTATIONS-CGAL SOFTWARE

Abstract

This thesis summarizes the various implementations of geometric Algorithms. The im-
plementation would require the easy way of representing the various geometric notations.
In this session we propose a method for easy way of implementing such geometric figures or
notation how they are represented and how they are used to solve the various problems in
simple and easy manner. The paper briefly discuss about the usage of software CGAL (Compu-
tation Geometry Algorithms Library), an open software which was was founded and initially
developed by a consortium consisting of ETHZ

p
žrich (Switzerland), FreieUniversit

p
§t

Berlin (Germany), INRI ASophia− Antipolis (France), Martin−Luther−Universit
p

§t
Halle-Wittenberg (Germany), Max−PlanckInstitut f

p
žrInf ormatik, Saarbr

p
žcken (Ger-

many), RISCLinz (Austria) Tel − AvivUniversity (Israel), and UtrechtUniversity (The
Netherlands).

1

CHAPTER 1. GEOMETRIC IMPLEMENTATIONS-CGAL SOFTWARE

1.1 Introduction to CGAL Software

1.1.1 Goal and Examples

The goal of the CGAL Open Source Project is to provide easy access to efficient and

reliable geometric algorithms in the form of a C++ library.The Computational Geometry

Algorithms Library offers data structures and algorithms like triangulations, Voronoi

diagrams, Polygons, Cell Complexes and Polyhedra, arrangements of curves, mesh generation,

geometry processing, convex hull algorithms, to name just a few.

All these data structures and algorithms operate on geometric objects like points and seg-

ments, and perform geometric tests on them. These objects and predicates are regrouped in

CGAL Kernels.Finally, the Support Library offers geometric object generators and spatial sorting

functions, as well as a matrix search framework and a solver for linear and quadratic programs.

It further offers interfaces to third party software such as the GUI libraries Qt, Geomview, and

the Boost Graph Library.

1.1.2 Various Real-world projects using CGAL

List of projects which uses CGAL are as follow:

Architecture,BuildingsModeling,UrbanModeling

Astronomy

ComputationalGeometryandGeometricComputing

ComputerGraphics

ComputationalTopologyandShapeMatching

ComputerV ision, ImageProcessing,Photogrammetry

Games,V irtualWorlds

GeographicInf ormationSystems

GeologyandGeophysics

GeometryProcessing

MedicalModelingandBiophysics

MeshGenerationandSur f aceReconstruction

2Dand3DModelers

MolecularModeling

MotionPlanning

ParticlePhysics, Materials, Nanostructures, Microstructures,FluidD ynamics

Peer− to−PeerV irtualEnvironment

SensorNetworks

2

1.1. INTRODUCTION TO CGAL SOFTWARE

1.1.3 Benefits of using CGAL

CGAL produces correct results, in spite of intermediate roundoff errors. If three lines meet in one

point, they will do so in CGAL as well, and if a fourth line misses this point by 1.0e-380, then it

also misses it in CGAL. Situations that are sometimes tagged as "degenerate" (like a 3-D point

set actually living in a 2-D plane) are properly handled by CGAL. In fancy terms, this is called

the exact computation paradigm, and it ultimately relies on computing with numbers of arbitrary

precision. The exact computation paradigm is not an invention of CGAL, but CGAL is probably

the place that implements it at a large scale.

Such guaranteed correctness requires that CGAL is properly used (see the FAQ section on

using inexact number types), and it comes at a price: compared to algorithms that use fixed-

precision numbers only, the performance is lower. In the best case (as in computing Delaunay

triangulations in 3-space), the overhead is around 25%. This is possible because CGAL tracks

error bounds and resorts to extended precision only when this is really needed.

In CGAL, we write the high-level algorithms in terms of a well-chosen set of basic questions

(where is a point with respect to a line?) and basic objects (like a circle through three points).

Doing this in the right way is not always easy, but once it is done, we have outsourced all the

numerical issues, and we only have to make sure that the part of CGAL concerned with the basics

returns correct results. Given this, the algorithms on top of it just work. Not in most cases, but

always!

Getting the underlying basics always right must obviously involve something beyond naive

floating-point computations, and it indeed does. The details are pretty complex, but what essen-

tially happens is that we increase the numerical precision of the computations, if necessary, by

using numbers that in principle allow arbitrary precision. These techniques are constantly being

refined, with the goal of increasing the overall performance of the high-level algorithms under

the exact computation paradigm.

1.1.4 CGAL concepts

All CGAL header files are in the subdirectory include/CGAL. All CGAL classes and functions

are in the namespace CGAL. Classes start with a capital letter, global function with a lowercase

letter, and constants are all uppercase. The dimension of an object is expressed with a suffix.The

geometric primitives, like the point type, are defined in a kernel. A predicate has a discrete set of

possible results, whereas a construction produces either a number, or another geometric entity.

3

CHAPTER 1. GEOMETRIC IMPLEMENTATIONS-CGAL SOFTWARE

1.2 Important CGAL Packages

1.2.1 Arthimetic and Algebraic

CGAL is targeting towards exact computation with non-linear objects, in particular objects

defined on algebraic curves and surfaces. As a consequence types representing polynomials,

algebraic extensions and finite fields play a more important role in related implementations. This

package has been introduced to stay abreast of these changes.

The built-in number types float, double and long double have the required arithmetic and

comparison operators. They lack some required routines though which are automatically included

by CGAL. All built-in number types of C++ can represent a discrete (bounded) subset of the

rational numbers only. We assume that the floating-point arithmetic of your machine follows Ieee

floating-point standard. Since the floating-point culture has much more infrastructural support

(hardware, language definition and compiler) than exact computation, it is very efficient. An

algebraic structure is considered exact, if all operations required by its concept are computed

such that a comparison of two algebraic expressions is always correct. An algebraic structure is

considered as numerically sensitive, if the performance of the type is sensitive to the condition

number of an algorithm. Note that there is really a difference among these two notions, e.g., the

fundamental type int is not numerical sensitive but considered inexact due to overflow.

The package introduces a concept Pol ynomial_d, a concept for multivariate polynomials in

d variables. Though the concept is written for an arbitrary number of variables, the number of

variables is considered as fixed for a particular model of Pol ynomial_d. The concept also allows

univariate polynomials.

First of all a model of Pol ynomial_d is considered as an algebraic structure, that is, the ring

operations +,‚àí,‚ãÖ are provided due to the fact that Pol ynomial_d refines at least the concept

IntegralDomainWithoutDivision. However, a model of Pol ynomial_d has to be accompanied by

a traits class Pol ynomial_traits_d<Pol ynomial_d> being a model of Pol ynomialTraits_d.

This traits class provides all further functionalities on polynomials.

4

1.2. IMPORTANT CGAL PACKAGES

1.2.2 Convex Hull

A subset S of R2 is convex if for any two points p and q in the set the line segment with endpoints

p and q is contained in S. The convex hull of a set S is the smallest convex set containing S. The

convex hull of a set of points P is a convex polygon with vertices in P. A point in P is an extreme

point (with respect to P) if it is a vertex of the convex hull of P. A set of points is said to be strongly

convex if it consists of only extreme points.

Each of the convex hull functions presents the same interface to the user. That is, the user

provides a pair of iterators, first and beyond, an output iterator result, and a traits class traits.

The points in the range [first, beyond) define the input points whose convex hull is to be computed.

The counterclockwise sequence of extreme points is written to the sequence starting at position

result, and the past-the-end iterator for the resulting set of points is returned. The traits classes

for the functions specify the types of the input points and the geometric primitives that are

required by the algorithms. All functions provide an interface in which this class need not be

specified and defaults to types and operations defined in the kernel in which the input point type

is defined.

The functions is_ccw_strongly_convex_2() and is_cw_strongly_convex_2() check whether a

given sequence of 2D points forms a (counter)clockwise strongly convex polygon. These are used

in post condition testing of the two-dimensional convex hull functions.

5

CHAPTER 1. GEOMETRIC IMPLEMENTATIONS-CGAL SOFTWARE

1.2.3 Polygons

A polygon is a closed chain of edges. Several algorithms are available for polygons. For some of

those algorithms, it is necessary that the polygon is simple. A polygon is simple if edges don’t

intersect, except consecutive edges, which intersect in their common vertex.

The following algorithms are available:

1. f indthele f tmost, rightmost, topmostandbottommostvertex.

2.computethe(signed)area.

3.checki f apol ygonissimple.

4.checki f apol ygonisconvex.

5. f indtheorientation(clockwiseorcounterclockwise)

6.checki f apointl iesinsideapol ygon.

The type Polygon_2 can be used to represent polygons. Polygons are dynamic. Vertices can be

modified, inserted and erased. They provide the algorithms described above as member functions.

Moreover, they provide ways of iterating over the vertices and edges. Currently, the Polygon_2

class is a nice wrapper around a container of points, but little more. Especially, computed values

are not cached. That is, when the Polygon_2::is_simple() member function is called twice or more,

the result is computed each time anew.

1.2.4 Triangulations

6

1.2. IMPORTANT CGAL PACKAGES

A two dimensional triangulation can be roughly described as a set T of triangular facets such

that:

1. two facets either are disjoint or share a lower dimensional face (edge or vertex).

2. the set of facets in T is connected for the adjacency relation.

3. the domain UT which is the union of facets in T has no singularity.

Each facet of a triangulation can be given an orientation which in turn induces an orientation

on the edges incident to that facet. The orientation of two adjacent facets are said to be consistent

if they induce opposite orientations on their common incident edge. A triangulation is said to be

orientable if the orientation of each facet can be chosen in such a way that all pairs of incident

facets have consistent orientations.

The data structure underlying CGAL triangulations allows the user to represent the com-

binatorics of any orientable two dimensional triangulations without boundaries. On top of this

data structure, the 2D triangulations classes take care of the geometric embedding of the trian-

gulation and are designed to handle planar triangulations. The plane of the triangulation may be

embedded in a higher dimensional space.

Because a triangulation is a set of triangular faces with constant-size complexity, triangu-

lations are not implemented as a layer on top of a planar map. CGAL uses a proper internal

representation of triangulations based on faces and vertices rather than on edges. Such a rep-

resentation saves storage space and results in faster algorithms [3]. The basic elements of the

representation are vertices and faces. Each triangular face gives access to its three incident

vertices and to its three adjacent faces. Each vertex gives access to one of its incident faces and

through that face to the circular list of its incident faces.

7

CHAPTER 1. GEOMETRIC IMPLEMENTATIONS-CGAL SOFTWARE

1.2.5 2D Visibility

This package provides functionality to compute the visibility region within polygons in two dimen-

sions. The package is based on the package 2D Arrangements and uses CGAL::Arrangement_2 as

the fundamental class to specify the input as well as the output. Hence, a polygon P is represented

by a bounded arrangement face f that does not have any isolated vertices and any edge that is

adjacent to f separates f from another face. Note that f may contain holes. Similarly, a simple

polygon is represented by a face without holes.

As illustrated in Figure the visibility region Vq of a query point q may not be a polygon. In the

figure, all labeled points are collinear, which implies that the point c is visible to q, that is, the

segment bc is part of Vq. We call such low dimensional features that are caused by degeneracies

needles. However, for many applications these needles are actually irrelevant. Moreover, for some

algorithms it is even more efficient to ignore needles in the first place. Therefore, this package

offers also functionality to compute the regularized visibility area.

Answering visibility queries is, in many ways, similar to answering point-location queries.

Thus, we use the same design used to implement 2D Arrangements point location. Each of the

various visibility class templates employs a different algorithm or strategy for answering queries.

Similar to the point-location case, some of the strategies require preprocessing. Thus, before

a visibility object is used to answer visibility queries, it must be attached to an arrangement

object. Afterwards, the visibility object observes changes to the attached arrangement. Hence, it

is possible to modify the arrangement after attaching the visibility object. However, this feature

should be used with caution as each change to the arrangement also requires an update of the

auxiliary data structures in the attached object.

8

1.2. IMPORTANT CGAL PACKAGES

The following example shows how to obtain the regularized visibility region using the model

Triangular_expansion_visibility_2, see Figure The arrangement has six bounded faces and an

unbounded face. The query point q is on a vertex. The red arrow denotes the halfedge pq, which

also identifies the face in which the visibility region is computed.

Shown in the figure visibility region of p4 to the polygon.

This can be implemented which gives the resultant visibility region as the polygon with holes.

Given the art gallery problem such that polygon with holes was given as input and some location

of random guards was also given, then we can check the visibility regions for each guard which

would result in number guard numbered polygons with holes.

bool join(constT ype1&p1, constT ype2&p2,General_pol ygon_with_holes_2&res);

We need to find the union of all those polygons which can also be implemented with function

signature as above. Further, we can make improvements to the heuristics in order to find the

minimum guard set in case of point guards.

9

C
H

A
P

T
E

R

2
ART GALLERY PROBLEM

2.1 Art Gallery Implementation with high precision

2.1.1 Introduction

The art gallery problem or museum problem is a well-studied visibility problem in com-

putational geometry. It originates from a real-world problem of guarding an art gallery

with the minimum number of guards who together can observe the whole gallery. In the

computational geometry version of the problem the layout of the art gallery is represented by

a simple polygon and each guard is represented by a point in the polygon. A set S of points is

said to guard a polygon if, for every point p in the polygon, there is some q ∈ S such that the line

segment between p and q does not leave the polygon.

There are numerous variations of the original problem that are also referred to as the art

gallery problem. In some versions guards are restricted to the perimeter, or even to the vertices

of the polygon. Some versions require only the perimeter or a subset of the perimeter to be

guarded. Solving the version in which guards must be placed on vertices and only vertices need

to be guarded is equivalent to solving the dominating set problem on the visibility graph of the

polygon.The question about how many vertices or watchmen or guards were needed was posed to

Chvatal by Victor Klee in 1973[4]. Chvatal proved it shortly thereafter.[1] Chvatal′s proof was

later simplified by Steve Fisk, via a 3-coloring argument.[2]

11

CHAPTER 2. ART GALLERY PROBLEM

2.1.2 Objective of our Implementation

Given a polygon (with or with out holes in it) and also set of vertices which are included in the

polygon (on the outer boundary or with in any of the holes) as input , we need to find whether the

given set of vertices satisfy the guard set or not. Solving this problem is same as the solving the

art gallery problem where the dimensions of the art gallery can be assumed to be polygons with

holes and the cameras or guards placed are assumed to be the set of vertices given as input and

we need to find whether or not the given guard set cover the entire polygon or not.

2.1.3 Methods of Implementation and Program

Considering the above objective as the final goal for our implementation, we follow certain

methods to program it using CGAL. The polygon with holes that we are giving as input was

stored in the data structure pol ygon_with_holes_2 in cgal library. Now, given a vertex in this

polygon we can able to find the visibility region from the vertex using compute_visibil ity

function which would again give us the visibility region as polygon with holes. Likewise, we

compute the visibility region for every vertex and collect the set of polygon with holes. The

visibility region covered by all the vertices is represented as UnionR which is union of all the

above visibility regions which is also polygon with hole. Now, we compute the symmetric difference

of UnionR polygon and the original polygon which if null represents guard set satisfies, doesn’t

satisfy otherwise.

The above method is implemented in following way:

#include <CGAL/Exact_predicates_exact_constructions_kernel.h>
#include <CGAL/Triangular_expansion_visibility_2.h>
#include <CGAL/Arr_segment_traits_2.h>
#include <CGAL/Arrangement_2.h>
#include <CGAL/Boolean_set_operations_2.h>
#include <CGAL/Polygon_2.h>
#include <CGAL/Polygon_with_holes_2.h>
#include <iostream>
#include <vector>
// Define the used kernel and arrangement
typedef CGAL::Exact_predicates_exact_constructions_kernel Kernel;
typedef Kernel::Point_2 Point_2;
typedef CGAL::Polygon_2<Kernel> Polygon_2;
typedef Kernel::Segment_2 Segment_2;
typedef CGAL::Arr_segment_traits_2<Kernel> Traits_2;
typedef CGAL::Arrangement_2<Traits_2> Arrangement_2;
typedef CGAL::Polygon_with_holes_2<Kernel> Polygon_with_holes_2;
typedef Arrangement_2::Halfedge_const_handle Halfedge_const_handle;

12

2.1. ART GALLERY IMPLEMENTATION WITH HIGH PRECISION

typedef Arrangement_2::Face_handle Face_handle;
typedef std::list<Polygon_with_holes_2> Pwh_list_2;

#include "print_utils.h"
// Define the used visibility class
typedef CGAL::Triangular_expansion_visibility_2<Arrangement_2> TEV;

int main() {
// Defining the input geometry
std::vector<Segment_2> segments;
int j,a,b,c,d,i,n,qn,qj,holes,points;
Point_2 x,y;
Polygon_2 outer;
std::cout<<"give the outer polygon size: ";
std::cin>>n;
std::cout<<"enter then number of holes: ";
std::cin>>holes;
std::cout<<"Enter the each segment of outer polygon:"<<std::endl;
Point_2 p[1000];
std::vector<Polygon_2> visiPolygons;
for(i=0;i<n;++i){
std::cin>>x;
outer.push_back (x);
std::cin>>y;
Point_2 p1=x,p2=y;
p[i] = p1;
p[(i+1)%n] = p2;
segments.push_back(Segment_2(p[i],p[(i+1)%n]));

}

std::vector<Polygon_2> holes_array;
i = 0;j = n;
// Orientation of the holes is designed in the program
// in a way that holes which have higher y co-rdinate wil be given first
// starting with highest y in a clockwise manner
// if y-cordinates are same then consider greatest x first
for(i=1;i<=holes;++i){

Polygon_2 add_hole;
std::cout << "\nEnter the number of points on boundary of hole #" << i << ":

";
std::cin>>points;
std::cout << "\nEnter the points in outer bounday in cw starting with largest

y : ";

13

CHAPTER 2. ART GALLERY PROBLEM

std::cin>>x;
add_hole.push_back(x);
Point_2 temp1=x;
p[j] = temp1;
++j;--points;
Point_2 temp2,start = temp1;
while(points--){
std::cin>>temp2;
add_hole.push_back(temp2);
p[j] = temp2;
++j;
segments.push_back(Segment_2(temp1, temp2));
temp1 = temp2;
}
segments.push_back(Segment_2(temp2, start));
holes_array.push_back(add_hole);

}
Arrangement_2 env;
CGAL::insert_non_intersecting_curves(env,segments.begin(),segments.end());

Polygon_with_holes_2 original(outer,holes_array.begin(),holes_array.end());
//Polygon_with_holes_2 original = get_polygon(env, holes);

std::cout<<"Enter the number of query points: ";
std::cin>>qj;
qn = qj;
while(qn--){
Polygon_2 polygon;
std::cout<<"Enter the query point number: ";
std::cin>>j;
Point_2 query_point = p[j];
Halfedge_const_handle he = env.halfedges_begin();
while (he->target()->point() != query_point || he->face()->is_unbounded())
he++;

Arrangement_2 output_arr;
TEV tev(env);
Face_handle fh = tev.compute_visibility(query_point, he, output_arr);

//print out the visibility region.
std::cout << "Regularized visibility region of q has "

<< output_arr.number_of_edges()
<< " edges." << std::endl;

14

2.1. ART GALLERY IMPLEMENTATION WITH HIGH PRECISION

std::cout << "Boundary edges of the visibility region:" << std::endl;
Arrangement_2::Ccb_halfedge_circulator curr = fh->outer_ccb();
polygon.push_back(Point_2(curr->source()->point()));
std::cout << "[" << curr->source()->point() << " -> " << curr->target()->point()

<< "]" << std::endl;
while (++curr != fh->outer_ccb()){
polygon.push_back(Point_2(curr->source()->point()));
std::cout << "[" << curr->source()->point() << " -> " << curr->target()->point()

<< "]"<< std::endl;
}
visiPolygons.push_back(polygon);
}
Polygon_with_holes_2 unionR;
if (CGAL::join (visiPolygons[0], visiPolygons[0], unionR)) {
std::cout << "The union: ";
print_polygon_with_holes (unionR);

}
for(i=1;i<qj;++i){
if (CGAL::join (unionR, visiPolygons[i], unionR)) {
std::cout << "The union: ";
print_polygon_with_holes (unionR);

}
}
std::cout<<"Final union of all polygons:"<<std::endl;
print_polygon_with_holes (unionR);
std::cout<<"Original polygon:"<<std::endl;
print_polygon_with_holes (original);
Pwh_list_2 symmR;
Pwh_list_2::const_iterator it;
CGAL::symmetric_difference (original, unionR, std::back_inserter(symmR));
if(symmR.size() == 0){
std::cout<<"Vertex Guard set holds"<<std::endl;

}
else{
std::cout << "\n\nThe symmetric difference:" << std::endl;
for (it = symmR.begin(); it != symmR.end(); ++it) {
std::cout << "--> ";
print_polygon_with_holes (*it);

}
std::cout<<"Vertex Guard set is invalid"<<std::endl;

}
return 0;

}

15

CHAPTER 2. ART GALLERY PROBLEM

2.1.4 Correctness and Precision

The correctness and preciseness of above method can be understood by using the following

example:

Consider the above Polygon with 1 hole as the input to the polygon.we can see from the

figure that points A,C,D and D,E,H are collinear. so, now when we take the guard set as the

vertices AA,D,H the guard set must satisfy. Now, the precision of the program can be checked by

varying the input polygon very slightly around 10(̂-40) shift in point A which will make A,C,D

non-collinear. The slight increase in y-cordinate of the point A will result in unsatisfiability of the

guard set. This was shown in below output.

with vertex A as (0,0)

Boundary edges of the visibility region:
[40 0 -> 80 0]
[80 0 -> 40 40]
[40 40 -> 30 50]
[30 50 -> 30 0]
[30 0 -> 40 0]
Enter the query point number: Regularized visibility region of q has 8 edges.
Boundary edges of the visibility region:

16

2.1. ART GALLERY IMPLEMENTATION WITH HIGH PRECISION

[20 60 -> 0 0]
[0 0 -> 50 -30]
[50 -30 -> 40 0]
[40 0 -> 30 0]
[30 0 -> 16 32]
[16 32 -> 36.6667 73.3333]
[36.6667 73.3333 -> 23.7838 71.3514]
[23.7838 71.3514 -> 20 60]
Enter the query point number: Regularized visibility region of q has 8 edges.
Boundary edges of the visibility region:
[15 70 -> 20 60]
[20 60 -> 0 0]
[0 0 -> 10.5263 -6.31579]
[10.5263 -6.31579 -> 16 32]
[16 32 -> 30 50]
[30 50 -> 40 40]
[40 40 -> 80 80]
[80 80 -> 15 70]
The union: { Outer boundary = [5 vertices: (30 0) (40 0) (80 0) (40 40) (30 50)]
0 holes:
}
The union: { Outer boundary = [11 vertices: (16 32) (36.6667 73.3333) (23.7838

71.3514) (20 60) (0 0) (50 -30) (40 0) (80 0) (40 40) (30 50) (30 0)]
0 holes:
}
The union: { Outer boundary = [11 vertices: (23.7838 71.3514) (15 70) (20 60) (0 0)

(10.5263 -6.31579) (50 -30) (40 0) (80 0) (40 40) (80 80) (36.6667 73.3333)]
1 holes:
Hole #1 = [3 vertices: (30 50) (30 0) (16 32)]

}
Final union of all polygons:
{ Outer boundary = [11 vertices: (23.7838 71.3514) (15 70) (20 60) (0 0) (10.5263

-6.31579) (50 -30) (40 0) (80 0) (40 40) (80 80) (36.6667 73.3333)]
1 holes:
Hole #1 = [3 vertices: (30 50) (30 0) (16 32)]

}
Original polygon:
{ Outer boundary = [8 vertices: (0 0) (50 -30) (40 0) (80 0) (40 40) (80 80) (15

70) (20 60)]
1 holes:
Hole #1 = [3 vertices: (30 50) (30 0) (16 32)]

}
Vertex Guard set holds

17

CHAPTER 2. ART GALLERY PROBLEM

With vertex A slightly shifted up

give the outer polygon size: enter then number of holes: Enter the each segment of
outer polygon:

Enter the number of points on boundary of hole #1:
Enter the points in outer bounday in cw starting with largest y : Enter the number

of query points: Enter the query point number: Regularized visibility region of
q has 5 edges.

Boundary edges of the visibility region:
[40 0 -> 80 0]
[80 0 -> 40 40]
[40 40 -> 30 50]
[30 50 -> 30 0]
[30 0 -> 40 0]
Enter the query point number: Regularized visibility region of q has 8 edges.
Boundary edges of the visibility region:
[20 60 -> 0 1e-41]
[0 1e-41 -> 50 -30]
[50 -30 -> 40 -3.33333e-42]
[40 -3.33333e-42 -> 30 0]
[30 0 -> 16 32]
[16 32 -> 36.6667 73.3333]
[36.6667 73.3333 -> 23.7838 71.3514]
[23.7838 71.3514 -> 20 60]
Enter the query point number: Regularized visibility region of q has 8 edges.
Boundary edges of the visibility region:
[15 70 -> 20 60]
[20 60 -> 0 1e-41]
[0 1e-41 -> 10.5263 -6.31579]
[10.5263 -6.31579 -> 16 32]
[16 32 -> 30 50]
[30 50 -> 40 40]
[40 40 -> 80 80]
[80 80 -> 15 70]
The union: { Outer boundary = [5 vertices: (30 0) (40 0) (80 0) (40 40) (30 50)]
0 holes:
}
The union: { Outer boundary = [13 vertices: (16 32) (36.6667 73.3333) (23.7838

71.3514) (20 60) (0 1e-41) (50 -30) (40 -3.33333e-42) (30 0) (40 0) (80 0) (40
40) (30 50) (30 0)]

0 holes:
}
The union: { Outer boundary = [13 vertices: (23.7838 71.3514) (15 70) (20 60) (0

18

2.1. ART GALLERY IMPLEMENTATION WITH HIGH PRECISION

1e-41) (10.5263 -6.31579) (50 -30) (40 -3.33333e-42) (30 0) (40 0) (80 0) (40
40) (80 80) (36.6667 73.3333)]

1 holes:
Hole #1 = [3 vertices: (30 50) (30 0) (16 32)]

}
Final union of all polygons:
{ Outer boundary = [13 vertices: (23.7838 71.3514) (15 70) (20 60) (0 1e-41)

(10.5263 -6.31579) (50 -30) (40 -3.33333e-42) (30 0) (40 0) (80 0) (40 40) (80
80) (36.6667 73.3333)]

1 holes:
Hole #1 = [3 vertices: (30 50) (30 0) (16 32)]

}
Original polygon:
{ Outer boundary = [8 vertices: (0 1e-41) (50 -30) (40 0) (80 0) (40 40) (80 80)

(15 70) (20 60)]
1 holes:
Hole #1 = [3 vertices: (30 50) (30 0) (16 32)]

}

The symmetric difference:
--> { Outer boundary = [3 vertices: (30 0) (40 -3.33333e-42) (40 0)]
0 holes:
}
Vertex Guard set is invalid

The above output clearly depicts the precision of the solvability of the implementation.

19

BIBLIOGRAPHY

[1] V. CHVATAL, A combinatorial theorem in plane geometry", journal of combinatorial theory, 18

(1975), pp. 39–41.

[2] S. FISK, A short proof of chvatal’s watchman theorem", journal of combinatorial theory, 24

(1978), pp. 374–375.

[3] M. T. JEAN-DANIEL BOISSONNAT, OLIVIER DEVILLERS AND M. YVINEC., Triangulations in

cgal, 16 (2000), pp. 11–18.

[4] J. O’ROURKE, Art gallery theorems and algorithms, oxford university press, (1987).

21

	Geometric Implementations-CGAL Software
	Introduction to CGAL Software
	Goal and Examples
	Various Real-world projects using CGAL
	Benefits of using CGAL
	CGAL concepts

	Important CGAL Packages
	Arthimetic and Algebraic
	Convex Hull
	Polygons
	Triangulations
	2D Visibility

	Art Gallery Problem
	Art Gallery Implementation with high precision
	Introduction
	Objective of our Implementation
	Methods of Implementation and Program
	Correctness and Precision

	Bibliography

